

Neopost Postal Security Device (PSD)

Security Policy

Version 8.0

This document is non-proprietary. It may be reproduced or transmitted only in its entirety without revision.

© Neopost Technologies, S.A. | Version 8.0| Page 0 sur 17

Contents

Cor	itents	1
Figu	ıres	1
1	INTRODUCTION	2
2	CRYPTOGRAPHIC MODULE SPECIFICATION	2
3	SENSITIVE SECURITY PARAMETERS MANAGEMENT	7
4	PORTS AND INTERFACES	. 10
5	ROLES, SERVICES AND AUTHENTICATION	. 11
6	OPERATIONAL ENVIRONMENT	. 13
7	PHYSICAL SECURITY	. 13
8	SELF-TESTS	. 14
9	DESIGN ASSURANCE	. 15
10	MITIGATION OF OTHER ATTACKS	. 15
11	GLOSSARY	. 15
Rev	ision History	. 16

Figures

-igure 1 – Neopost Postal Security Device	2
-igure 2 – Neopost PSD Configuration	3
Figure 3 – FIPS 140-2 Security Level	3
-igure 4 – FIPS Approved Algorithms	5
-igure 5 – FIPS Allowed Security Functions	6
-igure 6 – Non-Approved Security Functions	6
-igure 7 – Critical Security Parameters	7
-igure 8 – TLS v1.2 Handshake Protocol Critical Security Parameters	8
-igure 9 – TLS v1.2 Record Protocol Critical Security Parameters	8
-igure 10 – Public Security Parameters	9
-igure 11 – Interface	10
-igure 12 – Roles, Services, Operators	12

1 INTRODUCTION

This document forms a Cryptographic Module Security Policy for the Neopost Technologies, S.A. (Neopost) Postal Security Device (PSD) under the terms of the FIPS 140-2 validation. This document contains a statement of the security rules under which the Neopost PSD operates.

2 CRYPTOGRAPHIC MODULE SPECIFICATION

2.1 Neopost PSD Overview

The Neopost Technologies, S.A. (Neopost) Postal Security Device (PSD) is a cryptographic module embedded within the postal franking machines. The Neopost PSD performs all franking machine's cryptographic and postal security functions and protects the Critical Security Parameters (CSPs) and Postal Relevant Data from unauthorized access.

The Neopost PSD (Figure 1) is a multi-chip embedded cryptographic module enclosed within a hard, opaque, plastic enclosure encapsulating the epoxy potted module which is wrapped in a tamper detection envelope with a tamper response mechanism. This enclosure constitutes the cryptographic module's physical boundary. The Neopost PSD was designed to securely operate when voltage supplied to the module is between +5V and +17V and the environmental temperature is between -30°C and 84°C.

Figure 1 – Neopost Postal Security Device

2.2 Neopost PSD Configuration

Neopost PSD (Crypt	Neopost PSD (Cryptographic Module)				
Hardware P/N	Hardware P/N				
Firmware P/N	Firmware P/N				
Firmware Versions	Firmware Versions				
	ECDSA	(Cert. #517)	A0038110A		
	AES	(Cert. #2875)	A0038111A		
	SHS	(Cert. #2416)	A0038112A		
NIST Approved	AES	(Cert. #2874)	A0038113A		
Security Functions	CVL	(Cert. #310)	A0038114A		
	RSA	(Cert. #1513)	A0038115A		
	DRBG	(Cert. #1835)	A0038116B		
	HMAC	(Cert. #1813)	A0038118A		

Figure 2 – Neopost PSD Configuration

2.3 FIPS Security Level Compliance

The Neopost PSD is designed to meet the overall requirements applicable for Level 3 of FIPS 140-2.

Security Requirements	Level
Cryptographic Module Specification	3
Cryptographic Module Ports and Interfaces	3
Roles, Services and Authentication	3
Finite State Model	3
Physical Security	3 + EFP/EFT
Operational Environment	N/A
Cryptographic Key Management	3
EMI/EMC	3
Self-Tests	3
Design Assurance	3
Mitigation of Other Attacks	3

Figure 3 – FIPS 140-2 Security Level

2.4 Security Industry Protocols

The cryptographic module implements the TLS v1.2 protocol and uses only one cipher suite (TLS-DHE-RSA-WITH-AES-128-CBC-SHA256). The TLS protocol is composed of TLS Handshake protocol (used for mutual authentication and TLS pre-master secret establishment) and TLS Record protocol (used for application data confidentiality and integrity). No parts of this protocol, other than the KDF, have been tested by the CAVP and CMVP.

2.5 Modes of Operation

The module supports both Approved and non-Approved modes of operation. When initialized for countries that utilize only Approved security functions, e.g. the US or Belgium, the module is said to be in an Approved mode of operation. The module returns an explicit indicator showing whether the module is in an Approved mode or non-Approved mode via the Get Status command (Read Status Data). This returns either a 1 or 0 for Approved mode or non-Approved mode respectively.

In order to change modes of operation the module must be initialized for a specific country. Therefore, it is impossible to share CSPs between modes of operation.

