
Red Hat Enterprise Linux NSS
Cryptographic Module

version 5.0

FIPS 140-2 Non-Proprietary Security Policy

Document Version 1.2.1

Last Update: 2018-01-31

Red Hat Enterprise Linux NSS Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

Table of Contents
1. Cryptographic Module Specification... 3

1.1. Description of the Module... 3
1.2. Description of the Approved Modes..3
1.3. Cryptographic Boundary... 6

1.3.1. Hardware Block Diagram.. 7
1.3.2. Software Block Diagram... 8

2. Cryptographic Module Ports and Interfaces..9
2.1. PKCS #11... 9
2.2. Inhibition of Data Output... 9
2.3. Disconnecting the Output Data Path from the Key Processes..10

3. Roles, Services and Authentication... 11
3.1. Roles... 11
3.2. Role Assumption... 11
3.3. Strength of Authentication Mechanism..11
3.4. Multiple Concurrent Operators.. 12
3.5. Services.. 12

3.5.1. Calling Convention of API Functions...12
3.5.2. API Functions.. 12

4. Physical Security.. 21
5. Operational Environment.. 22

5.2 Policy... 22
6. Cryptographic Key Management.. 23

6.1. Random Number Generation..24
6.2. Key/CSP Storage.. 25
6.3. Key/CSP Zeroization... 25

7. Electromagnetic Interference/Electromagnetic Compatibility (EMI/EMC)...26
7.1 Statement of compliance... 26

8. Self-Tests.. 27
8.1. Power-Up Tests.. 27
8.2. Conditional Tests.. 27

9. Guidance.. 29
9.1. Crypto Officer Guidance... 29

9.1.1. Access to Audit Data...29
9.2. User Guidance.. 30

9.2.1. TLS Operations... 31
9.2.2. RSA and DSA Keys.. 31
9.2.3. Triple-DES Keys... 31

9.3. Handling Self-Test Errors..31
10. Mitigation of Other Attacks.. 32
11. Glossary and Abbreviations.. 33
12. References... 34

© 2018 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 2 of 34

Red Hat Enterprise Linux NSS Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

1. Cryptographic Module Specification
This document is the non-proprietary security policy for the Red Hat Enterprise Linux NSS
Cryptographic Module, and was prepared as part of the requirements for conformance to Federal
Information Processing Standard (FIPS) 140-2, Security Level 1.

1.1. Description of the Module
The Red Hat Enterprise Linux NSS Cryptographic Module (hereafter referred to as the “Module”) is
a software library supporting FIPS 140-2 approved cryptographic algorithms. The software version
is 5.0. For the purposes of the FIPS 140-2 validation, its embodiment type is defined as multi-chip
standalone. The Module is an open-source, general-purpose cryptographic library, with an API
based on the industry standard PKCS #11 version 2.20. It combines a vertical stack of Linux
components intended to limit the external interface each separate component may provide.

The Module is FIPS 140-2 validated at overall Security Level 1 with levels for individual sections
shown in the table below:

Security Component FIPS 140-2 Security Level

Cryptographic Module Specification 1

Cryptographic Module Ports and Interfaces 1

Roles, Services and Authentication 2

Finite State Model 1

Physical Security N/A

Operational Environment 1

Cryptographic Key Management 1

EMI/EMC 1

Self-Tests 1

Design Assurance 2

Mitigation of Other Attacks 1

Table 1: Security Level of the Module

The Module has been tested on the following platforms:

Hardware
Platform

Processor Operating System Tested

With
AES-NI

Without
AES-NI

Dell PowerEdge
R630Intel® Xeon®
CPU E5- 2640 v3

Intel® Xeon® CPU E5-
2640 v3

Red Hat Enterprise Linux 7.4 Yes Yes

Table 2: Tested Platforms

1.2. Description of the Approved Modes
The Module supports two modes of operation: FIPS Approved mode and non-Approved mode.
When the Module is powered on, the power-up self-tests are executed automatically without any

© 2018 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 3 of 34

Red Hat Enterprise Linux NSS Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

operator intervention. If the power-up self-tests complete successfully, the Module will be in FIPS
Approved mode. Table 3 lists the Approved algorithms in FIPS Approved mode.

Usage Approved Algorithm Keys/CSPs CAVS Certificate

Encryption and
decryption

AES encryption and
decryption with ECB, CBC
and CTR modes

AES 128, 192 and 256 bits
keys

Certs. #4739, #4740,
#4741, #4742

Three-key Triple-DES
encryption and
decryptionwith ECB, CBC and
CTR modes

Three-key Triple-DES 168
bits keys

Certs. #2520, #2521

Signature
generation and
verification

DSA signature generation DSA 2048 and 3072 bits
keys

Certs. #1271, #1272

DSA signature verification DSA 1024, 2048 and 3072
bits keys

ECDSA signature generation
and verification

ECDSA keys based on P-
256, P-384 and P-521
curves

Certs. #1181, #1182

RSA PKCS#1 v1.5 signature
generation

RSA 2048 and 3072 bits
keys

Certs. #2588, #2589RSA PKCS#1 v1.5 signature
verification

RSA 1024 and 2048 bits
keys

RSA 3072 bits keys

Message digest SHA-1, SHA-224, SHA-256,
SHA-384 and SHA-512

N/A Certs. #3884, #3885

HMAC with SHA-1, SHA-224,
SHA-256, SHA-384 and SHA-
512

At least 112 bits HMAC
keys

Certs. #3156, #3157

Random
number
generation

NIST SP800-90A Hash_DRBG
with SHA-256

Entropy input string, seed,
V and C values

Certs. #1625, #1626

Key
management

RSA key pair generation RSA 2048 and 3072 bits
keys

Certs. #2588, #2589

DSA key pair generation DSA 2048 and 3072 bits
keys

Certs. #1271, #1272

DSA domain parameter
verification

DSA 1024, 2048 and 3072
bits keys

ECDSA key pair generation
and public key verification

ECDSA keys based on P-
256, P-384 and P-521
curves

Certs. #1181, #1182

NIST SP800-135 key
derivation in TLS v1.0, TLS
v1.1 and TLS v1.2

TLS pre-master secret and
master secret

Certs. #1378, #1379

Table 3: Approved Algorithms in FIPS Approved mode

© 2018 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 4 of 34

Red Hat Enterprise Linux NSS Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

Note: The TLS protocol has not been reviewed or tested by the CAVP and CMVP.

Table 4 lists the non-Approved but allowed algorithms in FIPS Approved mode:

Usage non-Approved but
allowed Algorithm

Keys/CSPs Note

Encryption
and
Decryption

Two-key Triple-DES
decryption

Two-key Triple-DES 128 bit
keys (112 key bits with 16
parity bits)

Note that the use of two-key
TDEA for processing already-
protected information (e.g.,
decryption, key unwrapping
and MAC verification) is
allowed for legacy use.

