

Motorola Solutions, Inc. Voice Processing Module Cryptographic Module (VPMCM) / Telephone Media Gateway Cryptographic Module (TMGCM) Non-Proprietary Security Policy Document Version 2.5

Revision Date: July 12, 2018

Copyright Motorola Solutions, Inc. 2018. May be reproduced only in its original entirety [without revision].

TABLE OF CONTENTS

1.	I	MODULE OVERVIEW			
2.	5	SECURITY LEVEL			
3.	I	MODE OF OPERATION			
	3.1. 3.2.	FIPS APPROVED MODE CONFIGURATION			
4.]	PORTS AND INTERFACES			
5.	J	IDENTIFICATION AND AUTHENTICATION POLICY9			
	5.1.	ASSUMPTION OF ROLES			
6.]	PHYSICAL SECURITY9			
7.	A	ACCESS CONTROL POLICY10			
	7.1. 7.2. 7.3. 7.4. 7.5.	USER SERVICES 10 CRYPTOGRAPHIC OFFICER SERVICES 11 SERVICES AVAILABLE TO UNAUTHENTICATED OPERATORS 12 DEFINITION OF CRITICAL SECURITY PARAMETERS (CSPs) 12 CSP MODES OF ACCESS 16			
8.	(OPERATIONAL ENVIRONMENT19			
9.	5	SECURITY RULES19			
10). I	MITIGATION OF OTHER ATTACKS POLICY21			
11	. GLOSSARY				
12	. I	ACRONYMS			

1. Module Overview

The Voice Processing Module Cryptographic Module, otherwise referred to as the VPMCM (HW P/Ns VPMCRYPTO B or VPMCRYPTO C; FW Version R01.11.00, R01.11.01, R01.11.02, or R01.11.03), with AES256 Encryption Algorithm (FW Version R01.00.00) installed is a FIPS 140-2 validated cryptographic module whose central purpose is to provide cryptographic services to the Voice Processing Module in which it is embedded. The Voice Processing Module provides dispatch console audio routing between a dispatch operator (e.g. 911, dispatcher) and a local network. The VPMCM is a hardware module with a multi-chip embedded physical embodiment as defined by the FIPS 140-2 standard. The boundary is defined as being only the perimeter of the metal enclosure and the PC board within that enclosure (see red outline in Figures 1 and 2). There are 64 traces on the board that pass into the boundary and continue out of the boundary, with no connections to any components within the module; therefore they are excluded from the interfaces of the module. The VPMCM (HW P/N VPMCRYPTO B, VPMCRYPTO C; FW Version R01.11.00, R01.11.01, R01.11.02, or R01.11.03) is referred to as the Telephone Media Gateway Cryptographic Module (TMGCM) when it provides cryptographic services for interconnect calls. In this context, TMGCM is simply another name for VPMCM.

Figure 1 – Front of the Cryptographic Module

Figure 2 – Back of the Cryptographic Module

2. Security Level

This cryptographic module is designed to operate at FIPS 140-2 overall Security Level 1. The table below shows the FIPS 140-2 Level of security met for each of the eleven areas specified within the FIPS 140-2 security requirements.

FIPS 140-2 Security Requirements Section	Validated Level at overall Security Level 1	
Cryptographic Module Specification	1	
Module Ports and Interfaces	1	
Roles, Services and Authentication	2	
Finite State Model	1	
Physical Security	1	
Operational Environment	N/A	
Cryptographic Key Management	1	
EMI/EMC	1	
Self-Tests	1	
Design Assurance	3	
Mitigation of Other Attacks	N/A	

 Table 1 – VPMCM/TMGCM Cryptographic Module Security Level Specification

3. Mode of Operation

The VPMCM can operate in a FIPS Approved mode of operation. Documented below are the configuration settings that are required for the module to be used in a FIPS 140-2 Approved mode of operation at overall Security Level 1. At any given time, the FIPS Status service can be used to confirm that the module is operating in FIPS Approved mode.

