Document Version 1.0 November 22^{nd} , 2017 Symantec Corporation

Document Version 1.0 © 2017 Symantec

Table of Contents

1. Introduction	3
1.1 Purpose	3
1.2 Scope	3
2. Module Overview	3
3. Security Level	5
4. Modes of Operation	6
4.1 FIPS Approved Mode of Operation	6
4.2 Non-Approved Mode of Operation	9
5. Physical Ports and Logical Interfaces	10
6. Identification and Authentication Policy	11
7. Access Control Policy	12
7.1 Roles and Services	12
7.2 Service Inputs and Outputs	13
7.3 Definition of Critical Security Parameters (CSPs)	15
8. Operational Environment	16
9. Security Rules	17
9.1 FIPS Mode Operating Procedure	18
9.2 Self-Test Operations	19
10. Physical Security Policy	20
11. Mitigation of Other Attacks Policy	21
12. Definitions and Acronyms	22
Appendix A: Critical Security Parameters and Public Keys	23
A.1 Private Keys	23
A.2 Public Keys	27

1. Introduction

1.1 Purpose

This is the non-proprietary Cryptographic Module Security Policy for the Symantec SymSSLf Cryptographic Module (Software Version: 1.0.1) from Symantec Corporation. This security policy documents how the SymSSLf Module meets the security requirements of Federal Information Processing Standards (FIPS) Publication 140-2.

More information about the FIPS 140-2 standard and the Cryptographic Module Validation Program (CMVP) is available online from the National Institute of Standards and Technology (NIST) website. Please visit <u>http://csrc.nist.gov/groups/STM/cmvp/</u>.

1.2 Scope

The scope of this document is limited to cover only the capabilities and operations of the Symantec SymSSLf Cryptographic Module as it relates to the technical requirements of the FIPS 140-2 cryptographic module security policy.

Additional information on the Symantec product line and contact information for sales and technical support can be found online at the Symantec website. Please visit <u>https://www.symantec.com/</u>.

2. Module Overview

The Symantec SymSSLf Cryptographic Module (Software Version: 1.0.1) is a software-only cryptographic module designed to provide low-level cryptographic algorithm support to Symantec products. Symantec products will commonly use the module as a basis for implementation of higher level secure networking protocols like Transport Layer Security (TLS). The Symantec SymSSLf Cryptographic Module may also be hereafter referred to as the cryptographic module or the Module.

The cryptographic module was tested on the following general-purpose operating environments:

Operational Environment	Processor	Optimizations	
Windows 7 SP1	Intel Xeon E5620	AES-NI	
Windows 7 SP1	Intel Xeon E5620	None	

Table 1. Tested Configurations

Figure 1 below illustrates the Module's cryptographic boundary:

Figure 1. Specification of Cryptographic Boundary

3. Security Level

The cryptographic module meets the overall requirements of Level 1 security as per FIPS 140-2.

Security Requirements	Security Level
Cryptographic Module Specification	1
Module Ports and Interfaces	1
Roles, Services and Authentication	1
Finite State Model	1
Physical Security	N/A
Operational Environment	1
Cryptographic Key Management	1
EMI/EMC	1
Self-Tests	1
Design Assurance	1
Mitigation of Other Attacks	N/A

Table 2. Security Levels of FIPS 140-2

4. Modes of Operation

The cryptographic module supports a FIPS Approved mode of operation and a non-Approved mode of operation.

4.1 FIPS Approved Mode of Operation

The cryptographic module supports the following Approved algorithms in FIPS Approved mode:

CAVP Cert.	Algorithm	Standard	Mode/Method	Key Lengths, Curves or Moduli	Use
	AES	FIPS 197, SP 800- 38A	ECB, CBC, CFB1, CFB8, CFB128, OFB, CTR	128, 192, 256	Data Encryption / Decryption
	AES	FIPS 197, SP 800-38B	СМАС	128, 192, 256	Key Generation / Verification
#4515, #4516	AES	FIPS 197, SP 800-38C	ССМ	128, 192, 256	Generation- Encryption, Decryption- Verification
	AES	FIPS 197, SP 800- 38D ¹	GCM	128, 192, 256	Authentication Encryption / Decryption
#1198, #1199	CVL	SP 800- 56A rev.1	ECC CDH Primitive	P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-233, B-283, B-409, B-571	Shared Secret Computation
#1476, #1477	DRBG	SP 800- 90A rev. 1	Hash_Based DRBG, HMAC_Based DRBG, CTR_DRBG ²		Deterministic Random Bit Generation

¹ This module meets the requirements of IG A.5 "Key/IV Pair Uniqueness Requirements from SP 800-38D" Scenario 3. The IV is constructed in its entirety internally deterministically as per SP 800-38D section 8.2.1.

