
Hewlett Packard Enterprise Development LP

iLO 5 Cryptographic Module

Hardware Version: ASIC (GXP: 815393-001) with Flash Memory (1819-1208), NVRAM (1819-1209), and DDR3 SDRAM (2660-0461); Firmware Version: 1.11

Prepared for:

Hewlett Packard Enterprise

Hewlett Packard Enterprise
Development LP

11445 Compaq Center Dr. W.

Houston, TX 77070 United States of America

Phone: +1 (281) 370-0670 http://www.hpe.com

Prepared by:

Corsec Security, Inc.

13921 Park Center Road Suite 460 Herndon, VA 20171 United States of America

Phone: +1 703 267 6050 www.corsec.com

Table of Contents

HPE iLO 5 Cryptographic Module

1.	Introduction	4			
	1.1 Purpose	4			
	1.2 References	4			
:	1.3 Document Organization	4			
2.	iLO 5	5			
2	2.1 Overview	5			
2	2.2 Module Specification	9			
2	2.3 Module Interfaces	12			
2	2.4 Roles and Services				
	2.4.1 Crypto Officer Role				
	2.4.2 User Role				
	2.4.3 Additional Services	18			
2	2.5 Physical Security	18			
2	2.6 Operational Environment				
	2.7 Cryptographic Key Management				
2	2.8 EMI / EMC	23			
2	2.9 Self-Tests				
	2.9.1 Power-Up Self-Tests				
	2.9.2 Conditional Self-Tests				
	2.9.3 Critical Functions Self-Tests				
	2.9.4 Self-Test Failure Handling				
	2.10 Mitigation of Other Attacks				
3.					
3	3.1 Crypto Officer Guidance				
	3.1.1 Initialization				
	3.1.2 Secure Management				
	3.2 User Guidance				
	3.3 Module's Mode of Operation				
	3.4 Non-FIPS-Approved Mode				
4.	Acronyms	28			
1	ist of Tables				
L	ist of Tables				
Tak	ole 1 – iLO 5 Advanced Features	6			
	able 2 – Security Level per FIPS 140-2 Section8				
	ole 3 – Module Components Part Numbers				
	able 4 – Hardware Algorithm Certificate Numbers11				
	ole 5 – Firmware Algorithm Certificate Numbers				
	ole 6 – FIPS 140-2 Logical Interface Mappings				
	ole 7 – Crypto Officer Services				

able 10 – Acronyms	28
QDIC 10 /\ClOH\fills	20

List of Figures

Figure 1 – HPE iLO 5 (Example Management Screen)	5
Figure 2 – iLO 5 ASIC	8
Figure 3 – iLO 5 Block Diagram	

1. Introduction

1.1 Purpose

This is a non-proprietary Cryptographic Module Security Policy for the iLO 5 Cryptographic Module from Hewlett Packard Enterprise Development LP (HPE). This Security Policy describes how the iLO 5 Cryptographic Module meets the security requirements of Federal Information Processing Standards (FIPS) Publication 140-2, which details the U.S.¹ and Canadian government requirements for cryptographic modules. More information about the FIPS 140-2 standard and validation program is available on the National Institute of Standards and Technology (NIST) and the Communications Security Establishment (CSE) Cryptographic Module Validation Program (CMVP) website at http://csrc.nist.gov/groups/STM/cmvp.

This document also describes how to run the module in a secure FIPS-Approved mode of operation. This policy was prepared as part of the Level 1 FIPS 140-2 validation of the module. The iLO 5 Cryptographic Module is referred to in this document as iLO 5, crypto module, or the module.

1.2 References

This document deals only with operations and capabilities of the module in the technical terms of a FIPS 140-2 cryptographic module security policy. More information is available on the module from the following sources:

- The HPE website (www.hpe.com) contains information on the full line of products from HPE.
- The CMVP website (http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-all.htm) contains contact information for individuals responsible for answer technical or sales-related questions for the module.

1.3 Document Organization

The Security Policy document is one document in a FIPS 140-2 Submission Package. In addition to this document, the Submission Package contains:

- Vendor Evidence
- Finite State Model
- Submission Summary
- Other supporting documentation as additional references

This Security Policy and the other validation submission documentation were produced by Corsec Security, Inc. under contract to HPE. With the exception of this non-proprietary Security Policy, the FIPS 140-2 Submission Package is proprietary to HPE and is releasable only under appropriate non-disclosure agreements. For access to these documents, please contact HPE.

¹ U.S. – United States

iLO 5

2.1 Overview

HPE's Integrated Lights-Out (iLO) is a proprietary embedded server management technology that provides out-of-band management functionality. HPE's fifth generation of iLO (iLO 5) is the foundation of HPE's Gen10 series enterprise server consisting of HPE ProLiant servers and HPE Synergy systems. The HPE iLO 5 built into HPE ProLiant Gen10 servers is an autonomous, secure management component embedded directly on the server motherboard. iLO 5 helps simplify initial server setup, power optimization, thermal optimization, and remote server administration. It also provides server health monitoring with the HPE Active Health System (AHS) and provides system administrators with true Agentless Management using SNMP² alerts from iLO 5, regardless of the state of the host server. The Embedded Remote Support (ERS) options allow Gen10 servers to use their Insight Remote Support (IRS) server's registration from iLO 5, regardless of the operating system software and without the need for additional host software, drivers, or agents. The HPE AHS monitors and records changes in the server hardware and system configuration. iLO 5 provides system administrators with secure remote management capabilities regardless of the server status or location, and it is available whenever the server is connected to a power source, even if the server main power switch is in the Off position. Figure 1 below shows a screenshot of the iLO 5 management interface.