3.1. FIPS Approved Mode Configuration

The following procedure shall be followed by an authorized operator during the initialization of the VPMCM/TMGCM upon first use:

Use the Program Update service to install only the AES algorithm. AES is the only Approved algorithm which is configurable using the Program Update service. For a full list of algorithms used in FIPS Approved Mode, please see Tables 2 and 3.

3.2. FIPS Approved Mode

FIPS Approved mode is a mode of operation in which only Approved or Allowed algorithms are able to be utilized. The cryptographic module supports the following FIPS Approved algorithms.

FIPS Approved Algorithm	CAVP Cert. #	Description of Use
AES-256 encrypt/decrypt (OFB, CBC, ECB, and CFB8)	819	When installed, used for Encryption/Decryption within APCO OTAR to provide secure key establishment and data confidentiality. Key Establishment methodology provides 256 bits of strength.
AES Key Unwrap	5452	Used to unwrap keys entered into the module
SHA-256	817	Used for password hashing for internal password storage and digital signature verification during software/firmware integrity test and software/firmware load test.
RSA-2048 PKCS #1 V1.5 (signature verification)	396	Used for digital signature verification during software/firmware integrity test and software/firmware load test. Note: signature generation was tested, but is not utilized.
SP800-90A AES-256 CTR DRBG	505	Used for IV and KPK generation.

 Table 2 – FIPS Approved Algorithms

Table 3 – FIPS	Allowed	Algorithms
----------------	---------	------------

FIPS Allowed Algorithm	CAVP Cert. #	Description of Use
AES MAC	819	Used to provide authentication within APCO OTAR. AES MAC as used within APCO OTAR has been vendor affirmed and is approved when used for Project 25 APCO OTAR.
Non-Deterministic Hardware Random Number Generator (NDRNG)	N/A	Used to provide Initialization Vectors (IV) and seeds to the FIPS Approved Deterministic Random Number Generator (RNG). The minimum number of bits of entropy generated by the module for key generation is at least 384 bits

In the non-Approved mode of operation the module implements the following non-Approved cryptographic algorithms: DVP-XL, DVI-XL, DES-XL, and ADP. It should be noted that if any or all of the aforementioned algorithms are loaded onto the module, it automatically defaults to the non-FIPS approved mode of operation. The non-FIPS approved algorithms must be removed, leaving only AES, for the module to function in FIPS Approved mode of operation.

4. Ports and Interfaces

Table 4 below provides a listing and description of all VPM physical ports and logical interfaces.

Physical Port	Qty	Logical interface definition	Technical Specification
Synchronous Serial Interface (SSI)	1	 Data input Data output Status output 	The SSI interface provided by the module provides the central control interfaces accessible by an operator. It directly interfaces with a QUICC Ethernet controller.
		- Control input	
Key Variable Loader	1	- Data input	This interface provides the input and output to a
		- Status output	Key Variable Loader (KVL).
		- Control input	
FPGA	1	- Data input	The FPGA interface is used for audio and control
		- Data output	data between the MACE Ics and the DSPs
		- Status output	
		- Control input	
Power Input	1	- 3.3v Power input	This port is the only power input port supported by the module.

Table 4 – Ports and Interfaces Description

5. Identification and Authentication Policy

5.1. Assumption of roles

The VPMCM/TMGCM supports two distinct operator roles (User, Cryptographic-Officer). The following tables explain these roles, and their respective authentication policies/mechanisms in further detail:

Role	Type of Authentication	Authentication Data	Description
Cryptographic Officer Role	Role Based authentication	Password: Knowledge of a 10 digit password string.	The Cryptographic Officer role is authorized to perform the program update service provided by the module.
User Role	Role Based authentication	Password: Knowledge of a 10 digit password string.	The User role is the day to day user of the module.

Table 5 – Roles and Required Identification and Authentication

Table 6 – Strengths of Authentication Mechanisms

Authentication Mechanism	Strength of Mechanism
Password Authentication	The probability that a random attempt will succeed or a false acceptance will occur is no greater than $1/10^{10}$, which is less than $1/1,000,000$.
	The VPMCM/TMGCM will allow fewer than 15 authentication attempts in a one minute period; therefore the random success rate for multiple retries is 15/10^10, which is less than 1/100,000.