² The CTR-DRBG implementation supports the Derivation Function by default in the FIPS Approved mode of operation. CTR_DRBG "without Derivation Function" is latent-functionality.

CAVP Cert.	Algorithm	Standard	Mode/Method	Key Lengths, Curves or Moduli	Use
#1202, #1203	DSA	FIPS 186-4	PQG(gen), PQG(ver), KeyPairGen, SIG(gen), SIG(ver)	1024 ³ , 2048, 3072	Digital Signature Generation and Verification
#1098, #1099	ECDSA	FIPS 186-4	PKG, PKV, SigGen, SigVer	P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-233, B-283, B-409, B-571	Digital Signature Generation and Verification
#2982, #2983	НМАС	FIPS 198-1	HMAC-SHA-1, HMAC-SHA-224, HMAC-SHA-256, HMAC-SHA-384, HMAC-SHA-512	112, 128, 192, 256, 320, 384	Message Authentication
#2460, #2461	RSA	FIPS 186-4	RSASSA- PKCS1_V1_5 (SigGen and SigVer) RSASSA-PSS (SigGen and SigVer)	2048, 3072	Digital Signature Generation / Verification
#3703, #3704	SHS	FIPS 180-4	SHA-1, SHA-224, SHA-256, SHA- 384, SHA-512		Message Digest
#2410,	Triple-DES	SP 800-67	TECB, TCBC, TCFB1, TCFB8, TCFB64, TOFB	192	Data Encryption / Decryption
#2411	Triple-DES	SP 800-67, SP 800-38B	Triple-DES CMAC	192	Key Generation / Verification

Table 3. FIPS Approved Algorithm Certificates

Operators should reference the transition tables that will be available at the CMVP Web site (<u>http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar1.pdf</u>). The data in the tables will inform users of the risks associated with using a particular algorithm and a given key length.

³ DSA 1024-bit key size is only supported for PQG(ver) and SIG(ver).

The cryptographic module supports the following non-Approved but Allowed algorithms in FIPS Approved mode:

Algorithm	Caveat
Elliptic Curve Diffie-Hollman	key agreement; key establishment methodology provides
Emptic Curve Dime-Remnan	between 112 and 256 bits of encryption strength
DCA Kou Wranning	key wrapping; key establishment methodology provides
KSA Key wrapping	112 bits of encryption strength

Table 4. Non-Approved Algorithms Allowed in FIPS Approved Mode

4.2 Non-Approved Mode of Operation

The following table lists services implemented by the cryptographic module that shall not be used when operating in the FIPS Approved mode of operation. If any of these services are used, the cryptographic module is no longer considered to be in the FIPS Approved mode of operation. In the event that the Crypto Officer or User violates or attempts to violate such restrictions, the cryptographic module is in strict violation of this Security Policy and is deemed fully non-compliant and unfit for service to protect sensitive unclassified data with cryptography. Both the Crypto Officer Role and the User Role have access to the non-Approved services listed in table below.

Function	Algorithm	Options
Random Number	ANSI X9.31 RNG	AES 128, 192 and 256-bit
Generation;	[SP800-90A] DRBG	Dual EC DRBG
Symmetric key	(non-compliant)	
generation		
Digital Signature and	[FIPS 186-2] RSA	GenKey9.31, SigGen9.31, SigGenPKCS1.5,
Asymmetric Key	(non-compliant)	SigGenPSS (1024/1536 with all SHA sizes,
Generation		2048/3072/4096 with SHA1)
	[FIPS 186-2] DSA	PQG Gen, Key Pair Gen, Sig Gen (1024 with
	(non-compliant)	all SHA sizes, 2048/3072 with SHA1)
	[FIPS 186-4] DSA	PQG Gen, Key Pair Gen, Sig Gen (1024 with
	(non-compliant)	all SHA sizes, 2048/3072 with SHA1)
	[FIPS 186-2] ECDSA	PKG: CURVES (P-192 K-163 B-163)
	(non-compliant)	SIG(gen): CURVES (P-192 P-224 P-256 P-
		384 P-521 K-163 K-233 K-283 K-409 K-
		571 B-163 B-233 B-283 B-409 B-571)
	[FIPS 186-4] ECDSA	PKG: CURVES (P-192 K-163 B-163)
	(non-compliant)	SigGen: CURVES (P-192:(SHA-1, 224, 256,
		384, 512) P-224:(SHA-1) P-256:(SHA-1)
		P-384:(SHA-1) P-521:(SHA-1) K-
		163:(SHA-1, 224, 256, 384, 512) K-
		233:(SHA-1) K-283:(SHA-1) K-409:(SHA-
		1) K-571:(SHA-1) B-163:(SHA-1, 224, 256,
		384, 512) B-233:(SHA-1) B-283:(SHA-1)
		B-409:(SHA-1) B-571:(SHA-1))
ECC CDH (KAS)	[SP800-56A]	All NIST Recommended B, K and P curves
	(§5.7.1.2) (non-	sizes 163 and 192
	compliant)	
Key Wrapping	[SP800-56B] RSA	RSA 1024, 1536, and 3072
	Key Wrapping (non-	
	compliant)	