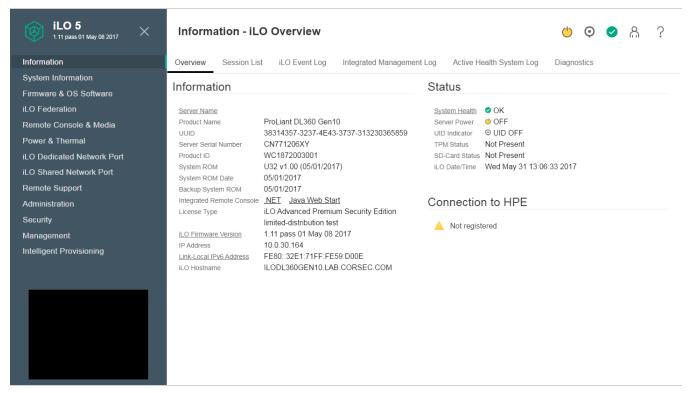


Figure 1 - HPE iLO 5 (Example Management Screen)

iLO 5 is supported on the following server platforms:

² SNMP – Simple Network Management Protocol

- HPE ProLiant Gen10 DL Rack Servers (DL360, DL380, DL560)
- HPE ProLiant Gen10 BL BladeSystem Servers (BL460c)
- HPE ProLiant Gen10 XL Scalable Servers (XL230k)
- HPE Synergy Servers (Synergy480, Synergy660)

HPE enterprise servers are designed so that administrative functions that are performed locally can also be performed remotely. iLO 5 enables remote access to the operating system console, control over the server power, and hardware reset functionality. It also works with the server to enable remote network booting through a variety of methods.

The iLO 5 architecture ensures the availability of the majority of iLO 5 functionality, regardless of the state of the host operating system. The HPE Lights-Out Online Configuration Utility is available for Windows and Linux operating systems. Additionally, iLO 5 provides Microsoft device driver support, improved .NET framework support, and HPE SIM³ SSO⁴ support.

iLO 5 functions out-of-the-box without additional software installation. It functions regardless of the servers' state of operation and uses a local account database or directory service to authenticate and authorize its users. iLO 5 can be accessed from any location via a web browser and works hand-in-hand with HPE Systems Insight Manager, Insight Control, and Insight Dynamics.

Advanced features of iLO 5, available via licensing, include (but are not limited to) the following: graphical remote console, multi-user collaboration, power and thermal optimization, health monitoring, virtual media, and console video recording and playback. The advanced features offer sophisticated remote administration of servers in dynamic data center and remote locations. A list of advanced functionality is shown in Table 1.

Table 1 - iLO 5 Advanced Features

Feature	iLO 5 Advanced Premium Security Edition
Virtual Keyboard, Video, Mouse (KVM ⁵)	Full text and graphic modes (pre-OS ⁶ & OS)
Global Team Collaboration (Virtual KVM)	Up to 6 Server Administrators
Console Record and Replay	✓
Virtual Power	✓
Virtual Media	✓
Virtual Folders	✓
Remote Serial Console	SSH ⁷ Only
Virtual Unit Indicator Display	✓
Email-based Alerting	✓
Drive Key Managers (i.e. ESKM ⁸)	✓

³ SIM – System Insight Manager

⁴ SSO – Single Sign-On

⁵ KVM - Keyboard, Video, Mouse

⁶ OS – Operating System

⁷ SSH – Secure Shell

⁸ ESKM – Enterprise Secure Key Manager

Feature	iLO 5 Advanced Premium Security Edition
ROM ⁹ -Based Setup Utility (RBSU)	✓
Present Power Reading	✓
Power Usage Reporting	✓
Ambient Temperature Reporting	✓
Dynamic Power Capping	✓
Power Supply High-Efficiency Mode	✓
Sea of Sensors	✓
Power-On Self-Test (POST) and Failure Sequence Replay	✓
iLO and Server Integrated Management Log	✓
Advanced Server Management	✓
Alert Administrator (SNMP Pass through)	✓
System Health & Configuration Display	✓
Directory Services Authentication	✓
Locally Stored Accounts	✓
Smartcard (CAC ¹⁰ /PIV ¹¹) Authentication	✓
Browser	✓
Command Line	✓
Extensible Markup Language (XML ¹²)/Perl Scripting	✓
Integrated Remote Console for Windows Clients	✓
Java Applet Client for Windows and Linux Clients	✓
RESTful ¹³ scripting	✓
Transport Layer Security (TLS)	✓
Secure Shell	✓
AES ¹⁴ (Virtual KVM)	✓
Dedicated Network Interface Controller (NIC)	✓
Shared Network Port	✓
iLO Federation Discovery	✓
iLO Federation Discovery Group License Activation	✓
iLO Federation Management	✓
Scan iLO and BIOS for malware	✓

⁹ ROM – Read-Only Memory

¹⁰ CAC – Common Access Card

¹¹ PIV – Personal Identification Verification

¹² XML – Extensible Markup Language

¹³ REST – Representational State Transfer

¹⁴ AES – Advanced Encryption Standard

Feature	iLO 5 Advanced Premium Security Edition
High security modes (HIGH SECURITY, FIPS and CNSA ¹⁵)	✓

iLO 5 is deployed in the form of an ASIC¹⁶, a system-on-a-chip with an independent Cortex A9 processor running an embedded real-time operating system. iLO 5 ASICs for HPE enterprise Gen10 servers virtualize system controls to help simplify server setup, engage health monitoring, provide power and thermal control, and promote remote administration of HPE Synergy and HPE ProLiant DL, XL, and BL servers. Figure 2 shows an iLO 5 ASIC.

Figure 2 - iLO 5 ASIC

The HPE iLO 5 Cryptographic Module includes the iLO 5 ASIC and its associated memory components incorporated directly onto the motherboards of HPE servers.

The iLO 5 is validated at the FIPS 140-2 Section levels shown in Table 2:

Table 2 – Security Level per FIPS 140-2 Section

Section	Section Title	Level
1	Cryptographic Module Specification	1
2	Cryptographic Module Ports and Interfaces 1	
3	Roles, Services, and Authentication 1	
4	Finite State Model	1
5	Physical Security	1
6	Operational Environment N/A	
7	Cryptographic Key Management 1	
8	EMI/EMC ¹⁷	
9	Self-tests	1
10	Design Assurance	1
11	Mitigation of Other Attacks	

¹⁵ CNSA – Commercial National Security Algorithm

¹⁶ ASIC – Application-Specific Integrated Circuit

¹⁷ EMI/EMC – Electromagnetic Interference / Electromagnetic Compatibility

2.2 Module Specification

The iLO 5 is a hardware module with a multiple-chip embedded embodiment. The overall security level of the module is 1. The cryptographic boundary of the module surrounds the iLO 5 ASIC, Flash memory, battery-backed NVRAM¹⁸, and DDR3¹⁹ SDRAM²⁰ (see Table 3 for part numbers of these components).