Key
management

RSA key wrapping
(encrypt, decrypt)

RSA keys with size equal to or
larger than 2048 bits

Not compliant with NIST SP
800-56B, but allowed in
FIPS mode

Diffie-Hellman key
agreement

Diffie-Hellman public and
private components with size
between 2048 bits and 15360
bits

Not validated by CAVP, but
allowed in FIPS mode
according to IG D.8

EC Diffie-Hellman
key agreement

EC Diffie-Hellman public and
private components based on
P-256, P-384 and P-521 curves

Not validated by CAVP, but
allowed in FIPS mode
according to IG D.8

Random
number
generation

NDRNG N/A /dev/urandom is used to
seed the module’s SP 800-
90A DRBG

Table 4: non-Approved but Allowed Algorithms in FIPS Approved mode

Notes:

1. RSA (key wrapping; key establishment methodology provides between 112 and 256 bits
of encryption strength; non-compliant less than 112 bits of encryption strength)

2. Diffie-Hellman (key agreement; key establishment methodology provides between 112
and 256 bits of encryption strength; non-compliant less than 112 bits of encryption strength)

3. EC Diffie-Hellman (key agreement; key establishment methodology provides between
128 and 256 bits of encryption strength)

Caveat:

The module generates keys whose strengths are modified by available entropy.

Table 5 lists the non-Approved algorithms, which invocation will result the Module operating in non-
Approved mode implicitly.

Usage non-Approved Algorithm

Encryption and
decryption

AES-GCM

AES CTS mode

Camellia

Chacha20

DES

© 2018 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 5 of 34

Red Hat Enterprise Linux NSS Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

Usage non-Approved Algorithm

RC2

RC4

RC5

SEED

Two-key Triple-DES encryption

Signature generation
and verification

DSA signature generation with key size not equal to 2048 or 3072 bits; DSA
signature verification with key size not equal to 1024, 2048 or 3072 bits

RSA signature generation with key size not equal to 2048 or 3072 bits; RSA
signature verification with key size not equal to 1024, 2048 or 3072 bits

Message digest MD2

MD5

Key management DSA domain parameter generation (not validated by CAVP); DSA domain
parameter verification with key size not equal to 1024, 2048 or 3072 bits;
DSA key pair generation with key size not equal to 2048 and 3072 bits

RSA key pair generation for key sizes not listed in Table 3

AES key wrapping

Triple-DES key wrapping

Diffie-Hellman key agreement with key size less than 2048 bits

RSA key wrapping (encrypt, decrypt) with key size less than 2048 bits

J-PAKE key agreement

Table 5: non-Approved Algorithms

1.3. Cryptographic Boundary
The Module's physical boundary is the surface of the case of the platform (depicted in Figure 1).

The Module's logical cryptographic boundary consists of the shared library files and their integrity
check signature files, which are delivered through Red Hat Package Manager (RPM) as listed below:

• nss-softokn RPM file with version 3.28.3-8.el7_4, which contains the following files:

◦ /usr/lib64/libnssdbm3.chk (64 bits)

◦ /usr/lib64/libnssdbm3.so (64 bits)

◦ /usr/lib64/libsoftokn3.chk (64 bits)

◦ /usr/lib64/libsoftokn3.so (64 bits)

◦ /usr/lib/libnssdbm3.chk (32 bits)

◦ /usr/lib/libnssdbm3.so (32 bits)

◦ /usr/lib/libsoftokn3.chk (32 bits)

◦ /usr/lib/libsoftokn3.so (32 bits)

• nss-softokn-freebl RPMwith version 3.28.3-8.el7_4, which contains the following files:

◦ /lib64/libfreeblpriv3.chk (64 bits)

© 2018 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 6 of 34

Red Hat Enterprise Linux NSS Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

◦ /lib64/libfreeblpriv3.so (64 bits)

◦ /lib/libfreeblpriv3.chk (32 bits)

◦ /lib/libfreeblpriv3.so (32 bits)

1.3.1. Hardware Block Diagram

Figure 1: Hardware Block Diagram

© 2018 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 7 of 34

Red Hat Enterprise Linux NSS Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

1.3.2. Software Block Diagram

The NSS cryptographic module implements the PKCS #11 (Cryptoki) API. The API itself defines the
logical cryptographic boundary, thus all implementation is inside the boundary. The diagram below
shows the relationship of the layers.

Figure 2: Software Block Diagram

© 2018 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 8 of 34

Red Hat Enterprise Linux NSS Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

2. Cryptographic Module Ports and Interfaces
As a software-only module, the Module does not have physical ports. For the purpose of FIPS 140-2
validation, the physical ports of the Module are interpreted to be the physical ports of the
hardware platform on which it runs. The logical interface is a C-language Application Program
Interface (API) following the PKCS #11 specification, the database files in kernel file system, the
environment variables and configuration file.

Table 6 Summarizes the four logical interfaces.

FIPS 140-2 Interface Logical Interface

Data Input API input parameters and database files in kernel file system

Data Output API output parameters and database files in kernel file system

Control Input API function calls, environment variables and configuration
file (/proc/sys/crypto/fips_enabled)

Status Output API return codes and status parameters

Table 6: Ports and Interfaces

The Module uses different function arguments for input and output to distinguish between data
input, control input, data output, and status output, to disconnect the logical paths followed by
data/control entering the module and data/status exiting the module. The Module doesn't use the
same buffer for input and output. After the Module is done with an input buffer that holds security-
related information, it always zeroizes the buffer so that if the memory is later reused as an output
buffer, no sensitive information can be inadvertently leaked.

2.1. PKCS #11
The logical interfaces of the Module consist of the PKCS #11 (Cryptoki) API. The API itself defines
the Module's logical boundary, i.e. all access to the Module is through this API. The functions in the
PKCS #11 API are listed in Table 7.

2.2. Inhibition of Data Output
All data output via the data output interface is inhibited when the NSS cryptographic module is
performing self-tests or in the Error state.

• During self-tests: All data output via the data output interface is inhibited while self-tests
are executed.

• In Error state: The Boolean state variable sftk_fatalError tracks whether the NSS
cryptographic module is in the Error state. Most PKCS #11 functions, including all the
functions that output data via the data output interface, check the sftk_fatalError state
variable and, if it is true, return the CKR_DEVICE_ERROR error code immediately. Only the
functions that shut down and restart the module, reinitialize the module, or output status
information can be invoked in the Error state. These functions are FC_GetFunctionList,
FC_Initialize, FC_Finalize, FC_GetInfo, FC_GetSlotList, FC_GetSlotInfo,
FC_GetTokenInfo, FC_InitToken, FC_CloseSession, FC_CloseAllSessions, and
FC_WaitForSlotEvent.

© 2018 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 9 of 34

Red Hat Enterprise Linux NSS Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

2.3. Disconnecting the Output Data Path from the Key
Processes

During key generation and key zeroization, the Module may perform audit logging, but the audit
records do not contain sensitive information. The Module does not return the function output
arguments until the key generation or key zeroization is finished. Therefore, the logical paths used
by output data exiting the module are logically disconnected from the processes/threads
performing key generation and key zeroization.

© 2018 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 10 of 34

Red Hat Enterprise Linux NSS Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

3. Roles, Services and Authentication
This section defines the roles, services, and authentication mechanisms and methods with respect
to the applicable FIPS 140-2 requirements.