Table 5. Non-Approved Algorithms Disallowed in FIPS Approved Mode

5. Physical Ports and Logical Interfaces

The physical ports of the cryptographic module are the same as the computer system on which the cryptographic module runs. The logical interface of the cryptographic module is via the application program interface (API).

Logical Interface	Description
Data Input	Parameters passed to the module through API calls.
Control Input	API function calls.
Power Input	Not Applicable
Data Output	Data returned by the module through API calls.
Status Output	Error and status codes returned by API calls.

Table 6. Specification of Cryptographic Module Logical Interfaces

The cryptographic module does not support a cryptographic bypass mode.

All Data Output is inhibited when the module is performing self-tests, zeroization, or in an error state.

The following is the mapping of the physical ports/interfaces to the logical ports/interfaces available to the module:

Physical Ports /	Description	Logical Ports / Interfaces
Power supply unit	Provides power to the cryptographic module	Power Input
Video connector	Connects a monitor to the general purpose computing platform	Data Output, Status Output
Serial connector	Connects peripheral general purpose I/O devices such as mouse, keyboard, and monitor	Data Input, Data Output, Control Input, Status Output
USB connectors	Connects peripheral general purpose I/O devices such as mouse, keyboard, and monitor	Data Input, Data Output, Control Input, Status Output
Ethernet connectors	Provides network connectivity	Data Input, Data Output, Control Input, Status Output

Table 7. Mapping of physical ports/interfaces to the logical ports/interfaces

6. Identification and Authentication Policy

The role of the operator of the cryptographic module is identified implicitly from the API function. The cryptographic module is designed to meet the requirements specified for a Level 1 software-only cryptographic module as per FIPS 140-2 and therefore does not support operator authentication, as shown in Table 8 and Table 9 below.

Role	Type of Authentication	Authentication Data
User	N/A	N/A
Crypto Officer	N/A	N/A

Table 8. Roles and Required Identification and Authentication

Table 9. Strengths of Authentication Mechanisms

7. Access Control Policy

7.1 Roles and Services

The cryptographic module operator is any software application which dynamically links the cryptographic module shared library.

The cryptographic module supports two roles: User and Crypto Officer. An operator assesses both roles while using the cryptographic module and the means of access is the same for both roles. A role is implicitly assumed based on the services that are accessed. These roles are defined as the following.

- User Role: allowed to perform all services provided by the cryptographic module.
- Crypto Officer Role: allowed to perform all services provided by the cryptographic module and also responsible for the installation of the module.

The Crypto Officer is any entity that can install the module library onto a general purpose computer system, configure the operating system and validate the compliance of the module. This role is implicitly selected when the cryptographic module is installed or the operating system is configured.

The Crypto Officer must have permission to write the library comprising the cryptographic module into an operating system directory. This typically requires administrator access to the operating system.

The run self-tests service is ran automatically when the Module is loaded.

7.2 Service Inputs and Outputs

The following table summarizes which CSPs are accessed by each service and how the CSP is accessed on behalf of the operator when the service is performed in FIPS mode of operation. All services are available to both the Crypto Officer (CO) and User roles

Service	Role	Cryptographic Keys &	Type(s) of
			Access
Initialize	CO, User	None	-
Self-test	CO, User	None	-
Show status	CO, User	None	-
		DRBG V Value, DRBG C	
Zeroize	CO, User	Value, DRBG Key Value	D
Random number		DRBG V Value, DRBG C	
generation	CO, User	Value, DRBG Key Value	C, D, R, W
		DSA Private Key, ECDSA	
		Private Signature Key,	
Asymmetric key		DSA Public Key, ECDSA	
generation	CO, User	Public Signature Key	C, W
		AES Secret Key, Three-	
Symmetric		Key Triple-DES Secret	
encrypt/decrypt	CO, User	Кеу	R, W
		AES CMAC Key, Three-	
		Key Triple-DES CMAC	
Symmetric digest	CO, User	Кеу	D, R, W
Message digest	CO, User	None	-
Keyed Hash	CO, User	HMAC Secret Key	D, R, W
		RSA Private Key for Key	
Key transport	CO, User	Transport	R, W
		ECC CDH Private Key,	
		ECC CDH Shared Secret,	
Key agreement	CO, User	ECC CDH Public Key	W
		RSA Private Signature	
		Key, ECDSA Private	
		Signature Key, RSA	
		Public Signature Key,	
		ECDSA Public Signature	
Digital signature	CO, User	Key	R, W
Utility	CO, User	None	-