Table 3 - Module Components Part Numbers

Module Component	Part Number
ASIC	815393-00121
Flash Memory (16MB ²²)	1819-1208
Battery-Backed NVRAM	1819-1209
DDR3 SDRAM	2660-0461

The module also includes the iLO 5 firmware and the circuit traces between the module's physical components. With the exception of power and ground pins, all data pins on the Flash and RAM²³ chips lead directly to the iLO 5 ASIC and do not cross the module boundary. The cryptographic boundary of the module and the relationship among the various internal components of the module are depicted in Figure 3 below.

¹⁸ NVRAM – Non-Volatile Random Access Memory

¹⁹ DDR3 – Double Data Rate v3

²⁰ SDRAM – Synchronous Dynamic Random Access Memory

²¹ Some of these parts may be labelled 815393-001-B1; however they are identical to those labelled 815393-001. Only the silkscreen is different.

²² MB – Megabyte

²³ RAM - Random Access Memory

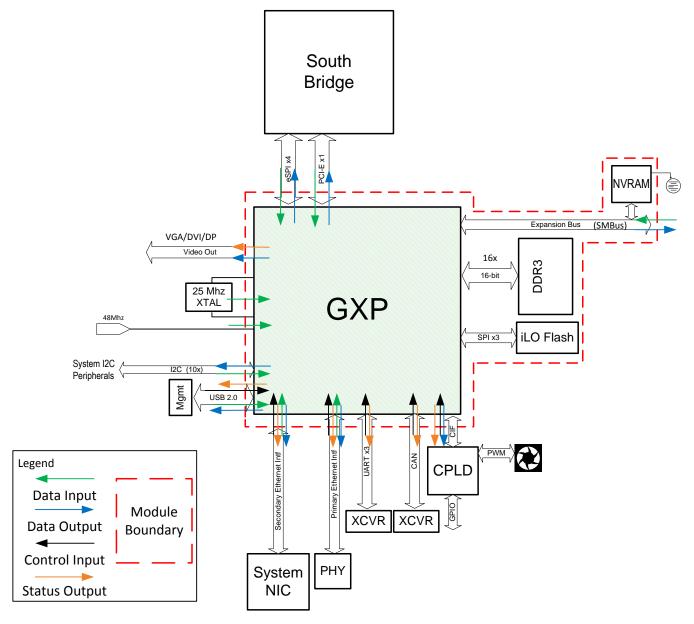


Figure 3 - iLO 5 Block Diagram

The cryptographic module was tested and found compliant using the specific part numbers shown in Table 3. However, HPE affirms that the GXP ASIC specified in this module will perform the same in all HPE servers regardless of the specific SDRAM, NVRAM, or flash memory chips used. All HPE hardware components must meet HPE's rigorous part requirements and demonstrate the HPE-required functionality.

The module uses the FIPS-Approved algorithm implementations in hardware as listed in Table 4.

Table 4 - Hardware Algorithm Certificate Numbers

Algorithm	Certificate Number
AES Encryption/Decryption in OFB ²⁴ mode (128-bit)	4467
AES GCM ²⁵ Encryption/Decryption and Message Authentication with 128-, 192-, and 256-bit keys	4467
AES Encryption/Decryption in CBC ²⁶ mode (128, 192, 256-bit)	4467
SHA ²⁷ -384, SHA-512	3679

Additionally, the module uses FIPS-Approved algorithms implemented in firmware as listed in Table 5.

Table 5 – Firmware Algorithm Certificate Numbers

Algorithm	Certificate Number
AES Encryption/Decryption in CBC, OFB, CTR ²⁸ modes (128, 192, 256-bit)	4525
AES GCM Encryption/Decryption/Generation/Verification (128, 192, 256-bit)	4525
Triple-DES ²⁹ Encryption/Decryption in CBC modes (3-key)	2412
RSA ³⁰ (FIPS 186-4) Key Generation (2048, 3072-bit), Signature Generation (2048, 3072-bit), Signature Verification (2048, 3072-bit)	2462
RSA (FIPS 186-2) Signature Verification (1024, 1536, 2048, 3072, 4096-bit)	2462
DSA ³¹ (FIPS 186-4) Key Generation (2048, 3072-bit), Signature Generation (2048, 3072-bit), Signature Verification (2048, 3072-bit)	1204
ECDSA ³² (FIPS 186-4) PKG/PKV/SigGen/SigVer for P-256 and P-384 curves	1100
SHA ³³ -1, SHA-256, SHA-384, SHA-512	3706
HMAC ³⁴ with SHA-1, SHA-256, SHA-384, SHA-512	2985
NIST SP ³⁵ 800-90A based CTR_DRBG ³⁶ (with 128-bit AES), no derivation function	1485
Section 4.2, TLS – KDF ³⁷ (SP 800-135) ³⁸	1202
Section 5.2, SSH – KDF (SP 800-135)	1202
ECC ³⁹ CDH ⁴⁰ for P-256 and P-384 curves	1201

²⁴ OFB – Output Feedback

²⁵ GCM – Galois Counter Mode

²⁶ CBC – Cipher-Block Chaining

²⁷ SHA – Secure Hash Algorithm

²⁸ CTR - Counter

²⁹ DES – Data Encryption Standard

³⁰ RSA – Rivest, Shamir, and Adleman

³¹ DSA – Digital Signature Algorithm

³² ECDSA – Elliptical Curve Digital Signature Algorithm

³³ SHA – Secure Hash Algorithm

³⁴ HMAC – (Keyed) Hash Messaged Authentication Code

³⁵ SP - Special Publication

³⁶ DRBG – Deterministic Random Bit Generator

³⁷ KDF – Key Derivation Function

³⁸ No parts of the TLS and SSH protocols, other than the KDF, have been tested by CAVP and CMVP.

Algorithm	Certificate Number
KBKDF ⁴¹ based on HMAC SHA-512 – KDF (SP 800-108)	132

KTS (AES Cert. #4525 and HMAC Cert. #2985; key establishment methodology provides between 128 and 256 bits of encryption strength).

Note: Additional information concerning RSA, DSA, and SHA-1, and specific guidance on transitions to the use of stronger cryptographic keys and more robust algorithms, is contained in NIST Special Publication 800-131A.

Note: If Triple-DES is employed, the user is responsible for ensuring that the module limits the use of any single Triple-DES key to less than 2^{A28} encryptions before the key is changed.