6. Physical Security

The VPMCM/TMGCM module is a multi-chip embedded cryptographic module which includes the following physical security mechanisms:

• Production-grade components with standard passivation.

7. Access Control Policy

This section lists the services available to the Module in the Approved and non-Approved Modes. Note that the services available to the non-Approved Mode are the same as those available to the Approved Mode; the only difference is that non-Approved algorithms will be used for some services while in the non-Approved Mode.

7.1. User Services

Name of Service	Service Description
Privileged APCO OTAR	Modify and query the Key Database via APCO OTAR Key Management Messages. Available in both FIPS and non-FIPS mode.
Encrypt Digital	The Encrypt Digital service is used to configure and encrypt voice transmissions or other data. Available in both FIPS and non-FIPS mode.
Decrypt Digital	The Decrypt Digital service is used configure and decrypt voice transmissions or other data. Available in both FIPS and non-FIPS mode.
Validate Password	Validate the current password used to identify and authenticate the User or CO role. Fifteen consecutive failed attempts causes the KPK to be zeroized, a new KPK to be generated, all TEKs and KEKs to be invalidated (key status is marked invalid), and the password to be reset to the factory default. Available in both FIPS and non-FIPS mode.
Bypass	Configure a voice call in plaintext. Available in both FIPS and non-FIPS mode.
Transfer Key Variable	The Transfer Key Variable Service is used to manually establish keys to the module Key Database via a Key Variable Loader (KVL). Available in both FIPS and non-FIPS mode.
Change Active Keyset	This service modifies the currently active keyset used for selecting keys for encryption / decryption services. An active keyset is used to store a group of keys for current use, while inactive keysets are used to store keys for future use. Available in both FIPS and non-FIPS mode.
Delete Key Variable	Zeroize KEKs and TEKs via the KVL interface. Available in both FIPS and non-FIPS mode.
Keyset Check	Obtain status information about a specific keyset. Available in both FIPS and non-FIPS mode.
Key Query	Obtain status information about a specific TEK or KEK via the KVL interface. Available in both FIPS and non-FIPS mode.
Configure Module	Perform configuration of the module (e.g. OTAR configuration) via the KVL interface. Available in both FIPS and non-FIPS mode.
Algorithm List Query	Provides a list of algorithms loaded onto the Module via the KVL UI. Available in both FIPS and non-FIPS mode.
Version Query	Provides module firmware version numbers via the KVL UI. Available in both FIPS and non-FIPS mode.

Table 7 – User Services

7.2. Cryptographic Officer Services

Name of Service	Service Description	
Program Update	The Program Update service is used to modify module firmware. Firmware upgrades are authenticated using a digital signature. The Program Update Public Signature Key (a 2048 bit public RSA key) is used to validate the signature of the firmware image being loaded before it is allowed to be executed. All keys and CSPs are preserved during a Program Update, and zeroized only under the following circumstances:	
	1. Key Database Version/Format Change	
	2. Programming of non-FIPS algorithms, causing a FIPS mode transition	
	Available in both FIPS and non-FIPS mode.	
	Note: To maintain FIPS 140-2 validation, only validated firmware can be loaded.	
Validate Password	Validate the current password used to identify and authenticate the User or CO role. Fifteen consecutive failed attempts causes the KPK to be zeroized, a new KPK to be generated, all TEKs and KEKs to be invalidated (key status is marked invalid), and the password to be reset to the factory default. Available in both FIPS and non-FIPS mode.	