3.1. Roles
The Module implements a Crypto Officer (CO) role and a User role:

• The CO role is supported for the installation and initialization of the module. Also, the CO
role can access other general-purpose services (such as message digest and random
number generation services) and status services of the Module. The CO does not have
access to any service that utilizes the secret or private keys of the Module. The CO must
control the access to the Module both before and after installation, including management
of physical access to the computer, executing the Module code as well as management of
the security facilities provided by the operating system.

• The User role has access to all cryptographically secure services which use the secret or
private keys of the Module. It is also responsible for the retrieval, updating and deletion of
keys from the private key database.

3.2. Role Assumption
The CO role is implicitly assumed by an operator while installing the Module by following the
instructions in Section 9.1 and while performing other CO services on the Module.

The Module implements a password-based authentication for the User role. To perform any
security services under the User role, an operator must log into the Module and complete an
authentication procedure using the password information unique to the User role operator. The
password is passed to the Module via the API function as an input argument and won't be
displayed. The return value of the function is the only feedback mechanism, which does not
provide any information that could be used to guess or determine the User's password. The
password is initialized by the CO role as part of module initialization and can be changed by the
User role operator.

If a User-role service is called before the operator is authenticated, it returns the
CKR_USER_NOT_LOGGED_IN error code. The operator must call the FC_Login function to provide the
required authentication.

Once a password has been established for the Module, the user is allowed to use the security
services if and only if the user is successfully authenticated to the Module. Password establishment
and authentication are required for the operation of the Module. When the Module is powered off,
the result of previous authentication will be cleared and the user needs to be re-authenticated.

3.3. Strength of Authentication Mechanism
The Module imposes the following requirements on the password. These requirements are
enforced by the module on password initialization or change.

• The password must be at least seven characters long.

• The password must consist of characters from three or more character classes. We define
five character classes: digits (0-9), ASCII lowercase letters (a-z), ASCII uppercase letters (A-
Z), ASCII non-alphanumeric characters (space and other ASCII special characters such as
'$', '!'), and non-ASCII characters (Latin characters such as 'é', 'ß'; Greek characters such as
'Ω', 'θ'; other non-ASCII special characters such as '¿'). If an ASCII uppercase letter is the

© 2018 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 11 of 34

Red Hat Enterprise Linux NSS Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

first character of the password, the uppercase letter is not counted toward its character
class. Similarly, if a digit is the last character of the password, the digit is not counted
toward its character class.

To estimate the maximum probability that a random guess of the password will succeed, we
assume that:

• The characters of the password are independent with each other.

• The password contains the smallest combination of the character classes, which is five
digits, one ASCII lowercase letter and one ASCII uppercase letter. The probability to guess
every character successfully is (1/10)^5 * (1/26) * (1/26) = 1/67,600,000.

Since the password can contain seven characters from any three or more of the aforementioned
five character classes, the probability that a random guess of the password will succeed is less
than or equals to 1/67,600,000, which is smaller than the required threshold 1/1,000,000.

After each failed authentication attempt, the NSS cryptographic module inserts a one-second delay
before returning to the caller, allowing at most 60 authentication attempts during a one-minute
period. Therefore, the probability of a successful random guess of the password during a one-
minute period is less than or equals to 60 * 1/67,600,000 = 0.089 * (1/100,000), which is smaller
than the required threshold 1/100,000.

3.4. Multiple Concurrent Operators
The Module doesn't allow concurrent operators.

• On a multi-user operating system, this is enforced by making the NSS certificate and
private key databases readable and writable by the owner of the files only.

Note: FIPS 140-2 Implementation Guidance Section 6.1 clarifies the use of a cryptographic module
on a server.

When a cryptographic module is implemented in a server environment, the server application is
the user of the cryptographic module. The server application makes the calls to the cryptographic
module. Therefore, the server application is the single user of the cryptographic module, even
when the server application is serving multiple clients.

3.5. Services

3.5.1. Calling Convention of API Functions

The Module has a set of API functions denoted by FC_xxx. All the API functions are listed in Table 7.

Among the module's API functions, only FC_GetFunctionList is exported and therefore callable by
its name. All the other API functions must be called via the function pointers returned by
FC_GetFunctionList. It returns a CK_FUNCTION_LIST structure containing function pointers
named C_xxx such as C_Initialize and C_Finalize. The C_xxx function pointers in the
CK_FUNCTION_LIST structure returned by FC_GetFunctionList point to the FC_xxx functions.

The following convention is used to describe API function calls. Here FC_Initialize is used as
examples:

• When “call FC_Initialize” is mentioned, the technical equivalent of “call the
FC_Initialize function via the C_Initialize function pointer in the CK_FUNCTION_LIST
structure returned by FC_GetFunctionList” is implied.

3.5.2. API Functions

The Module supports Crypto-Officer services which require no operator authentication, and User

© 2018 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 12 of 34

Red Hat Enterprise Linux NSS Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

services which require operator authentication. Crypto-Officer services do not require access to
the secret and private keys and other CSPs associated with the user. The message digesting
services are available to Crypto-Officer only when CSPs are not accessed. User services which
access CSPs (e.g., FC_GenerateKey, FC_GenerateKeyPair) require operator authentication.

Table 7 lists all the services available in FIPS Approved mode with the role type, API function,
description, Keys/CSPs and access type. Access types R, W and Z stand for Read, Write, and
Zeroize, respectively. Role types U and CO correspond to User role and Crypto Officer role,
respectively. Please refer to Table 3 and Table 4 for the Approved or allowed cryptographic
algorithms supported by the Module.

Note: The message digesting functions (except FC_DigestKey) that do not use any keys of the
Module can be accessed by the Crypto-Officer role and do not require authentication to the
Module. The FC_DigestKey API function computes the message digest (hash) of the value of a
secret key, so it is available only to the User role.

Service Role Function Description Keys/CSPs Access

Get the
function list

CO FC_GetFunctionList Return a pointer to the
list of function pointers
for the operational mode

none -

Module
initialization

CO FC_InitToken Initialize or re-initialize a
token

User password
and all keys

Z

CO FC_InitPIN Initialize the user's
password, i.e., set the
user's initial password

User password W

General
Purpose

CO FC_Initialize Initialize the module
library

none -

CO FC_Finalize Finalize (shut down) the
module library

All keys Z

CO FC_GetInfo Obtain general
information about the
module library

none -

Slot and
token
management

CO FC_GetSlotList Obtain a list of slots in
the system

none -

CO FC_GetSlotInfo Obtain information
about a particular slot

none -

CO FC_GetTokenInfo Obtain information
about the token
(This function provides
the Show Status service)

none -

CO FC_GetMechanismList Obtain a list of
mechanisms
(cryptographic
algorithms) supported
by a token

none -

CO FC_GetMechanismInfo Obtain information none -

© 2018 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 13 of 34

Red Hat Enterprise Linux NSS Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