When the module generates symmetric keys or seeds used for generating asymmetric keys, unmodified DRBG output is used as the symmetric key or as the seed for generating the asymmetric keys.

The module utilizes the following non-Approved algorithm implementations that are allowed for use in an Approved mode of operation:

- Diffie-Hellman (CVL Cert. #1202, key agreement; key establishment methodology provides 112 or 128 bits of encryption strength)
- EC⁴² Diffie-Hellman (CVL Certs. #1201 and #1202, key agreement; key establishment methodology provides 128 or 192 bits of encryption strength)
- MD⁴³5 (for TLS use)
- RSA (CVL Cert. #1202, key wrapping; key establishment methodology provides between 112 and 128 bits of encryption strength)
- NDRNG⁴⁴ used for entropy gathering

2.3 Module Interfaces

iLO 5 offers a WebUl⁴⁵ (accessible over TLS) and a Command Line (CLI) (accessible over SSH) management interfaces. The module's design separates the physical ports into five logically distinct categories:

- Data Input
- Data Output
- Control Input
- Status Output
- Power

The iLO 5 ASIC provides several power and ground interfaces to the module, as do the Flash and RAM chips. The physical ports and interfaces of the module comprise the individual pins on the iLO 5 ASIC as described by logical

³⁹ ECC – Elliptic Curve Cryptography

⁴⁰ CDH – Cofactor Diffie Hellman

⁴¹ KBKDF – Key Based Key Derivation Function

⁴² EC - Elliptical Curve

⁴³ MD – Message Digest

⁴⁴ NDRNG – Non-Deterministic Random Number Generator

⁴⁵ WebUI – Web User Interface

HPE iLO 5 Cryptographic Module

interfaces in Table 6. All of these interfaces are also separated into logical interfaces defined by FIPS 140-2 in Table 6 below.

Table 6 - FIPS 140-2 Logical Interface Mappings

Physical Port/Interface	Quantity	FIPS 140-2 Interface
PCIe ⁴⁶	1	Data Input Data Output
CAN ⁴⁷	1	Control InputStatus Output
eSPI ⁴⁸	4	Data Input Data Output
USB 2.0 ⁴⁹	1	 Data Input Data Output Control Input Status Output
SMBus ⁵⁰	1	Data Input Data Output
VGA ⁵¹ /DVI ⁵² /DP ⁵³	1	Data OutputStatus Output
Clock In	2	Data Input
GPIO ⁵⁴	2	Control Input Status Output
I2C ⁵⁵	10	Data Input Data Output
GMII ⁵⁶ /MII ⁵⁷ (Primary Ethernet)	1	 Data Input Data Output Control Input Status Output
RMII ⁵⁸ /MII (Secondary Ethernet)	1	 Data Input Data Output Control Input Status Output
UART ⁵⁹	3	Control InputStatus Output

⁴⁶ PCIe – Peripheral Component Interconnect Express

⁴⁷ CAN – Controller Area Network

⁴⁸ eSPI – Enhanced Serial Peripheral Interface

⁴⁹ USB – Universal Serial Bus

⁵⁰ SMBus – System Management Bus

⁵¹ VGA – Video Graphics Array

⁵² DVI – Digital Visual Interface

⁵³ DP - Display Port

⁵⁴ GPIO – General Purpose Input Output

⁵⁵ I2C – Inter-Integrated Circuit

⁵⁶ GMII – Gigabit Media Independent Interface

⁵⁷ MII – Media Independent Interface

⁵⁸ RMII – Reduced Media Independent Interface

Physical Port/Interface	Quantity	FIPS 140-2 Interface
CIF ⁶⁰	1	Data OutputControl InputStatus Output
SPI ⁶¹	3	Data InputData Output
Power	4	Power Input

2.4 Roles and Services

The module supports two roles (as required by FIPS 140-2) that operators may assume: a Cryptographic Officer (CO) role and a User role. Roles are assumed explicitly by using a username and password or based on certificate-based credentials on a CAC/PIV card.

Please note that the keys and Critical Security Parameters (CSPs) listed in the table indicate the type of access required using the following notation:

- R Read: The CSP is read.
- W Write: The CSP is established, generated, modified, or zeroized.
- X Execute: The CSP is used within an Approved or Allowed security function or authentication mechanism.

2.4.1 Crypto Officer Role

The CO role has the ability to configure the module. This role is assigned when the first operator logs into the system using the default username and password. Only the CO can create other users and provision the iLO 5 to operate in FIPS-Approved mode. CO services are provided via the supported secure protocols, specifically Transport Layer Security (TLS) and SSH. Descriptions of the services available to the CO role are provided in Table 7 below.

Table 7 - Crypto Officer Services

Service	Description	CSP and Type of Access
Authenticate	Authenticate CO to module	Password – R/X
Add, remove, modify or assign users and roles	Create, edit, and delete users; Define user accounts and assign permissions	Password – R/W/X
View system information	View and monitor system information, event logs, power settings, etc.	Password – R/X
View network statistics (WebUI only)	View and monitor network information and statistics	Password – R/X

⁶⁰ CIF – Common Interface Format

⁶⁰ CIF – Common Interface Format

⁶¹ SPI – Serial Peripheral Interface

Service	Description	CSP and Type of Access
Configure the module and host server	Configure and manage the module and host system parameters such as Remote console ⁶² , virtual media, power management, network management and host server	Password – R/X
Activate or deactivate licensed features	Enable advanced features including graphical remote console, multi-user collaboration, power and thermal optimization, health monitoring, virtual media, and console video recording and playback	Password – R/X
Set FIPS mode	Set the FIPS mode flag	Password – R/X
Zeroize keys and CSPs	Zeroize all the keys and CSPs stored within iLO	AII – W
Administer TLS certificates (WebUI only)	Add, remove, or view root and specific certificates for HTTPS ⁶³ connections	Password – R/X RSA private/public keys – R/W/X ECDSA private/public keys – R/W/X
Show status	Indicate whether the module is in FIPS-Approved mode	Password – R/X
Perform self-tests	Perform power-up self-tests on demand	Entropy Input String – R/X DRBG Seed – R/W/X DRBG Key – R/W/X DRBG V Value – R/W/X
Access the module via	Login to the module via CLI using SSH protocol to perform CO services	Password – R/X DSA Public key – R/W/X SSH Session key – R/W/X SSH Authentication Key – R/W/X RSA Public key – R/X RSA Private key – R/X ECDSA Public key – R/X ECDSA Private key – R/X Diffie-Hellman public key component – R/W/X Diffie-Hellman Private key component – R/W/X EC Diffie-Hellman public key component – R/W/X EC Diffie-Hellman Private key component – R/W/X EC Diffie-Hellman Private key component – R/W/X

⁻

⁶² Note: Remote console can be configured and managed via WebUI only.