7.3. Services Available to Unauthenticated Operators

Name of Service	Service Description
FIPS Status	Provides current FIPS status. Available in both FIPS and non-FIPS mode.
Perform Self Tests	Performs module Power-On Self-Tests which are comprised of cryptographic algorithms test and firmware integrity and load tests. Initiated by module reset or transition from power off state to power on state. Available in both FIPS and non-FIPS mode.
Reset Crypto Module	Soft reset of module to remove module from error states or a transition from power off to power on state. Available in both FIPS and non-FIPS mode.
Erase Crypto Module	Zeroize all keys from the Key Database. Available without a Role. (Module can be reinitialized using a Key Variable Loader). Available in both FIPS and non-FIPS mode.
Non-Privileged APCO OTAR	Status and Capabilities Key Management Messages (KMM) used to determine system compatibility and connectivity. Available in both FIPS and non-FIPS mode.
Extract Action Log	Status Request. Provides detailed history of error events. Available without a Role. Available in both FIPS and non-FIPS mode.
Clear Error Log	Clears history of error events. Available in both FIPS and non-FIPS mode.
FIPS Diagnostic Status	Display the current number of calls, clear vs. secure. Available in both FIPS and non-FIPS mode.
Download Configuration Parameters	Download configuration parameters used to specify module behavior. Available in both FIPS and non-FIPS mode.

 Table 9 – Services Available to Unauthenticated Operators

7.4. Definition of Critical Security Parameters (CSPs)

The following CSPs and keys are contained within the module:

Table 10 – 0	CSP Definitions
--------------	------------------------

CSP	Description/Usage
SP800-90A DRBG Seed	This is a 384-bit seed value used within the SP800-90A DRBG. The seed is not stored but temporarily exists in volatile memory and is zeroized by power cycling the module. The seed is not entered into or output from the module.
	Entry - n/a
	Output - n/a
	Storage – in plaintext in volatile memory
	Zeroization - on power off
	Generation - Non-deterministic Hardware Random Number Generator
SP800-90A internal state ("V"	This is the internal state of the SP800-90A DRBG during initialization. The
and "Key")	internal state is not stored but temporarily exists in volatile memory and is zeroized by power cycling the module. The internal state is not entered into or output from the module.

CSP	Description/Usage
	Entry - n/a Output - n/a Storage – in plaintext in volatile memory Zeroization - on power off Generation - Internal to the SP800-90A DRBG
Image Decryption Key (IDK)	A 256-bit AES key used to decrypt downloaded images. The IDK is not output from the module.
	Entry - on Program Update service request Output - n/a Storage - in plaintext in non volatile memory Zeroization - on Program Update service request Generation - n/a
Key Encryption Keys (KEKs)	256 bit AES Keys used for encryption of keys in OTAR. KEKs are entered in plaintext form via the KVL and via OTAR. KEKs received via OTAR are encrypted with another KEK. Stored in plaintext in RAM and encrypted by the KPK in flash. KEKs are not output from the module.
	Entry – plaintext via KVL input encrypted with AES Key Wrap over the Ethernet Interface
	Output – N/A
	Storage – stored encrypted on KPK with AES256-CFB8 in non volatile memory
	Zeroization - on Delete Key Variable, Erase Crypto Module, and Program Update service requests
Key Protection Key (KPK)	This is a 256-bit AES key used to encrypt all other keys stored in non volatile memory. Generated internally using the SP800-90A DRBG. Stored in plaintext in non volatile memory. The KPK is not entered into or output from the module.
	Entry - n/a Output - n/a Storage – stored in plaintext in non volatile memory Zeroization - on Program Update, and Erase Crypto Module service requests Generation - SP800-90A DRBG
Password	The 10-digit password is entered encrypted on the PEK. After decryption the plaintext password is not stored but temporarily exists in volatile memory. The SHA-256 hash of the decrypted password is compared with the hash value stored in non-volatile memory during password validation. The Password is entered encrypted on the PEK (AES256-CFB8).