Table 10. Services. Please see Table 11 for more information

Table 11 below defines the relationship between access to CSPs and the different Module services. The modes of access shown in table 10 are defined as follows:

Access	Identifier	Description	
Create	С	An object is created	
Destroy	D	An object is destroyed and memory	
		that it used is released	
Read	R	Data stored by an object is accessed	
		for use	
Write	W	An object is modified	

Table 11. CSP Access Rights within Roles & Services

The software-only cryptographic module contains an approved DRBG (see <u>Appendix A:</u> <u>Critical Security Parameters and Public Keys</u> for a description and bit-length of the associated CSPs). Entropy is loaded into the cryptographic module from the calling application (software outside of the cryptographic module's logical boundary but within the operational environment within the cryptographic module's physical boundary). A minimum of 112-bits of entropy shall be provided by the calling application when the cryptographic module is in FIPS mode or this Security Policy is violated, the cryptographic module is fully non-compliant and is operating in non-FIPS mode and shall not be used to protect sensitive unclassified data. This satisfies FIPS 140-2 Implementation Guidance, Section 7.14, Scenario 2.B.

The identifier "C" in Table 10 represents the creation of the CSP from the output of the approved DRBG.

The identifier "W" in Table 10 represents the import of such CSP by the calling application.

Please see Appendix A for more information.

7.3 Definition of Critical Security Parameters (CSPs)

The following list enumerates the secret keys, private keys, and CSPs contained in the cryptographic module:

- AES Secret Key
 DSA Private Key
 RSA Private Signature Key
 RSA Private Key for Key Transport
 ECDSA Private Signature Key
 ECC CDH Private Key
 ECC CDH Shared Secret
 DBEC W Value

- DRBG V Value
- DRBG C Value
- DRBG Key Value

- DRBG Rey Value
 HMAC Secret key
 AES CMAC Key
 Three-Key Triple-DES Secret Key
 Three-Key Triple-DES CMAC Key

The following list enumerates the public keys contained in the Module:

- DSA Public Key
 RSA Public Signature Key
 RSA Public Key for Key Transport
 ECDSA Public Signature Key
- ECC CDH Public Key

Please see section Appendix A: Critical Security Parameters and Public Keys for more details.

8. Operational Environment

The operational environment for the cryptographic module is a "modifiable operational environment".

The FIPS 140-2 Operational Environment requirements for Security Level 1 are satisfied in the following way:

When the cryptographic module is operated in FIPS approved mode, the environment is restricted to a single operator mode of operation (i.e., concurrent operators are explicitly excluded). The tested operating systems separate user processes into separate address spaces, where each space is logically separated from any other address space by the operating systems and the hardware on which it runs. The cryptographic module runs entirely within the address space of the calling application so it implicitly satisfies the requirement for a single user mode of operation.

Processes that are spawned by the cryptographic module are owned by the cryptographic module and are not owned by external processes/operators. Non-cryptographic processes shall not interrupt the cryptographic module during execution.

The cryptographic module software is installed in a form that protects the software and executable code from unauthorized disclosure and modification.

9. Security Rules

This section specifies the security rules under which the cryptographic module shall operate.

- 1. The Module must be used as described in this document
- 2. Installation of the Module is the responsibility of the Crypto Officer
- 3. Before the Module can be used in Approved mode, it must be initialized as described in the "FIPS Mode Operating Procedure" section of this document
- 4. Only Approved cryptographic algorithms as enumerated in the "FIPS Approved Mode of Operation" section of this document may be used.
- 5. The Module does not perform key generation
- 6. The Module inhibits Data Output during self-tests and error states. The Data Output interface is logically disconnected from the processes performing self-tests and zeroization.
- 7. The zeroization process must be implemented using the appropriate API function.
- 8. The Module is designed to satisfy the requirements of FIPS 140-2 Level 1, therefore the Module does not provide authentication mechanisms.
- 9. The Module conforms to the EMI/EMC requirements specified by 47 Code of Federal Regulations, Part 15, Subpart B, Unintentional Radiators, Digital Devices, Class B (i.e. for Home use) which vacuously satisfies Class A.
- 10. The cryptographic module fully implements the SP800-90A Section 11.3 requirements, and therefore meets the requirements of SP800-90A Section 11.3
- 11. Power-up self-tests do not require any operator intervention.
- 12. Status information does not contain CSPs or sensitive data that if misused could lead to a compromise of the Module.
- 13. The Module does not support a maintenance interface or role.
- 14. The Module does not support manual key entry.
- 15. The Module does not support bypass mode.
- 16. The Module receives plaintext keys from the calling application and outputs plaintext keys to the calling application; however the requirements of key entry/output are not applicable as per FIPS 140-2 IG 7.7.
- 17. The Module does not output intermediate key values.
- 18. The Module enforces logical separation of all data inputs, data outputs, control inputs, and status outputs.
- 19. The general purposes-computing platform includes a power port.
- 20. Role are implicitly assumed based upon the service requested.
- 21. The User and Crypto Officer are responsible for ensuring the cryptographic module is compliant with the requirements of FIPS 140-2 IG A.13 SP 800-67rev1 Transition: *The cryptographic module shall perform a maximum of 2 ^28 encryption operations with the same Triple-DES key.*
- 22. The User and Crypto Officer are responsible for ensuring that the IV is reset to the last one used in the event that the module's power is lost and then restored, as per FIPS-140-2 Implementation Guidance, Section A.5.