⁶³ HTTPS – Hypertext Transfer Protocol Secure

Service	Description	CSP and Type of Access
Access the module via TLS/WebUI	Login to the module via WebUI using TLS protocol to perform CO services	Password – R/X RSA Public key – R/X RSA Private key – R/X ECDSA Public key – R/X ECDSA Private key – R/X ECDSA Private key – R/X Diffie-Hellman public key component – R/W/X Diffie-Hellman Private key component – R/W/X EC Diffie-Hellman public key component – R/W/X EC Diffie-Hellman Private key component – R/W/X TLS Pre-Master Secret – R/W/X TLS Pre-Master Secret – R/W/X TLS Authentication Key – R/W/X TLS Authentication Key – R/W/X AES GCM key – R/W/X KBKDF Secret Value – R/W/X
Access the module using CAC/PIV cards	Login to the module using CAC/PIV cards via certificate based authentication over TLS protocol to perform CO services	RSA Public key — R/X RSA Private key — R/X ECDSA Public key — R/X ECDSA Private key — R/X ECDSA Private key — R/X Diffie-Hellman public key component — R/W/X Diffie-Hellman Private key component — R/W/X EC Diffie-Hellman public key component — R/W/X EC Diffie-Hellman Private key component — R/W/X TLS Diffie-Hellman Private key component — R/W/X TLS Pre-Master Secret — R/W/X TLS Master Secret — R/W/X TLS Session key — R/W/X TLS Authentication Key — R/W/X AES GCM key — R/W/X
Firmware Upgrade	Load new firmware and perform an integrity test using an RSA digital signature verification	Firmware Upgrade Authentication Key – R/X

2.4.2 User Role

The User role has the ability to monitor the module configurations and the host system. Descriptions of the services available to the User role are provided in Table 8 below.

Table 8 - User Services

Service	Description	CSP and Type of Access
Authenticate	User logs into module	Password – R/X
Change Password	Change the user's password	Password – R/W/X
View system information	View and monitor system information, event logs, power settings, etc.	None

Service	Description	CSP and Type of Access
View network statistics (WebUI only)	View and monitor network information and statistics	Password – R/X
Show status	Indicate whether the module is in FIPS-Approved mode	Password – R/X
Perform self-tests Perform Power-up Self Tests on demand		Entropy Input String – RX DRBG Seed – RWX DRBG Key – R/W/X DRBG V Value – R/W/X
Access the module via CLI	Login to the module via CLI using SSH protocol to perform user services	Password – R/X DSA Public key – R/W/X SSH Session key – R/W/X SSH Authentication Key – R/W/X RSA Public key – R/X RSA Private key – R/X ECDSA Public key – R/X ECDSA Private key – R/X Diffie-Hellman public key component – R/W/X Diffie-Hellman Private key component – R/W/X EC Diffie-Hellman public key component – R/W/X EC Diffie-Hellman Private key component – R/W/X EC Diffie-Hellman Private key component – R/W/X
Access the module via WebUI	Login to the module via WebUI using TLS protocol to perform user services	Password – R/X RSA Public key – R/X RSA Private key – R/X ECDSA Public key – R/X ECDSA Private key – R/X ECDSA Private key – R/X TLS Pre-Master Secret – R/W/X TLS Master Secret – R/W/X TLS Session key – R/W/X TLS Authentication Key – R/W/X AES GCM key – R/W/X AES GCM IV – R/W/X Diffie-Hellman public key component – R/W/X Diffie-Hellman Private key component – R/W/X EC Diffie-Hellman Private key component – RW/X EC Diffie-Hellman Private key component – R/W/X

Service	Description	CSP and Type of Access
Access the module using CAC/PIV cards	Login to the module using CAC/PIV cards via certificate based authentication over TLS protocol to perform user services	

2.4.3 Additional Services

The module offers additional services to both the CO and User, which are not relevant to the secure operation of the module. All services provided by the modules are listed in the *HP iLO 5 User Guide; July 2017, Edition: 1.* The User Guide is supplied with the shipment of the iLO 5 modules or may be freely obtained at the following webpage:

http://h20566.www2.hpe.com/hpsc/doc/public/display?sp4ts.oid=1010145467&docLocale=en_US&docId=emr_na-a00018324en_us.

2.5 Physical Security

The iLO 5 is a multiple-chip embedded cryptographic module. The module consists of production-grade components that include standard passivation techniques.

2.6 Operational Environment

The module employs a non-modifiable operating environment. The module's firmware (Firmware version: 1.11) is executed by the module's Cortex A9 processor. The module does not have a general purpose operating system. The module also runs Green Hills Integrity 11.2.4 operating system, which is not possible to modify.

2.7 Cryptographic Key Management

The module supports the CSPs listed below in Table 9.

Table 9 – List of Cryptographic Keys, Cryptographic Key Components, and CSPs

CSP	CSP Type	Generation / Input	Output	Storage	Zeroization	Use
RSA public key	2048 and 3072-bit key	Internally generated or imported in plaintext	Exits the module in plaintext in the form of a certificate	NVRAM (plaintext)	Exiting FIPS-Approved mode	Used for PKI ⁶⁴ authentication, TLS authentication, RSA signature verification, and certificate generation
RSA private key	2048 and 3072-bit key	Internally generated using NIST SP 800-90A CTR DRBG	Never exits the module	NVRAM (plaintext)	Exiting FIPS-Approved mode	Used for PKI authentication, TLS authentication, signature generation, and certificate generation
DSA public key	2048 and 3072-bit key	Imported in plaintext	Exits the module in plaintext	NVRAM (plaintext)	Exiting FIPS-Approved mode	Used for SSH user authentication
ECDSA public key	NIST defined P-256 and P- 384 curves	Imported in plaintext form	Exits the module in plaintext	NVRAM (plaintext)	Exiting FIPS-Approved mode	Used for PKI authentication
ECDSA private key	NIST defined P-256 and P- 384 curves	Internally generated using NIST SP 800-90A CTR DRBG	Never exits the module	NVRAM (plaintext)	Exiting FIPS-Approved mode	Used for PKI authentication
Diffie-Hellman public key component	2048, 3072-bit	Internally generated or imported in plaintext	Exits the module in plaintext	DDR3 RAM (plaintext)	Session termination, rebooting, or power cycling	, , ,