CSP	Description/Usage
	Entry – entered encrypted on the PEK with AES256-CFB8 Output - n/a Storage – a hash of the Password is stored in non-volatile memory Zeroization – on Program Update service request Generation - n/a
Password Encryption Key (PEK)	This is a 256-bit AES Key used for decrypting passwords during password validation. Loaded via the Program Update service. Stored in plaintext in non-volatile memory and zeroized through the Program Update service. Also stored encrypted on the KPK in non volatile memory. The PEK is not output from the module.
	Entry - on Program Update service request
	Output - n/a
	Storage - in plaintext in non volatile memory; encrypted on the KPK in non volatile memory
	Zeroization - on Program Update service request
	Generation - n/a
Traffic Encryption Keys (TEKs)	256-bit AES Keys used for enabling secure communication with target devices and for encryption and authentication of Key Management Messages in OTAR. TEKs are entered encrypted (AES Key Wrapping) over the Ethernet interface. The TEKS are stored encrypted with the KPK (AES256- CFB8) in non volatile memory. TEKs are stored in plaintext in RAM only as long as needed.
	Entry – input encrypted with AES Key Wrap over the Ethernet Interface
	Output – n/a
	Storage – stored encrypted on KPK with AES256-CFB8 in non volatile memory
	Zeroization - on Delete Key Variable, Erase Crypto Module, and Program Update service requests

Table 11 – Public Key(s)

Public Key	Description/Usage
Public Programmed Signature	A 2048 bit RSA public key used to validate the signature of the firmware
Key	image being loaded before it is allowed to be executed. Stored in non volatile
	memory. Loaded during manufacturing and as part of the boot image during a
	Program Update service. The Public Programmed Signature Key is not output
	from the module.
	Entry - on Program Update service request

Public Key	Description/Usage
	Output - n/a Storage - in plaintext in non volatile memory Zeroization - on Program Undate service request
	Generation - n/a

7.5. CSP Modes of Access

The following tables describe the various methods in which keys are accessed in the VPMCM/TMGCM as well as how access is controlled per operator and service.

CSP Access Type	Description
C – Check CSP	Checks status and key identifier information of key.
D – Decrypt CSP	Decrypts TEK or KEK retrieved from non-volatile memory using the
	KPK.
	Decrypts entered password with PEK during password validation.
E – Encrypt CSP	Encrypts TEK or KEK with KPK prior to storage in non-volatile
	memory.
G – Generate CSP	Generates KPK, SP800-90A DRBG seed/internal state
I – Invalidate CSP	Marks encrypted TEKs or KEKs stored in non-volatile memory as
	invalid. TEKs or KEKs marked invalid can then be over-written when
	new TEKs or KEKs are stored.
S – Store CSP	Stores KPK in volatile and non-volatile memory.
	Stores encrypted TEKs or KEKs in non-volatile memory, over-writing
	any previously invalidated TEK or KEK in that location.
	Stores plaintext PEK or IDK in non-volatile memory.
U – Use CSP	Uses CSP internally for encryption / decryption services.
Z – Zeroize CSP	Zeroizes key.

Table 12 – CSP Access Types

Table 13 – CSP versus CSP Access

Service	CSP						Role				
	SP800-90 A seed	SP800-90 A seed internal state	IDK	KEKs	KPK	Password	PEK	TEKs	User Role	Crypto-Officer Role	No Role Required
Privileged APCO OTAR				d, u, i, e, z, s	u			d, u, i, e, z, s			
Encrypt Digital					u			d,u			
Decrypt Digital					u			d,u			
Validate Password				i	z, g, s	d, u, z	u	i	\checkmark	\checkmark	
Bypass									\checkmark		
Transfer Key Variable				d, i, e, z, s	u			d, i, e, z, s	\checkmark		
Change Active Keyset											
Delete Key Variable				i	Z			i			
Keyset Check				с				с			
Key Query				d	u			d			
Configure Module									V		
Algorithm List Query									V		
Version Query									V		
Program Update			u, z, s	z	z	Z	Z, S	Z		\checkmark	
FIPS Status				с				с			
Perform Self-Tests	g	g									\checkmark
Reset Crypto Module	g, u, z	g, u, z			g, s						\checkmark
Erase Crypto Module	g, u, Z	g, u, z		Z	g, s	Z		Z			

Service		CSP							Role		
	SP800-90 A seed	SP800-90 A seed internal state	IDK	KEKs	KPK	Password	PEK	TEKs	User Role	Crypto-Officer Role	No Role Required
Non-Privileged APCO											\checkmark
OTAR (not for key entry)											
Extract Action Log											
Clear Error Log											V
FIPS Diagnostic Status											\checkmark
Download Configuration Parameters				i	z, g, s			i			\checkmark

8. Operational Environment

The FIPS 140-2 Area 6 Operational Environment requirements are not applicable because the VPMCM/TMGCM supports a non-modifiable operational environment.