Service Role Function Description Keys/CSPs Access

about a particular
mechanism

U FC_SetPIN Change the user's
password

User password RW

Session
management

CO FC_OpenSession Open a connection
(session) between an
application and a
particular token

none -

CO FC_CloseSession Close a session All keys for the
session

Z

CO FC_CloseAllSessions Close all sessions with a
token

All keys Z

CO FC_GetSessionInfo Obtain information
about the session
(This function provides
the Show Status service)

none -

CO FC_GetOperationState Save the state of the
cryptographic
operations in a session
(This function is only
implemented for
message digest
operations)

none -

CO FC_SetOperationState Restore the state of the
cryptographic
operations in a session
(This function is only
implemented for
message digest
operations)

none -

U FC_Login Log into a token User password R

U FC_Logout Log out from a token none -

Object
management

U FC_CreateObject Create a new object key W

U FC_CopyObject Create a copy of an
object

Original key R

New key W

U FC_DestroyObject Destroy an object key Z

U FC_GetObjectSize Obtain the size of an
object in bytes

key R

U FC_GetAttributeValue Obtain an attribute
value of an object

key R

U FC_SetAttributeValue Modify an attribute
value of an object

key W

© 2018 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 14 of 34

Red Hat Enterprise Linux NSS Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

Service Role Function Description Keys/CSPs Access

U FC_FindObjectsInit Initialize an object
search operation

none -

U FC_FindObjects Continue an object
search operation

Keys matching
the search
criteria

R

U FC_FindObjectsFinal Finish an object search
operation

none -

Encryption
and
decryption

U FC_EncryptInit Initialize an encryption
operation

AES/Triple-DES
key

R

U FC_Encrypt Encrypt single-part data AES/Triple-DES
key

R

U FC_EncryptUpdate Continue a multiple-part
encryption operation

AES/Triple-DES
key

R

U FC_EncryptFinal Finish a multiple-part
encryption operation

AES/Triple-DES
key

R

U FC_DecryptInit Initialize a decryption
operation

AES/Triple-DES
key

R

U FC_Decrypt Decrypt single-part
encrypted data

AES/Triple-DES
key

R

U FC_DecryptUpdate Continue a multiple-part
decryption operation

AES/Triple-DES
key

R

U FC_DecryptFinal Finish a multiple-part
decryption operation

AES/Triple-DES
key

R

Message
digest

CO FC_DigestInit Initialize a message-
digesting operation

none -

CO FC_Digest Digest single-part data none -

CO FC_DigestUpdate Continue a multiple-part
digesting operation

none -

U FC_DigestKey Continue a multiple-part
message-digesting
operation by digesting
the value of a secret key
as part of the data
already digested

HMAC key R

CO FC_DigestFinal Finish a multiple-part
digesting operation

none -

Signature
generation
and
verification

U FC_SignInit Initialize a signature
operation

DSA/ECDSA/RSA
private key,
HMAC key

R

U FC_Sign Sign single-part data DSA/ECDSA/RSA
private key,
HMAC key

R

© 2018 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 15 of 34

Red Hat Enterprise Linux NSS Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

Service Role Function Description Keys/CSPs Access

U FC_SignUpdate Continue a multiple-part
signature operation

DSA/ECDSA/RSA
private key,
HMAC key

R

U FC_SignFinal Finish a multiple-part
signature operation

DSA/ECDSA/RSA
private key,
HMAC key

R

U FC_SignRecoverInit Initialize a signature
operation, where the
data can be recovered
from the signature

DSA/ECDSA/RSA
private key

R

U FC_SignRecover Sign single-part data,
where the data can be
recovered from the
signature

DSA/ECDSA/RSA
private key

R

U FC_VerifyInit Initialize a
verification operation

DSA/ECDSA/RSA
public key,
HMAC key

R

U FC_Verify Verify a signature on
single-part data

DSA/ECDSA/RSA
public key,
HMAC key

R

U FC_VerifyUpdate Continue a multiple-part
verification operation

DSA/ECDSA/RSA
public key,
HMAC key

R

U FC_VerifyFinal Finish a multiple-part
verification operation

DSA/ECDSA/RSA
public key,
HMAC key

R

U FC_VerifyRecoverInit Initialize a verification
operation, where the
data is recovered from
the signature

DSA/ECDSA/RSA
public key

R

U FC_VerifyRecover Verify a signature on
single-part data, where
the data is recovered
from the signature

DSA/ECDSA/RSA
public key

R

Dual-function
cryptographic
operations

U FC_DigestEncryptUpda
te

Continue a multiple-part
digesting and encryption
operation

AES/Triple-DES
key

R

U FC_DecryptDigestUpda
te

Continue a multiple-part
decryption and digesting
operation

AES/Triple-DES
key

R

U FC_SignEncryptUpdate Continue a multiple-part
signing and encryption
operation

DSA/ECDSA/RSA
private key,
HMAC key

R

AES/Triple-DES R

© 2018 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 16 of 34

Red Hat Enterprise Linux NSS Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

Service Role Function Description Keys/CSPs Access

key

U FC_DecryptVerifyUpda
te

Continue a multiple-part
decryption and verify
operation

DSA/ECDSA/RSA
public key,
HMAC key

R

AES/Triple-DES
key

R

Key
management

U FC_GenerateKey Generate a secret key
(Also used by TLS to
generate a pre-master
secret)

AES/Triple-
DES/HMAC key,
TLS pre-master
secret

W

U FC_GenerateKeyPair Generate a
public/private key pair
(This function performs
the pair-wise
consistency tests)

DSA/ECDSA key
pair, Diffie-
Hellman/EC
Diffie-Hellman
public and
private
components

W

U FC_WrapKey Wrap (encrypt) a key
using one of the
following mechanisms
allowed in FIPS mode:
RSA encryption

Wrapping key R

Key to be
wrapped

R

U FC_UnwrapKey Unwrap (decrypt) a key
using one of the
following mechanisms
allowed in FIPS mode :
(1) AES decryption
(2) Triple-DES decryption
(3) RSA decryption

Unwrapping key R

Unwrapped key W

U FC_DeriveKey Derive a key from TLS
master secret which is
derived from TLS pre-
master secret

TLS pre-master
secret

R

TLS master
secret

RW

Derived key W

Random
number
generation

CO FC_SeedRandom Mix in additional seed
material to the random
number generator

Entropy input
string, seed,
DRBG V and C
values

RW

CO FC_GenerateRandom Generate random data
(This function performs
the continuous random
number generator test)

Random data,
DRBG V and C
values

RW

Parallel
function
management

CO FC_GetFunctionStatus A legacy function, which
simply returns the value
0x00000051 (function

none -

© 2018 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 17 of 34

Red Hat Enterprise Linux NSS Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

Service Role Function Description Keys/CSPs Access

not parallel)

CO FC_CancelFunction A legacy function, which
simply returns the value
0x00000051 (function
not parallel)

none -

Self tests CO N/A The self tests are
performed automatically
when loading the
module

DSA 2048-bit
public key for
module integrity
test

R

Zeroization U FC_DestroyObject All CSPs are
automatically zeroized
when freeing the cipher
handle

All secret or
private keys and
password

Z

CO FC_InitToken
FC_Finalize
FC_CloseSession
FC_CloseAllSessions

Table 7: Services details in FIPS Approved mode

Note:

1. 'Original key' and 'New key' are the secret keys or public/private key pairs.