⁶⁴ PKI – Public Key Infrastructure

CSP	CSP Type	Generation / Input	Output	Storage	Zeroization	Use
Diffie-Hellman private key component	224, 256-bit	Internally generated using NIST SP 800-90A CTR DRBG	Never exits the module	DDR3 RAM (plaintext)	Session termination, rebooting, or power cycling	Used for key agreement during TLS and SSH sessions (deriving TLS and SSH session and authentication keys)
EC Diffie-Hellman public key component	NIST defined P-256 and P- 384 curves	Internally generated or imported in plaintext	Exits the module in plaintext	DDR3 RAM (plaintext)		Used for key agreement during TLS and SSH sessions (deriving TLS and SSH session and authentication keys)
EC Diffie-Hellman private key component	NIST defined P-256 and P-384 curves	Internally generated using NIST SP 800-90A CTR DRBG	Never exits the module	DDR3 RAM (plaintext)	Session termination, rebooting, or power cycling	Used for key agreement during TLS and SSH sessions (deriving TLS and SSH session and authentication keys)
TLS Pre-Master Secret	Shared Secret (384, 1024, 2048-bit)	Imported in encrypted form with the server's RSA public key (for RSA key transport only)		DDR3 RAM (plaintext)	"	Used to derive the TLS Master Secret as part of TLS Pseudo-Random Function
TLS Master Secret	Shared Secret (384-bit)	Internally generated via TLS Pseudo-Random Function	Never exits the module	DDR3 RAM (plaintext)	mode, session	1
TLS Session Key	AES 128, 192, 256-bit or Triple-DES-192 bit	Established internally using TLS KDF	Never exits the module	DDR3 RAM (plaintext)	mode, session	" 0
TLS Authentication Key		Generated internally using NIST SP 800-90A CTR DRBG	Never exits the module	DDR3 RAM (plaintext)		Used for data integrity and authentication during TLS sessions

CSP	CSP Type	Generation / Input	Output	Storage	Zeroization	Use
KBKDF Secret Value	Secret Key derived using SP 800-108 KBKDF	Established internally using KBKDF	Never exits the module	DDR3 RAM (plaintext)	Exiting FIPS-Approved mode, session termination, rebooting, or power cycling	Used for deriving additional keys using SP 800-108 KBKDF during Remote Console sessions
SSH Session Key	AES 128, 192, 256-bit or Triple-DES 192-bit	Generated internally using NIST SP 800-90A CTR DRBG	Never exits the module	DDR3 RAM (plaintext)	mode, session	Used for encrypting or decrypting the data traffic during the SSH session
SSH Authentication Key	HMAC SHA-1 (160-bits)	Generated internally using NIST SP 800-90A CTR DRBG	Never exits the module	DDR3 RAM (plaintext)	0 ''	Used for data integrity and authentication during SSH sessions
AES GCM Key	128, 192, 256-bit	Generated internally using NIST SP 800-90A CTR DRBG *	Never exits the module	DDR3 RAM (plaintext)	Exiting FIPS-Approved mode, session termination, rebooting, or power cycling	Used for encrypting or decrypting the data traffic
AES GCM IV ⁶⁵	96-bits	Generated internally using NIST SP 800-90A CTR DRBG *	Never exits the module	DDR3 RAM (plaintext)		Used as an IV input to AES GCM function
DRBG Key	DRBG key	Internally generated using entropy input string	Never exits the module	DDR3 RAM (plaintext)	Rebooting or power cycling	DRBG internal state value
DRBG V Value	DRBG internal state value	Internally generated using entropy input string	Never exits the module	DDR3 RAM (plaintext)	Rebooting or power cycling	DRBG Internal state value
DRBG seed	256-bit value	Generated internally using entropy input	Never exits the module	DDR3 RAM (plaintext)	, ,	Random number generation
Entropy Input string	256-bit value	Generated internally using NDRNG	Never exits the module	DDR3 RAM (plaintext)		Random number generation

65 IV – Initialization Vector HPE iLO 5 Cryptographic Module

CSP	CSP Type	Generation / Input	Output	Storage	Zeroization	Use
Password	Crypto-Officer and User passwords	Entered by Crypto-Officer or User	Never exits the module	NVRAM (stored in AES- 256 CBC encrypted format)	"	Used for authenticating the Crypto-Officer or User
Firmware Upgrade Authentication Key	Hardcoded with RSA 4096-bit public key	Embedded in pre-boot image	Never exits the module	Image in Flash memory	When overwritten with a new key	Used to verify RSA signature of items loaded through Firmware Upgrade utility

^{*} Note: The AES GCM key and IV are generated internally in cryptographic module using the module's Approved NIST SP 800-90A CTR DRBG and meet the requirements specified in IG A.5. The module follows the mechanism for IV generation defined in RFC 5288, and is used only within the TLS protocol and for the protocol versions specified in Section 4 of RFC 5288 which is TLS 1.2. The IV length is 96-bits.

2.8 EMI / EMC

iLO 5 was tested and found conformant to the EMI/EMC requirements specified by 47 Code of Federal Regulations, Part 15, Subpart B, Unintentional Radiators, Digital Devices, Class A (business use).

Self-Tests 2.9

Cryptographic self-tests are performed by the module when the module is first powered up and loaded into memory as well as when a random number or asymmetric key pair is created. The following sections list the selftests performed by the module, their expected error status, and the error resolutions.

Power-Up Self-Tests 2.9.1

iLO 5 performs the following self-tests at power-up to verify the integrity of the firmware images and the correct operation of the FIPS-Approved algorithms implemented in the module:

- Firmware integrity test using CRC-32 EDC verification of the kernel
- Firmware integrity test using CRC-32 EDC verification of the Dynamic Download
- Self-Tests in hardware
 - AES Encryption KAT⁶⁶
 - AES Decryption KAT
 - AES GCM Encryption KAT
 - AES GCM Decryption KAT
 - o SHA-512 KAT
- Self-Tests in firmware
 - AES Encryption KAT
 - AES Decryption KAT
 - AES GCM Encryption KAT
 - AES GCM Decryption KAT
 - Triple-DES Encryption KAT
 - Triple-DES Decryption KAT
 - RSA Signature Generation KAT
 - RSA Signature Verification KAT
 - DSA Pairwise Consistency Test
 - **ECDSA Pairwise Consistency Test**
 - ECDH Primitive "z" KAT
 - o SHA-1 KAT
 - HMAC with SHA-1, SHA-256, SHA-384, and SHA-512 KATs
 - DRBG KAT

The power-up self-tests can be performed at any time by power-cycling the module or via resetting the module.