9.1 FIPS Mode Operating Procedure

The calling application must conform to the following procedure in order to correctly operate the cryptographic module in FIPS approved mode:

- 1. Application must call Windows system API function LoadLibary (or variant) to load the cryptographic module into the application's process. At that time, the module's self-test operations are run without further user intervention. If self-tests succeed, the module load operation will complete and the LoadLibary API will return a handle for the loaded module back to calling application. If self-tests fail for any reason, the module will fail to load and no handle will be returned to application. See section 9.2 below for more details.
- 2. After the module loads, application must call function FIPS_module_mode_set with parameter value 1 to complete the initialization procedure. If this function call returns 1, then the module is operating in FIPS mode so long as the operator ensures that algorithms, modes and key sizes are being used in accordance with section <u>4.1 FIPS Approved Mode of Operation</u>. Any use of non-approved algorithms described in section <u>4.2 Non-Approved Mode of Operation</u> is an explicit violation of this Security Policy and implicitly toggles the module into the Non-Approved Mode of Operation.

The module conforms to the IG 9.10 requirements by providing a Default Entry Point (DEP). The DEP is automatically executed, without requiring operator intervention (calling application).

9.2 Self-Test Operations

At the time the calling application attempts to load the cryptographic module, the following self-test operations are run without further user intervention. Failure in any of these test cases will result in failure of the module load operation and will prevent the application from being able to make any calls into the cryptographic module. If all power-up self-tests succeed, the FIPS_module_mode_set function will return a 1, and a "0" otherwise.

Algorithm	Туре	Test Attributes	
Software integrity	KAT	HMAC-SHA-1	
HMAC	KAT	One KAT per SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512.	
		Per IG 9.3, this testing covers SHA POST requirements.	
AES	KAT	Separate encrypt and decrypt, ECB mode, 128 bit key length	
AES CCM	KAT	Separate encrypt and decrypt, 192 key length	
AES GCM	KAT	Separate encrypt and decrypt, 256 key length	
AES CMAC	KAT	Sign and verify CBC mode, 128, 192, 256 key lengths	
Triple-DES	KAT	Separate encrypt and decrypt, ECB mode, 3Key	
Triple-DES CMAC	KAT	CMAC generate and verify, CBC mode, 3Key	
RSA	KAT	Sign and verify using 2048 bit key, SHA-256, PKCS#1	
DSA	РСТ	Sign and verify using 2048 bit key, SHA-384	
DRBG	KAT	CTR_DRBG: AES, 256 bit with and without derivation function	
		HASH_DRBG: SHA-256	
		HMAC_DRBG: SHA-256	
ECDSA	РСТ	Keygen, sign, verify using P-224, K-233 and SHA-512. The K-	
		233 selftest is not performed for operational environments that	
		support prime curve only (see Table 2).	
ECC CDH	KAT	Shared secret calculation per SP 80056A §5.7.1.2, IG 9.6	

Table 12. Power-Up Self-Tests

The Module also implements the following conditional tests:

Algorithm	Test
DRBG	Continuous Random Number Generator Test
DRBG	Health Tests as required by Section 11 of SP800-90Arev1
DSA	Pairwise consistency test on each generation of a key pair (Sign/Verify)
ECDSA	Pairwise consistency test on each generation of a key pair (Sign/Verify)
NDRNG	Continuous Random Number Generator Test

Table 13. Conditional Self-Tests

In the event of a DRBG self-test failure the calling application must uninstantiate and reinstantiate the DRBG as per the requirements of SP800-90Arev1; this is not something the Module can do itself.

10. Physical Security Policy

The cryptographic module is a software module; therefore, the physical security requirements are not applicable.