2. 'Wrapping key' corresponds to the secret key or public key used to wrap another key

3. 'Key to be wrapped' is the key that is wrapped by the 'wrapping key'

4. 'Unwrapping key' corresponds to the secret key or private key used to unwrap another key

5. 'Unwrapped key' is the plaintext key that has not been wrapped by a 'wrapping key'

6. 'Derived key' is the key obtained by a key derivation function which takes the 'TLS master
secret' as input

7. The AES and Triple-DES algorithms are still allowed for FC_UnwrapKey according to IG D.9
(01/19/2018 version).

Table 7(A) lists all the services available in non-Approved mode with API function and the non-
Approved algorithm that the function may invoke. Please note that the functions are the same as
the ones listed in Table 7, but the underneath non-Approved algorithms are invoked. Please also
refer to Table 5 for the non-Approved algorithms. If any service invokes the non-Approved
algorithms, then the module will enter non-Approved mode implicitly.

Service Function non-Approved Algorithm invoked

Encryption and
decryption

FC_EncryptInit AES CTS mode, Camellia, DES, RC2, RC4, RC5,
SEED, Two-key Triple-DESFC_Encrypt

FC_EncryptUpdate

FC_EncryptFinal

FC_DecryptInit AES CTS mode, Camellia, DES, RC2, RC4, RC5,
SEEDFC_Decrypt

FC_DecryptUpdate

FC_DecryptFinal

© 2018 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 18 of 34

Red Hat Enterprise Linux NSS Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

Service Function non-Approved Algorithm invoked

Message digest FC_DigestInit MD2, MD5

FC_Digest

FC_DigestUpdate

FC_DigestKey

FC_DigestFinal

Signature generation
and verification

FC_SignInit DSA signature generation with non-compliant
key size listed in Table 5, RSA signature
generation with non-compliant key size listed
in Table 5

FC_Sign

FC_SignUpdate

FC_SignFinal

FC_SignRecoverInit

FC_SignRecover

FC_VerifyInit DSA signature verification with non-compliant
key size listed in Table 5, RSA signature
verification with non-compliant key size listed
in Table 5

FC_Verify

FC_VerifyUpdate

FC_VerifyFinal

FC_VerifyRecoverInit

FC_VerifyRecover

Dual-function
cryptographic
operations

FC_DigestEncryptUpdate MD2, MD5, AES CTS mode, Camellia, DES,
RC2, RC4, RC5, SEED, Two-key Triple-DES

FC_DecryptDigestUpdate AES CTS mode, Camellia, DES, RC2, RC4, RC5,
SEED, MD2, MD5

FC_SignEncryptUpdate DSA signature generation with non-compliant
key size listed in Table 5, RSA signature
generation with non-compliant key size listed
in Table 5, AES CTS mode, Camellia, DES,
RC2, RC4, RC5, SEED, Two-key Triple-DES

FC_DecryptVerifyUpdate AES CTS mode, Camellia, DES, RC2, RC4, RC5,
SEED, DSA signature verification with non-
compliant key size listed in Table 5, RSA
signature verification with non-compliant key
size listed in Table 5

Key management FC_GenerateKeyPair ECDSA key pair generation, DSA domain
parameter generation, DSA domain
parameter verification with non-compliant key
size listed in Table 5, DSA key pair generation
with non-compliant key size listed in Table 5,
RSA key pair generation

FC_WrapKey AES key wrapping (encrypt) , Triple-DES key
wrapping (encrypt) , RSA key wrapping
(encrypt) with non-compliant key size listed in

© 2018 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 19 of 34

Red Hat Enterprise Linux NSS Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

Service Function non-Approved Algorithm invoked

Table 5

FC_UnwrapKey , Triple-DES key unwrapping (decrypt) using
Two-key Triple-DES, RSA key wrapping
(decrypt) with non-compliant key size listed in
Table 5

FC_DeriveKey Diffie-Hellman key agreement with non-
compliant key size listed in Table 5, J-PAKE key
agreement

Table 7(A): Services details in non-Approved mode

© 2018 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 20 of 34

Red Hat Enterprise Linux NSS Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

4. Physical Security
The Module comprises of software only and thus does not claim any physical security.

© 2018 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 21 of 34

Red Hat Enterprise Linux NSS Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

5. Operational Environment

 1.3 5.1 Applicability
The module operates in a modifiable operational environment per FIPS 140-2 level 1 specifications.
The module runs on a commercially available general-purpose operating system executing on the
hardware specified in section 2.2.

The Red Hat Enterprise Linux operating system is used as the basis of other products which
include but are not limited to:

• Red Hat Enterprise Linux Atomic Host
• Red Hat Virtualization (RHV)
• Red Hat OpenStack Platform
• OpenShift Container Platform
• Red Hat Gluster Storage
• Red Hat Ceph Storage
• Red Hat CloudForms
• Red Hat Satellite.

Compliance is maintained for these products whenever the binary is found unchanged.

5.2 Policy
The operating system is restricted to a single operator (concurrent operators are explicitly
excluded). The application that request cryptographic services is the single user of the
module, even when the application is serving multiple clients.
In FIPS Approved mode, the ptrace(2) system call, the debugger (gdb(1)), and strace(1)
shall be not used.

© 2018 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 22 of 34

Red Hat Enterprise Linux NSS Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

6. Cryptographic Key Management
The following table provides a summary of the Keys/CSPs in the Module:

Keys/CSPs Generation Storage Entry/Output Zeroization

AES 128, 192 and
256 bits keys

Use of NIST
SP800-90A DRBG

Application
memory or
key database

Encrypted through
key wrapping
using FC_WrapKey
with RSA key
wrapping

Automatically
zeroized when
freeing the cipher
handle

Triple-DES 168 bits
keys

Use of NIST
SP800-90A DRBG

Application
memory or
key database

Encrypted through
key wrapping
using FC_WrapKey
with RSA key
wrapping

Automatically
zeroized when
freeing the cipher
handle

DSA 2048 and 3072
bits private keys

Use of NIST
SP800-90A DRBG
as a seed for the
186-4 DSA key
generation
mechanism

Application
memory or
key database

Encrypted through
key wrapping
using FC_WrapKey
with RSA key
wrapping

Automatically
zeroized when
freeing the cipher
handle

ECDSA private keys
based on P-256, P-
384 and P-521
curves

Use of NIST
SP800-90A DRBG
as a seed for the
186-4 ECDSA key
generation
mechanism

Application
memory or
key database

Encrypted through
key wrapping
using FC_WrapKey
with RSA key
wrapping

Automatically
zeroized when
freeing the cipher
handle

RSA 2048 and 3072
bits private keys

Use of NIST
SP800-90A DRBG
as a seed for the
186-4 RSA key
generation
mechanism

Application
memory or
key database

Encrypted through
key wrapping
using FC_WrapKey
with RSA key
wrapping

Automatically
zeroized when
freeing the cipher
handle

HMAC keys with at
least 112 bits

N/A (passed in as
API input
parameter)