⁶⁶ KAT -- Known Answer Test

2.9.2 Conditional Self-Tests

iLO 5 performs the following conditional self-tests (all in firmware):

- Continuous Random Number Generator Test (CRNGT) for the DRBG
- CRNGT for the NDRNG
- RSA Pairwise Consistency Test for key pair generation
- DSA Pairwise Consistency Test for key pair generation
- ECDSA Pairwise Consistency Test for key pair generation
- Firmware Load Test

2.9.3 Critical Functions Self-Tests

iLO 5 performs the following critical functions self-tests (all in firmware):

- SP 800-90A CTR DRBG Instantiate Health Test
- SP 800-90A CTR_DRBG Generate Health Test
- SP 800-90A CTR_DRBG Reseed Health Test
- SP 800-90A CTR DRBG Uninstantiate Health Test

2.9.4 Self-Test Failure Handling

Upon failure of any power-up self-test, conditional self-test, or critical function test, the module demonstrates the following behavior:

- On failure of firmware integrity test, the module reaches "Boot Error" state in which the module firmware does not get loaded and the module aborts. The only way to continue from this state is by rebooting or power-cycling the module. If the error still exists, then the module needs to be returned to the factory.
- In case of failure of any other self-test, the module reaches the "Critical Error" state and it disables all access to cryptographic functions and CSPs. All data outputs via data output interfaces are inhibited upon any self-test failure. A permanent error status will be relayed via the status output interface, which then is recorded as an entry to the module log file and also relayed via the status output interfaces. The module then zeroizes all the keys and CSPs, performs a reset to factory default settings, and performs a reboot. The factory default reset changes the FIPS mode flag, taking the module out of FIPS mode. The module will have to be reset in order to reconfigure the module to FIPS mode.

2.10 Mitigation of Other Attacks

This section is not applicable. The module does not mitigate any other attacks.

3. Secure Operation

The iLO 5 meets Level 1 requirements for FIPS 140-2. The sections below describe how to place and keep the module in the FIPS-Approved mode of operation.

3.1 Crypto Officer Guidance

The following sections provide the necessary step-by-step instructions for the secure installation of iLO 5 card as well as the steps necessary to configure the module for a FIPS-Approved mode of operation.

3.1.1 Initialization

The module is delivered in an uninitialized factory state, and require first-time configuration in order to operate in its FIPS-Approved mode. Access to the module shall be limited to the Crypto-Officer, and it is the CO's responsibility to configure the module into the FIPS-Approved mode. In case of iLO 5 deployed on a Synergy chassis, the locally connected Frame Link Module gains the initial access to iLO 5 and creates an CO account for its future use. This access is inhibited once the CO completes all initialization steps. iLO 5 contains a distinct FIPS-Approved mode of operation that can be set through the configuration of a single parameter during initial initialization. The following sections provide the necessary step-by-step instructions for the secure installation of the iLO 5 as well as the steps necessary to configure the module for a FIPS-Approved mode of operation.

Once the host platform is properly installed, the CO shall immediately configure iLO 5 to operate in FIPS-Approved mode; it is expected that iLO 5 will be configured for FIPS-Approved mode only once during initial host platform installation.

The following steps outline the procedure for configuring iLO 5 to run in FIPS-Approved mode:

- 1. Locate the iLO 5 Administrator name and password, located on the pull tab in the server's bezel.
- 2. Access the iLO 5 over the Ethernet port via WebUI (over TLS) using the IP address, e.g., https://192.168.1.4/.
- 3. Accept the certificate warning.
- 4. Use the credentials provided on the server's pull tab to log on.
- 5. Click on Security on the left.
- 6. Click on the Encryption tab.
- 7. In the Security Settings section's dropdown list, choose the FIPS option.
- 8. Click the Apply button.
- 9. Click the OK button on the pop-up warning.
- 10. iLO 5 will wipe the memories, reinitialize (zeroizing all existing keying material), and reboot.
- 11. Access the iLO again, using the first four steps outlined above.
- 12. Click on Administration on the left.
- 13. Put a check mark in the box next to Administrator under Local Users.
- 14. Click the Edit button.
- 15. Click on the checkbox for Change password.
- 16. Put in the New Password and Confirm Password textboxes, type the new Administrator password.
- 17. Click the Update User button.

- 18. Click on Security on the left.
- 19. Click on the SSL Certificate tab.
- 20. Click on the Customize Certificate button.
- 21. Please follow the steps provided in the section titled Obtaining and Importing an SSL Certificate of the HPE iLO 5 User Guide to configure the Certificate Signing Request (CSR) and import the new certificate.
- 22. Since the module resets, login again using the current username and password.
- 23. Click on Remote Console & Media on the left.
- 24. Click on the Security tab.
- 25. Change the IRC requires a trusted certificate in iLO option to Enabled.
- 26. Click the Apply button.
- 27. Click on Management on the left.
- 28. Use the **Service** section on the **Access Settings** page to disable SNMP (SNMP should not be used in the FIPS-Approved mode of operation. After disabling SNMP, the module explicitly restricts the use of SNMP once the configuration is complete.)
- 29. Under the "Security" menu, click on the "Access Settings" sub-menu. Ensure that "IPMI/DCMI over LAN" is disabled.

The module is now initialized and in FIPS-Approved mode.

3.1.2 Secure Management

A CO shall change the default password after first login. When a module is powered on for the first time, a CO shall configure the module for FIPS mode by following the steps mentioned in Section 3.1.1. Additionally, the following usage policies apply:

- IPMI⁶⁷ shall be disabled while the module is running in the FIPS-Approved mode of operation.
- SNMP shall be disabled while the module is running in the FIPS-Approved mode of operation.
- The CO shall not enter the DSA or RSA public keys manually while the module is operating in the FIPS-Approved mode.
- Remote administration must only be performed over the WebUI (HTTPS) and CLI (SSH) interfaces.