Physical Security	Recommended Frequency	Inspection/Test Guidance
Mechanisms	of Inspection/Test	Details
N/A	N/A	

Table 14. Inspection/Testing of Physical Security Mechanisms

11. Mitigation of Other Attacks Policy

The cryptographic module is not designed to mitigate any other attacks.

Other Attacks	Mitigation Mechanism	Specific Limitations
N/A	N/A	N/A

Table 15. Mitigation of Other Attacks

12. Definitions and Acronyms

The following paragraphs define the acronyms used in this document.

- AES. Advanced Encryption Standard secret key algorithm. See [FIPS-197].
- **API**. Application Programming Interface
- **CBC**. Cipher Block Chaining mode
- **CFB**. Cipher Feedback mode
- **CSP**. Critical Security Parameters
- **DES**. Data Encryption Standard. See [SP800-67].

DRBG. Deterministic Random Bit Generator.

- DSS. Digital Signature Standard. See [FIPS-186-4]
- **ECB**. Electronic Codebook mode
- EMI. Electromagnetic Interference
- **EMC**. Electromagnetic Compatibility
- FIPS. Federal Information Processing Standards of NIST.
- IV. Initialization Vector
- **KDF**. Key Derivation Function See [SP800-108, SP800-132]
- NIST. National Institute of Standards and Technologies.
- **OFB**. Output Feedback mode
- **SHA-1**. Secure Hash Algorithm revision 1. See [FIPS-180-4].

Appendix A: Critical Security Parameters and Public Keys

A.1 Private Keys

The module supports the following secret keys, private keys, and CSPs:

1. AES Secret Key

- Description: 128-bit, 192-bit and 256-bit AES secret keys are used in ECB, CBC, CCM, OFB, GCM, CFB1, CFB8, CFB128 and CTR modes for encrypt/decrypt services

- Generation: N/A
- Establishment: N/A
- Storage: In RAM as plaintext

- Entry: N/A - the key is entered by the calling application; as per FIPS 140-2 IG 7.7 the calling application entering the key is considered as not applicable.

- Output: N/A - the key is output to the calling application; as per FIPS 140-2 IG 7.7 the module outputting the key to the calling application is considered as not applicable.

- Entity: Process

- Zeroization: Power off or actively overwritten by calling program

2. DSA Private Key

- Description: 2048-bit and 3072-bit DSA private key used for digital signature generation - Generation: via DRBG. As per SP800-133 Section 6.1, key generation is performed as per FIPS 186-4 which is an Approved key generation method.

- Establishment: N/A

- Storage: In RAM as plaintext

- Entry: N/A - the key is entered by the calling application; as per FIPS 140-2 IG 7.7 the calling application entering the key is considered as not applicable.

- Output: N/A - the key is output to the calling application; as per FIPS 140-2 IG 7.7 the module outputting the key to the calling application is considered as not applicable.

- Entity: Process

- Zeroization: Power off or actively overwritten by calling program

3. RSA Private Signature Key

- Description: 2048-bit and 3072-bit RSA private key used for digital signature generation

- Generation: N/A

- Establishment: N/A

- Storage: In RAM as plaintext

- Entry: N/A - the key is entered by the calling application; as per FIPS 140-2 IG 7.7 the calling application entering the key is considered as not applicable.

- Output: N/A - the key is output to the calling application; as per FIPS 140-2 IG 7.7 the module outputting the key to the calling application is considered as not applicable.

- Entity: Process

- Zeroization: Power off or actively overwritten by calling program

4. RSA Private Key for Key Transport

- Description: 2048-bit RSA private key used for key transport

- Generation: N/A

- Establishment: N/A

- Storage: In RAM as plaintext

- Entry: N/A - the key is entered by the calling application; as per FIPS 140-2 IG 7.7 the calling application entering the key is considered as not applicable.

- Output: N/A - the key is output to the calling application; as per FIPS 140-2 IG 7.7 the module outputting the key to the calling application is considered as not applicable.

- Entity: Process

- Zeroization: Power off or actively overwritten by calling program

5. ECDSA Private Signature Key

- Description: ECDSA (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-233, B-283, B-409, B-571) key used for digital signature generation

- Generation: via DRBG. As per SP800-133 Section 6.1, key generation is performed as per FIPS 186-4 which is an Approved key generation method.

- Establishment: N/A

- Storage: In RAM as plaintext

- Entry: N/A - the key is entered by the calling application; as per FIPS 140-2 IG 7.7 the calling application entering the key is considered as not applicable.

- Output: N/A - the key is output to the calling application; as per FIPS 140-2 IG 7.7 the module outputting the key to the calling application is considered as not applicable.