Application
memory or
key data base

Encrypted through
key wrapping
using FC_WrapKey
with RSA key
wrapping

Automatically
zeroized when
freeing the cipher
handle

DRBG entropy input
string and seed

Obtained from
/dev/urandom

Application
memory

N/A Automatically
zeroized when
freeing DRBG
handle

DRBG V and C
values

Derived from the
entropy input
string as defined
in NIST SP800-90A

Application
memory

N/A Automatically
zeroized when
freeing DRBG
handle

TLS pre-master Use of NIST Application N/A Automatically

© 2018 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 23 of 34

Red Hat Enterprise Linux NSS Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

secret SP800-90A DRBG
in Diffie-Hellman
or EC Diffie-
Hellman key
agreement
scheme

memory zeroized when
freeing the cipher
handle

TLS master secret Derived from TLS
pre-master secret
by using key
derivation

Application
memory

N/A Automatically
zeroized when
freeing the cipher
handle

Diffie-Hellman
private components
with size between
2048 bits and 15360
bits

Use of NIST
SP800-90A DRBG
as a seed for the
186-4 DSA key
generation
mechanism

Application
memory

N/A Automatically
zeroized when
freeing the cipher
handle

EC Diffie-Hellman
private components
based on P-256, P-
384 and P-521
curves

Use of NIST
SP800-90A DRBG
as a seed for the
186-4 EC Diffie-
Hellman key
agreement
scheme (same as
ECDSA)

Application
memory

N/A Automatically
zeroized when
freeing the cipher
handle

User Passwords N/A (supplied by
the calling
application)

Application
memory or
key database
in salted form

N/A (input through
API parameter)

Automatically
zeroized when the
module is re-
initialized or
overwritten when
the user changes its
password

Table 8: Keys/CSPs

Note: The /dev/urandom is an NDRNG located within the module's physical boundary but outside
the logical boundary.

6.1. Random Number Generation
The Module employs a NIST SP800-90 Hash_DRBG with SHA-256 as random number generator. The
random number generator is seeded by obtaining random data from the operating system via
/dev/urandom. The entropy source /dev/urandom provides at least 112 bits of random data
available to the Module to obtain.

Reseeding is performed by pulling more data from /dev/urandom. A product using the Module
should periodically reseed the module's random number generator with unpredictable noise by
calling FC_SeedRandom. After 2⁴⁸ calls to the random number generator the Module reseeds
automatically.

The Module performs the DRBG health testing as specified in section 11.3 of NIST SP800-90A.

The Key Generation methods implemented in the module for Approved services in FIPS mode is
compliant with [SP800-133].

© 2018 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 24 of 34

Red Hat Enterprise Linux NSS Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

For generating RSA, DSA and ECDSA keys the module implements asymmetric key generation
services compliant with [FIPS186-4]. A seed (i.e. the random value) used in asymmetric key
generation is directly obtained from the [SP800-90A] DRBG.
The public and private key pairs used in the Diffie-Hellman and EC Diffie-Hellman KAS are
generated internally by the module using the same DSA and ECDSA key generation compliant with
[FIPS186-4] which is compliant with [SP800-56A].
The module generates symmetric key through the FC_GenerateKey() function using the random
numbers from the SP 800-90A DRBG.

6.2. Key/CSP Storage
The Module employs the cryptographic keys and CSPs in the FIPS Approved mode of operation as
listed in Table 8. The module does not perform persistent storage for any keys or CSPs. Note that
the private key database (provided with the files key3.db/key4.db) mentioned in Table 8 is within
the Module's physical boundary but outside its logical boundary.

6.3. Key/CSP Zeroization
The application that uses the Module is responsible for appropriate zeroization of the key material.
The Module provides zeroization methods to clear the memory region previously occupied by a
plaintext secret key, private key or password. A plaintext secret or private key gets zeroized when
it is passed to a FC_DestroyObject call. All plaintext secret and private keys must be zeroized
when the Module is shut down (with a FC_Finalize call), reinitialized (with a FC_InitToken call),
or when the session is closed (with a FC_CloseSession or FC_CloseAllSessions call). All zeroization
is to be performed by storing the value 0 into every byte of the memory region that is previously
occupied by a plaintext secret key, private key or password.

Zeroization is performed in a time that is not sufficient to compromise plaintext secret or private
keys and password.

© 2018 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 25 of 34

Red Hat Enterprise Linux NSS Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

7. Electromagnetic Interference/Electromagnetic
Compatibility (EMI/EMC)
MARKETING NAME.......................... PowerEdge R630
REGULATORY MODEL..................... E26S
REGULATORY TYPE......................... E26S001
EFFECTIVE DATE............................. September 03, 2014
EMC EMISSIONS CLASS.................. Class A

7.1 Statement of compliance
This product has been determined to be compliant with the applicable standards, regulations, and
directives for the countries where the product is marketed. The product is a xed with regulatory
marking and text as necessary for the country/agency. Generally, Information Technology
Equipment (ITE) product compliance is based on IEC and CISPR standards and their national
equivalent such as Product Safety, IEC 60950-1 and European Norm EN 60950-1 or EMC, CISPR
22/CISPR 24 and EN 55022/55024. Dell products have been verified to comply with the EU RoHS
Directive 2011/65/EU. Dell products do not contain any of the restricted substances in
concentrations and applications not permitted by the RoHS Directive.

© 2018 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 26 of 34

Red Hat Enterprise Linux NSS Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

8. Self-Tests
FIPS 140-2 requires that the Module perform self-tests to ensure the integrity of the Module and
the correctness of the cryptographic functionality at start up. In addition, some functions require
conditional tests. All of these tests are listed and described in this section.

8.1. Power-Up Tests
All the power-up self-tests are performed automatically without requiring any operator
intervention. During the power-up self-tests, no cryptographic operation is available and all input
or output is inhibited. Once the power-up self-tests are completed successfully, the Module enters
operational mode and cryptographic operations are available. If any of the power-up self-tests fail,
the Module enters the Error state. In Error state, all output is inhibited and no cryptographic
operation is allowed. The Module returns the error code CKR_DEVICE_ERROR to the calling
application to indicate the Error state. The Module needs to be reinitialized in order to recover from
the Error state.

The following table provides the lists of Known-Answer Test (KAT) and Integrity Test as the power-
up self-tests:

Algorithm Test

AES KATs for ECB and CBC modes: encryption and decryption are
tested separately

Triple-DES KATs for ECB and CBC modes: encryption and decryption are
tested separately

DSA KAT: signature generation and verification are tested separately

ECDSA KAT: signature generation and verification are tested separately

RSA KAT: encryption and decryption are tested separately
KAT: signature generation and verification are tested separately

SHA-1, SHA-224, SHA-256,
SHA-384 and SHA-512

KAT

HMAC-SHA-1, HMAC-SHA-244,
HMAC-SHA-256, HMAC-SHA-
384 and HMAC-SHA-512

KAT

NIST SP800-90A Hash_DRBG KAT

Module integrity DSA signature verification with 2048 bits key and SHA-256

Table 9: Module Self-Tests

The power-up self tests can be performed on demand by reinitializing the Module.