9. Security Rules

The VPMCM/TMGCM module's design corresponds to the cryptographic module's security rules. This section documents the security rules enforced by the cryptographic module to implement the security requirements of this FIPS 140-2 Level 1 module.

- 1. The cryptographic module shall provide two distinct operator roles. These are the User role and the Cryptographic Officer role.
- 2. When the module has not been placed in a valid role, the operator does not have access to any cryptographic services.
- 3. The cryptographic module shall perform the following tests:
 - A. Power up Self-Tests
 - i. Cryptographic algorithm test:
 - 1. SHA-256 Known Answer Test (KAT)
 - 2. AES-256 KAT for each mode in the OFB, CBC, ECB, and 8-bit CFB.
 - 3. SP800-90A DRBG KAT
 - 4. SP800-90A Section 11.3 Health Tests
 - 5. RSA 2048 is tested as part of the Firmware integrity test. RSA is only used to perform signature verification.
 - ii. Firmware integrity test: A digital signature is generated over the code when it is built using SHA-256 and RSA-2048 and is stored with the code upon download into the module. When the module is powered, up the digital signature is verified.
 - B. Conditional Tests
 - i. Firmware load test: A digital signature is generated over the code when it is built using SHA-256 and RSA-2048. Upon download into the module, the digital signature is verified. If the digital signature matches the test passes, otherwise it fails.
 - ii. Continuous Random Number Generator test
 - 1. SP800-90A DRBG Continuous Test
 - 2. NDRNG Continuous Test
 - iii. Alternating Bypass Test
 - iv. At any time the operator shall be capable of commanding the module to

perform the power-up self-test by using the Reset service or by Powercycling the module.

- 8. Data output shall be inhibited during self-tests, zeroization, and error states.
- 9. Status information shall not contain CSPs or sensitive data that if misused could lead to a compromise of the module.

This section documents the security rules imposed by the vendor:

- 1. The VPMCM/TMGCM does not support multiple concurrent operators.
- 2. After a sufficient number (15) of consecutive unsuccessful user login attempts, the module will zeroize all keys from the Key Database.
- 3. The module does not support the output of plaintext or encrypted keys.

10. Mitigation of Other Attacks Policy

The VPMCM/TMGCM has not been designed to mitigate any specific attacks.

11. Glossary

KeyDatabase	A database containing KEKs and TEKs.
KeySet	Logical grouping of keys. KeySets can be active (available for use) or
	inactive (not available for use).

12. Acronyms

ALGID	Algorithm Identifier
CBC	Cipher Block Chaining
CFB	Cipher Feedback
CKR	Common Key Reference
СО	Crypto Officer
CPS	Customer Programming Software
CSP	Critical Security Parameter
DES	Data Encryption Standard
ECB	Electronic Code Book
IV	Initialization Vector
KEK	Key Encryption Key
KID	Key Identifier
KLK	Key Loss Key
KMM	Key Management Message
KPK	Key Protection Key
KVL	Key Variable Loader
LFSR	Linear Feedback Shift Register
MAC	Message Authentication Code
MACE	Motorola Advanced Crypto Engine
OFB	Output Feedback
OTAR	Over The Air Rekeying
PRNG	Pseudo Random Number Generator
RNG	Random Number Generator
TEK	Traffic Encryption Key
TMGCM	Telephone Media Gateway Cryptographic Module
VPMCM	Voice Processing Module Cryptographic Module