- Entity: Process

- Zeroization: Power off or actively overwritten by calling program

6. ECC CDH Private Key

- Description: ECC CDH (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-233, B-283, B-409, B-571) private key

- Generation: N/A

- Establishment: N/A

- Storage: In RAM as plaintext

- Entry: N/A - the key is entered by the calling application; as per FIPS 140-2 IG 7.7 the calling application entering the key is considered as not applicable.

- Output: N/A - the key is output to the calling application; as per FIPS 140-2 IG 7.7 the module outputting the key to the calling application is considered as not applicable.

- Entity: Process

- Zeroization: Power off or actively overwritten by calling program

7. ECC CDH Shared Secret

- Description: ECC CDH (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-233, B-283, B-409, B-571) shared secret for the ECC CDH private key

- Generation: N/A

- Establishment: N/A

- Storage: In RAM as plaintext

- Entry: N/A - the key is entered by the calling application; as per FIPS 140-2 IG 7.7 the calling application entering the key is considered as not applicable.

- Output: N/A - the key is output to the calling application; as per FIPS 140-2 IG 7.7 the module outputting the key to the calling application is considered as not applicable.

- Entity: Process

- Zeroization: Power off or actively overwritten by calling program

8. DRBG V Value

- Description: Internal state of the DRBG: 128 bits (for AES-128, AES-192 and AES-256 constructions);160 bits (for HMAC-SHA-1 construction); 224 bits (for HMAC-SHA-224 construction); 256 bits (for HMAC-SHA-256 construction); 384 bits (for HMAC-SHA-384 construction); 512 bits (for HMAC-SHA-512 construction); 440 bits (for SHA-1, SHA-224 and SHA-256 constructions); 888 bits (for SHA-384 and SHA-512 constructions)

- Generation: N/A

- Establishment: N/A

- Storage: In RAM as plaintext

- Entry: N/A - the key is entered by the calling application; as per FIPS 140-2 IG 7.7 the calling application entering the key is considered as not applicable.

- Output: N/A - the key is output to the calling application; as per FIPS 140-2 IG 7.7 the module outputting the key to the calling application is considered as not applicable.

- Entity: Process

- Zeroization: Power off or actively overwritten by calling program

9. DRBG C Value

- Description: Internal state of the DRBG: 440 bits (for SHA-1, SHA-224 and SHA-256 constructions) or 888 bits (for SHA-384 and SHA-512 constructions)

- Generation: N/A

- Establishment: N/A

- Storage: In RAM as plaintext

- Entry: N/A - the key is entered by the calling application; as per FIPS 140-2 IG 7.7 the calling application entering the key is considered as not applicable.

- Output: N/A - the key is output to the calling application; as per FIPS 140-2 IG 7.7 the module outputting the key to the calling application is considered as not applicable.

- Entity: Process

- Zeroization: Power off or actively overwritten by calling program

10. DRBG Key Value

- Description: Internal state of the DRBG: 128 bits (for AES-128 construction); 192 bits (for AES-192 construction); 256 bits (for AES-256 construction); 160 bits (for HMAC-SHA-1 construction); 224 bits (for HMAC-SHA-224 construction); 256 bits (for HMAC-SHA-256 construction); 384 bits (for HMAC-SHA-384 construction); 512 bits (for HMAC-SHA-512 construction)

- Generation: N/A

- Establishment: N/A
- Storage: In RAM as plaintext

- Entry: N/A - the key is entered by the calling application; as per FIPS 140-2 IG 7.7 the calling application entering the key is considered as not applicable.

- Output: N/A - the key is output to the calling application; as per FIPS 140-2 IG 7.7 the module outputting the key to the calling application is considered as not applicable.

- Entity: Process

- Zeroization: Power off or actively overwritten by calling program

11. HMAC Secret key

- Description: HMAC-SHA-1 (128-bit key), HMAC-SHA-224 (112-bit and 192-bit keys), HMAC-SHA-256 (256-bit and 384-bit keys), HMAC-SHA-384 (256-bit and 384-bit keys), HMAC-SHA-512 (320-bit keys)

- Generation: N/A

- Establishment: N/A

- Storage: In RAM as plaintext

- Entry: N/A - the key is entered by the calling application; as per FIPS 140-2 IG 7.7 the calling application entering the key is considered as not applicable.

- Output: N/A - the key is output to the calling application; as per FIPS 140-2 IG 7.7 the module outputting the key to the calling application is considered as not applicable.

- Entity: Process

- Zeroization: Power off or actively overwritten by calling program

12. AES CMAC Key

- Description: 128-bit, 192-bit and 256-bit AES secret keys are used in CMAC mode for generation/verification services

- Generation: N/A

- Establishment: N/A

- Storage: In RAM as plaintext

- Entry: N/A - the key is entered by the calling application; as per FIPS 140-2 IG 7.7 the calling application entering the key is considered as not applicable.