8.2. Conditional Tests
The following table provides the lists of Pairwise Consistency Test (PCT) and Continuous Random
Number Generation Test (CRNGT) as the conditional self-tests. If any of the conditional test fails,
the Module enters the Error state. It returns the error code CKR_DEVICE_ERROR to the calling
application to indicate the Error state. The Module needs to be reinitialized in order to recover from
the Error state.

© 2018 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 27 of 34

Red Hat Enterprise Linux NSS Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

Algorithm Test

DSA PCT for DSA key generation

ECDSA PCT for ECDSA key generation

RSA PCT for RSA key generation

NIST SP800-90A DRBG CRNGT

Table 10: Module Conditional Tests

© 2018 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 28 of 34

Red Hat Enterprise Linux NSS Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

9. Guidance

9.1. Crypto Officer Guidance
The version of the RPMs containing the FIPS validated Module is stated in section 1.3. The RPM
packages forming the Module can be installed by standard tools recommended for the installation
of RPM packages on a Red Hat Enterprise Linux system (for example, yum, rpm, and the RHN
remote management tool). All RPM packages are signed with the Red Hat build key, which is an
RSA 2048 bit key using SHA-256 signatures. The signature is automatically verified upon
installation of the RPM package. If the signature cannot be validated, the RPM tool rejects the
installation of the package. In such a case, the Crypto Officer is requested to obtain a new copy of
the module's RPMs from Red Hat.

In addition, to support the Module, the NSPR library must be installed that is offered by the
underlying operating system.

Only the cipher types listed in section 1.2 are allowed to be used.

To configure the system to bring the module into the operational mode, perform the following:

1. Install the dracut-fips package:

yum install dracut-fips

2. Recreate the INITRAMFS image:

dracut -f

After regenerating the initramfs, the Crypto Officer has to append the following string to the kernel
command line by changing the setting in the boot loader:

fips=1

If /boot or /boot/efi resides on a separate partition, the kernel parameter boot=<partition of /boot
or /boot/efi> must be supplied. The partition can be identified with the command

"df /boot"

or

"df /boot/efi"

respectively. For example:

$ df /boot

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/sda1 233191 30454 190296 14% /boot

The partition of /boot is located on /dev/sda1 in this example. Therefore, the following string needs
to be appended to the kernel command line:

"boot=/dev/sda1"

Reboot to apply these settings.

If an application that uses the Module for its cryptography is put into a chroot environment, the
Crypto Officer must ensure one of the above methods is available to the Module from within the
chroot environment to ensure entry into FIPS Approved mode. Failure to do so will not allow the
application to properly enter FIPS Approved mode.

9.1.1. Access to Audit Data

The Module may use the Unix syslog function and the audit mechanism provided by the operating

© 2018 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 29 of 34

Red Hat Enterprise Linux NSS Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

system to audit events. Auditing is turned off by default. Auditing capability must be turned on as
part of the initialization procedures by setting the environment variable NSS_ENABLE_AUDIT to 1.
The Crypto-Officer must also configure the operating system's audit mechanism.

The Module uses the syslog function to audit events, so the audit data are stored in the system
log. Only the root user can modify the system log. On some platforms, only the root user can read
the system log; on other platforms, all users can read the system log. The system log is usually
under the /var/log directory. The exact location of the system log is specified in the /etc/syslog.conf
file. The Module uses the default user facility and the info, warning, and err severity levels for its
log messages.

The Module can also be configured to use the audit mechanism provided by the operating system
to audit events. The audit data would then be stored in the system audit log. Only the root user
can read or modify the system audit log. To turn on this capability it is necessary to create a
symbolic link from the library file /usr/lib/libaudit.so.0 to /usr/lib/libaudit.so.1.0.0 (on 32-bit
platforms) and /usr/lib64/libaudit.so.0 to /usr/lib64/libaudit.so.1.0.0 (on 64-bit platforms).

9.2. User Guidance
The Module must be operated in FIPS Approved mode to ensure that FIPS 140-2 validated
cryptographic algorithms and security functions are used.

The following module initialization steps must be followed by the Crypto-Officer before starting to
use the NSS module:

• Set the environment variable NSS_ENABLE_AUDIT to 1 before using the Module with an
application.

• Use the application to get the function pointer list using the API “FC_GetFunctionList”.

• Use the API FC_Initialize to initialize the module and ensure that it returns CKR_OK. A
return code other than CKR_OK means the Module is not initialized correctly, and in that
case, the module must be reset and initialized again.

• For the first login, provide a NULL password and login using the function pointer C_Login,
which will in-turn call FC_Login API of the Module. This is required to set the initial NSS User
password.

• Now, set the initial NSS User role password using the function pointer C_InitPIN. This will
call the module's API FC_InitPIN API. Then, logout using the function pointer C_Logout,
which will call the module's API FC_Logout.

• The NSS User role can now be assumed on the Module by logging in using the User
password. And the Crypto-Officer role can be implicitly assumed by performing the Crypto-
Officer services as listed in Section 3.1.

The Module can be configured to use different private key database formats: key3.db or key4.db.
“key3.db” format is based on the Berkeley DataBase engine and should not be used by more than
one process concurrently. “key4.db” format is based on SQL DataBase engine and can be used
concurrently by multiple processes. Both databases are considered outside the Module's logical
boundary and all data stored in these databases is considered stored in plaintext. The interface
code of the Module that accesses data stored in the database is considered part of the
cryptographic boundary.

Secret and private keys, plaintext passwords and other security-relevant data items are
maintained under the control of the cryptographic module. Secret and private keys must be
passed to the calling application in encrypted (wrapped) form with FC_WrapKey and entered from
calling application in encrypted form with FC_UnwrapKey. The key transport methods allowed for
this purpose in FIPS Approved mode are RSA key wrapping and AES, Triple-DES and RSA key
unwrapping using the corresponding Approved modes and key sizws. Note: If the secret and

© 2018 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 30 of 34

Red Hat Enterprise Linux NSS Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

private keys passed to the calling application are encrypted using a symmetric key algorithm, the
encryption key may be derived from a password. In such a case, they should be considered to be
in plaintext form in the FIPS Approved mode.

Automated key transport methods must use FC_WrapKey and FC_UnwrapKey to output or input
secret and private keys from or to the module.

All cryptographic keys used in the FIPS Approved mode of operation must be generated in the FIPS
Approved mode or imported while running in the FIPS Approved mode.

9.2.1. TLS Operations

The Module does not implement the TLS protocol. The Module implements the cryptographic
operations, including TLS-specific key generation and derivation operations, which can be used to
implement the TLS protocol.

9.2.2. RSA and DSA Keys

The Module allows the use of 1024 bits RSA and DSA keys for legacy purposes including signature
generation, which is disallowed to be used in FIPS Approved mode as per NIST SP800-131A.
Therefore, the cryptographic operations with the non-approved key sizes will result the module
operating in non-Approved mode implicitly.

9.2.3. Triple-DES Keys
According to IG A.13, the same Triple-DES key shall not be used to encrypt more than 228 64- bit
blocks of data.

9.3. Handling Self-Test Errors
When the Module enters the Error state, it needs to be reinitialized to resume normal operation.
Reinitialization is accomplished by calling FC_Finalize followed by FC_Initialize.