Once the module is provisioned into FIPS mode during initialization, the module will operate and remain in FIPS-Approved mode of operation unless the module enters an error state and performs a factory reset. The Crypto-Officer can also exit FIPS-Approved mode on demand by restoring the module to factory default.

To check the module's FIPS mode status, the CO can check the "iLO Event Log" tab, under the "Information" page. In the "Description" column of the event log, the text "FIPS Mode Enabled." should appear at the time when the iLO was powered on or the status was changed to enable it.

3.2 User Guidance

The User does not have the ability to configure sensitive information on the module, with the exception of their password. The User must be diligent to pick strong passwords and must not reveal their password to anyone. Additionally, the User should be careful to protect any secret/private keys in their possession, if any.

⁶⁷ IPMI – Intelligent Platform Management Interface

The module requires 256-bits of entropy to generate a seed for the RNG. 512 bytes of entropy are stored in NVRAM and continuously replenished via the 800 MHz⁶⁸ clock.

Any firmware loaded into this module that is not shown on the module certificate is out of the scope of this validation and requires a separate FIPS 140-2 validation.

3.3 Module's Mode of Operation

On the first power-up, the module is not configured in its Approved mode. During initial configuration and setup, the module is explicitly set to operate in the FIPS-Approved mode of operation. An authorized operator can access the module via the WebUI or the CLI to determine the operational mode of the module. Detailed steps and procedure required to determine whether the module is operating in FIPS-Approved mode can be found in the "Enabling FIPS Mode" section of the *iLO User's Guide*, which is available at http://h20566.www2.hpe.com/hpsc/doc/public/display?sp4ts.oid=1010145467&docLocale=en_US&docId=emr_na-a00018324en_us.

3.4 Non-FIPS-Approved Mode

When initialized and configured according to the Crypto-Officer guidance in this Security Policy, the modules do not support a non-FIPS-Approved mode of operation.

_

4. Acronyms

Table 10 provides definitions for the acronyms used in this document.

Table 10 - Acronyms

Acronym	Definition
AES	Advanced Encryption Standard
ANSI	American National Standards Institute
API	Application Programming Interface
ASIC	Application Specific Integrated Circuit
ASM	Advanced Server Management
CA	Certificate Authority
CAC	Common Access Card
CAN	Controller Area Network
СВС	Cipher Block Chaining
СВІТ	Conditional Built In Test
CDH	Cofactor Diffie Hellman
CFB	Cipher Feedback
CIF	Common Interface Format
CLI	Command Line Interface
CMVP	Cryptographic Module Validation Program
CNSA	Commercial National Security Algorithm
со	Crypto-Officer
CRNGT	Continuous Random Number Generator Test
CSE	Communications Security Establishment
CSP	Critical Security Parameter
CSR	Certificate Signing Request
CTR	Counter
CVL	Component Validation List
DDR3	Double Data Rate v3
DES	Data Encryption Standard
DH	Diffie Hellman
DP	Display Port
DRBG	Deterministic Random Bit Generator
DSA	Digital Signature Algorithm
DVI	Digital Visual Interface

Acronym	Definition
EC	Elliptical Curve
ECB	Electronic Codebook
ECC	Elliptic Curve Cryptography
ECDSA	Elliptical Curve Digital Signature Algorithm
EMC	Electromagnetic Compatibility
EMI	Electromagnetic Interference
ESKM	Enterprise Secure Key Manager
eSPI	Enhanced Serial Peripheral Interface
FIPS	Federal Information Processing Standard
GCM	Galois Counter Mode
GMII	Gigabit Media Independent Interface
GPC	General Purpose Computer
GPIO	General Purpose Input Output
НА	High Availability
НМАС	(Keyed-) Hash Message Authentication Code
HP	Hewlett Packard
HTTPS	Hypertext Transfer Protocol Secure
I2C	Inter-Integrated Circuit
iLO	Integrated Lights-Out
IPMI	Intelligent Platform Management Interface
IT	Information Technology
JTAG	Joint Test Action Group
KAT	Known Answer Test
КВ	Kilobyte
KBKDF	Key Based Key Derivation Function
KDF	Key Derivation Function
KVM	Keyboard, Video, Mouse
LPC	Low Pin Count
МВ	Megabyte
MD	Message Digest
MHz	Megahertz
MII	Media Independent Interface
NDRNG	Non-Deterministic Random Number Generator
NIC	Network Interface Card
NIST	National Institute of Standards and Technology
NVLAP	National Voluntary Laboratory Accreditation Program

HPE iLO 5 Cryptographic Module

Acronym	Definition
NVRAM	Non-Volatile Random Access Memory
OFB	Output Feedback
ORCA	Option ROM Configuration for Arrays
OS	Operating System
PBIT	Power up Built In Test
PCle	Peripheral Component Interconnect Express
PECI	Platform Environmental Control Interface
PIV	Personal Identification Verification
PKI	Public Key Infrastructure
POST	Power On Self Test
PRNG	Pseudo Random Number Generator
PS/2	Personal System/2
RAM	Random Access Memory
RBSU	ROM-Based Set-up Utility
REST	Representational State Transfer
RMII	Reduced Media Independent Interface
RNG	Random Number Generator
ROM	Read-Only Memory
RSA	Rivest Shamir and Adleman
SD	Secure Digital
SDRAM	Synchronous Dynamic Random Access Memory
SHA	Secure Hash Algorithm
SIM	System Insight Manager
SMBus	System Management Bus
SNMP	Simple Network Management Protocol
SP	Special Publication
SPI	Serial Peripheral Interface
SSH	Secure Shell
SSO	Single Sign On
ТСР	Transmission Control Protocol
TDES	Triple Data Encryption Standard
TLS	Transmission Layer Security
UART	Universal Asynchronous Receiver/Transmitter
USB	Universal Serial Bus
VGA	Video Graphics Array
WebUI	Web User Interface

HPE iLO 5 Cryptographic Module

Acronym	Definition
XML	Extensible Markup Language

Prepared by: Corsec Security, Inc.

13921 Park Center Road, Suite 460 Herndon, VA 20171 United States of America

> Phone: +1 703 267 6050 Email: <u>info@corsec.com</u> <u>http://www.corsec.com</u>