- Output: N/A - the key is output to the calling application; as per FIPS 140-2 IG 7.7 the module outputting the key to the calling application is considered as not applicable.

- Entity: Process

- Zeroization: Power off or actively overwritten by calling program

13. Three-key Triple-DES Secret Key

- Description: 192-bit Triple-DES secret keys are used in TECB, TCBC, TCFB1, TCFB8, TCFB64 and TOFB mode for encrypt and decrypt services

- Generation: N/A
- Establishment: N/A
- Storage: In RAM as plaintext

- Entry: N/A - the key is entered by the calling application; as per FIPS 140-2 IG 7.7 the calling application entering the key is considered as not applicable.

- Output: N/A - the key is output to the calling application; as per FIPS 140-2 IG 7.7 the module outputting the key to the calling application is considered as not applicable.

- Entity: Process

- Zeroization: Power off or actively overwritten by calling program

14. Three-key Triple-DES CMAC Key

- Description: 192-bit secret key is used in CMAC mode for generation/verification services

- Generation: N/A

- Establishment: N/A

- Storage: In RAM as plaintext

- Entry: N/A - the key is entered by the calling application; as per FIPS 140-2 IG 7.7 the calling application entering the key is considered as not applicable.

- Output: N/A - the key is output to the calling application; as per FIPS 140-2 IG 7.7 the module outputting the key to the calling application is considered as not applicable.

- Entity: Process

- Zeroization: Power off or actively overwritten by calling program

A.2 Public Keys

The module supports the following public keys:

1. DSA Public Key

- Description: 1024-bit or 2048-bit or 3072-bit DSA public key used for digital signature verification

- Generation: via DRBG. As per SP800-133 Section 6.1, key generation is performed as per FIPS 186-4 which is an Approved key generation method.

- Establishment: N/A

- Storage: In RAM as plaintext

- Entry: N/A - the key is entered by the calling application; as per FIPS 140-2 IG 7.7 the calling application entering the key is considered as not applicable.

- Output: N/A - the key is output to the calling application; as per FIPS 140-2 IG 7.7 the module outputting the key to the calling application is considered as not applicable.

- Entity: Process

- Zeroization: Power off or actively overwritten by calling program

2. RSA Public Signature Key

- Description: 2048-bit and 3072-bit RSA public key used for digital signature verification

- Generation: N/A

- Establishment: N/A

- Storage: In RAM as plaintext

- Entry: N/A - the key is entered by the calling application; as per FIPS 140-2 IG 7.7 the calling application entering the key is considered as not applicable.

- Output: N/A - the key is output to the calling application; as per FIPS 140-2 IG 7.7 the module outputting the key to the calling application is considered as not applicable.

- Entity: Process

- Zeroization: Power off or actively overwritten by calling program

3. RSA Public Key for Key Transport

- Description/Usage: 2048-bit RSA public key used for key transport

- Generation: N/A

- Establishment: N/A

- Storage: In RAM as plaintext

- Entry: N/A - the key is entered by the calling application; as per FIPS 140-2 IG 7.7 the calling application entering the key is considered as not applicable.

- Output: N/A - the key is output to the calling application; as per FIPS 140-2 IG 7.7 the module outputting the key to the calling application is considered as not applicable.

- Entity: Process

- Zeroization: Power off or actively overwritten by calling program

4. ECDSA Public Signature Key

- Description: ECDSA (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-233, B-283, B-409, B-571) public key used for digital signature verification

- Generation: via DRBG. As per SP800-133 Section 6.1, key generation is performed as per FIPS 186-4 which is an Approved key generation method.

- Establishment: N/A

- Storage: In RAM as plaintext

- Entry: N/A - the key is entered by the calling application; as per FIPS 140-2 IG 7.7 the calling application entering the key is considered as not applicable.

- Output: N/A - the key is output to the calling application; as per FIPS 140-2 IG 7.7 the module outputting the key to the calling application is considered as not applicable.

- Entity: Process

- Zeroization: Power off or actively overwritten by calling program

5. ECC CDH Public Key

- Description: ECC CDH (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-233, B-283, B-409, B-571) public key

- Generation: N/A

- Establishment: N/A

- Storage: In RAM as plaintext

- Entry: N/A - the key is entered by the calling application; as per FIPS 140-2 IG 7.7 the calling application entering the key is considered as not applicable.

- Output: N/A - the key is output to the calling application; as per FIPS 140-2 IG 7.7 the module outputting the key to the calling application is considered as not applicable.

- Entity: Process

- Zeroization: Power off or actively overwritten by calling program