© 2018 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 31 of 34

Red Hat Enterprise Linux NSS Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

10. Mitigation of Other Attacks
The Module is designed to mitigate the following attacks.

Attack Mitigation Mechanism Specific Limit

Timing attacks on RSA RSA blinding
Timing attack on RSA was first
demonstrated by Paul Kocher in
1996 [15], who contributed the
mitigation code to our module.
Most recently Boneh and Brumley
[16] showed that RSA blinding is
an effective defense against
timing attacks on RSA.

None

Cache-timing attacks on
the modular
exponentiation operation
used in RSA and DSA

Cache invariant modular
exponentiation
This is a variant of a modular
exponentiation implementation
that Colin Percival [17] showed to
defend against cache-timing
attacks

This mechanism requires intimate
knowledge of the cache line sizes
of the processor. The mechanism
may be ineffective when the
module is running on a processor
whose cache line sizes are
unknown.

Arithmetic errors in RSA
signatures

Double-checking RSA
signatures
Arithmetic errors in RSA
signatures might leak the private
key. Ferguson and Schneier [18]
recommend that every RSA
signature generation should verify
the signature just generated.

None

© 2018 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 32 of 34

Red Hat Enterprise Linux NSS Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

11. Glossary and Abbreviations
AES Advanced Encryption Specification

AES-NI Intel Advanced Encryption Standard New Instructions

CAVP Cryptographic Algorithm Validation Program

CBC Cypher Block Chaining

CSP Critical Security Parameter

CTR Counter Block Chaining

CVL Component Validation List

DES Data Encryption Standard

DRBG Deterministic Random Bit Generator

DSA Digital Signature Algorithm

ECB Electronic Code Book

ECDSA Elliptic Curve Digital Signature Algorithm

GCM Galois/Counter Mode

HMAC Hash Message Authentication Code

MAC Message Authentication Code

NIST National Institute of Science and Technology

O/S Operating System

PKCS Public-Key Cryptography Standards

RSA Rivest, Shamir, Addleman

SHA Secure Hash Algorithm

TLS Transport layer Security

© 2018 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 33 of 34

Red Hat Enterprise Linux NSS Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

12. References
[1] FIPS 140-2 Standard, http://csrc.nist.gov/groups/STM/cmvp/standards.html
[2] FIPS 140-2 Implementation Guidance, http://csrc.nist.gov/groups/STM/cmvp/standards.html
[3] FIPS 140-2 Derived Test Requirements, http://csrc.nist.gov/groups/STM/cmvp/standards.html
[4] FIPS 197 Advanced Encryption Standard, http://csrc.nist.gov/publications/PubsFIPS.html
[5] FIPS 180-4 Secure Hash Standard, http://csrc.nist.gov/publications/PubsFIPS.html
[6] FIPS 198-1 The Keyed-Hash Message Authentication Code (HMAC),
http://csrc.nist.gov/publications/PubsFIPS.html
[7] FIPS 186-4 Digital Signature Standard (DSS), http://csrc.nist.gov/publications/PubsFIPS.html
[8] NIST SP 800-38A, Recommendation for Block Cipher Modes of Operation: Methods and
Techniques, http://csrc.nist.gov/publications/PubsFIPS.html
[9] NIST SP 800-38D, Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode
(GCM) and GMAC, http://csrc.nist.gov/publications/PubsFIPS.html
[10] NIST SP 800-38F, Recommendation for Block Cipher Modes of Operation: Methods for Key
Wrapping, http://csrc.nist.gov/publications/PubsFIPS.html
[11] NIST SP 800-56A, Recommendation for Pair-Wise Key Establishment Schemes using Discrete
Logarithm Cryptography (Revised), http://csrc.nist.gov/publications/PubsFIPS.html
[12] NIST SP 800-67 Revision 1, Recommendation for the Triple Data Encryption Algorithm (TDEA)
Block Cipher, http://csrc.nist.gov/publications/PubsFIPS.html
[13] NIST SP 800-90A, Recommendation for Random Number Generation Using Deterministic
Random Bit Generators, http://csrc.nist.gov/publications/PubsFIPS.html
[14] RSA Laboratories, “PKCS #11 v2.20: Cryptographic Token Interface Standard”, 2004.
[15] P. Kocher, "Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other
Systems", CRYPTO '96, Lecture Notes In Computer Science, Vol. 1109, pp. 104-113, Springer-
Verlag, 1996. http://www.cryptography.com/timingattack/
[16] D. Boneh and D. Brumley, "Remote Timing Attacks are Practical",
http://crypto.stanford.edu/~dabo/abstracts/ssl-timing.html
[17] C. Percival, "Cache Missing for Fun and Profit", http://www.daemonology.net/papers/htt.pdf
[18] N. Ferguson and B. Schneier, Practical Cryptography, Sec. 16.1.4 "Checking RSA Signatures",
p. 286, Wiley Publishing, Inc., 2003.

© 2018 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 34 of 34

http://www.daemonology.net/papers/htt.pdf
http://crypto.stanford.edu/~dabo/abstracts/ssl-timing.html
http://www.cryptography.com/timingattack/
http://csrc.nist.gov/publications/PubsFIPS.html
http://csrc.nist.gov/publications/PubsFIPS.html
http://csrc.nist.gov/publications/PubsFIPS.html
http://csrc.nist.gov/publications/PubsFIPS.html
http://csrc.nist.gov/publications/PubsFIPS.html
http://csrc.nist.gov/publications/PubsFIPS.html
http://csrc.nist.gov/publications/PubsFIPS.html
http://csrc.nist.gov/publications/PubsFIPS.html
http://csrc.nist.gov/publications/PubsFIPS.html
http://csrc.nist.gov/publications/PubsFIPS.html
http://csrc.nist.gov/groups/STM/cmvp/standards.html
http://csrc.nist.gov/groups/STM/cmvp/standards.html
http://csrc.nist.gov/groups/STM/cmvp/standards.html

	1.1. Description of the Module
	1.2. Description of the Approved Modes
	1.3. Cryptographic Boundary
	1.3.1. Hardware Block Diagram
	1.3.2. Software Block Diagram

	2.1. PKCS #11
	2.2. Inhibition of Data Output
	2.3. Disconnecting the Output Data Path from the Key Processes
	3.1. Roles
	3.2. Role Assumption
	3.3. Strength of Authentication Mechanism
	3.4. Multiple Concurrent Operators
	3.5. Services
	3.5.1. Calling Convention of API Functions
	3.5.2. API Functions

	1.3 5.1 Applicability
	5.2 Policy
	6.1. Random Number Generation
	6.2. Key/CSP Storage
	6.3. Key/CSP Zeroization
	7.1 Statement of compliance
	8.1. Power-Up Tests
	8.2. Conditional Tests
	9.1. Crypto Officer Guidance
	9.1.1. Access to Audit Data

	9.2. User Guidance
	9.2.1. TLS Operations
	9.2.2. RSA and DSA Keys
	9.2.3. Triple-DES Keys

	9.3. Handling Self-Test Errors