The Neopost PSD supports the following FIPS Approved security functions in Approved Mode of Operation:

CAVP Cert.	Algorithm	Standard	Modes/Methods	Key Length, Curves or Moduli	Usage
2874	AES (CBC)	FIPS 197	CBC	128	 Encryption/Decryption of: CSPs for storage within the module Data encryption/decryption using TLS v1.2
2875	AES CMAC	FIPS 197 SP 800-38B	AES	128	Indicia Authentication
Vendor affirmed	СКБ	SP 800-133			The unmodified output of the DRBG is used for symmetric and asymmetric key generation
1835	CTR-DRBG	SP 800-90A	AES	128	Key generation
310	KDF (CVL)	SP 800-135	SHA-256		TLS KDF function
517	ECDSA	FIPS 186-4	SHA-256	P-224	Digital Signature Generation (Indicia Authentication)
1813	HMAC-SHA-1, HMAC-SHA-256	FIPS 198-1	(Key Sizes Ranges Tested: KS <bs)< td=""><td>160, 256</td><td>TLS messages authentication, Indicia Authentication</td></bs)<>	160, 256	TLS messages authentication, Indicia Authentication
2416	SHS	FIPS 180-4	SHA-1, SHA-256	N/A	Hashing algorithm used for:HMAC GenerationDigital signatures
1513	RSA	FIPS 186-4	SHA-256 PKCS1 v1.5	2048	Key Generation Signature generation/ Signature verification of X509 certificates used by TLS Handshake protocol, Signature verification of signed files imported into the module
1513	RSA	FIPS 186-2	SHA-1 PKCS1_V1_5	1536	Digital Signature Verification (Legacy Use Only)

Figure 4 — FIPS Approved Algorithms

The Neopost PSD supports the following FIPS Allowed security functions in Approved Mode of Operation:

Algorithms	Caveat	Use
Diffie-Hellman	Provides 112 bits of encryption strength	Key Establishment
RSA Key Wrapping	Provides 112bits of encryption strength	Key Establishment
NDRNG		Seeding for the DRBG

Figure 5 – FIPS Allowed Security Functions

Some Postal Authorities/Standards may require implementation of non-FIPS Approved security functions. For these specific firmware configurations, the Neopost PSD supports the following non-FIPS Approved security functions:

Algorithms	Use
SHS (SHA-1)	Hashing algorithm used for digital signature generation process: ECDSA P192 SigGen – non- compliant, cryptographic strength less than 112-bits (Postal Indicia Service – Canada Only)
ECDSA (P-192) Digital Signature Generation – non-compliant, cryptographic strength less than 112-bits (I Indicia Service – Canada Only)	
RSA (1024) PKCS1 v1.5	Key Wrapping – non-compliant, cryptographic strength less than 112-bits (Postal Core Services – Germany Only)

Figure 6 – Non-Approved Security Functions

3 SENSITIVE SECURITY PARAMETERS MANAGEMENT

3.1 Critical Security Parameters

Name	Algorithm/Size	Description	Generatio n	Storage	Distribution	Zeroization
Master Secret Key	AES CBC 128 bits	Internally encrypt & decrypt PSDs critical security parameters	Internally: DRBG	Plaintext in volatile memory protected by tamper response mechanism	N/A	 Invocation of "Zeroize CSPs" service; Breach of flex circuit
DRBG - Key	CTR DRBG using AES 128	Internal state of DRBG.	Internally: NDRNG	Plaintext in volatile memory protected by tamper response mechanism	N/A	triggers "Zeroize CSPs" service; - PSD temperature over 84°C triggers "Zeroize CSPs" service
DRBG -V	CTR DRBG using AES 128	Internal state of DRBG.	Internally: NDRNG	Plaintext in volatile memory protected by tamper response mechanism	N/A	(EFP measure); - Failure of a self-test triggers "Zeroize CSPs" service;
TLS Communicatio n Private Key	RSA PKCS #1 v1.5 2048 bits	Authenticates messages and data output from the PSD during TLS Handshake protocol.	Internally: FIPS186-4 KEYGEN	Encrypted (w/Master Secret)	N/A	Rendered unusable by zeroization of "Master Secret"
Indicia Authentication Secret Key	HMAC-SHA-1 (160 bits key) or HMAC-SHA-256 (256 bits key) or CMAC AES 128	Indicia authentication (dependant on country configuration)	Internally: DRBG	Encrypted (w/Master Secret)	RSA Wrapping (w/ Key Encapsulati on Public Key)	Rendered unusable by zeroization of "Master Secret"
Indicia Authentication Private Key	ECDSA P224 or ECDSA P192 ¹	Indicia authentication (dependant on country configuration)	Internally: DRBG	Encrypted (w/Master Secret)	N/A	Rendered unusable by zeroization of "Master Secret"
m-secret ²	N/A	DPAG secret information	Externally	Encrypted (w/Master Secret)	RSA Wrapping (w/m- secret Encapsulati on Public Key)	Rendered unusable by zeroization of "Master Secret"
m-secret Encapsulation Key	RSA PKCS #1 v1.5 1024 bits ³	Encapsulation of m-secret from DPAG to PSD	Internally: DRBG	Encrypted (w/Master Secret)	N/A	Rendered unusable by zeroization of "Master Secret"

Figure 7 – Critical Security Parameters

¹ This key is non-compliant because it offers less than 112 bits of security strength and is not used in the approved mode of operation

 $^{^2}$ This CSP provides less than 112 bits of security strength and is not used in approved mode of operation

³ This key is non-compliant because it offers less than 112 bits of security strength and is not used in the approved mode of operation

Name	Algorithm/Size	Description	Generation	Storage	Distribution	Zeroization
DH private key (TLS Handshake)	Diffie-Hellman 224 bits	Diffie-Hellman private key used to agree TLS pre- master	Internally: DRBG	N/A	N/A	Immediately after use (i.e. TLS-pre- master key establishment)
TLS pre-master key	256 bytes	Pre-master secret	DH Key Agreement	N/A	N/A	Immediately after use
TLS master key	48 bytes	Used to derive the keys used by TLS Record Protocol (TLS Communication Secret Keyset)	Approved TLS KDF	N/A	N/A	TLS session closure

Figure 8 – TLS v1.2 Handshake Protocol Critical Security Parameters

Name	Algorithm/Size	Description	Generation	Storage	Distribution	Zeroization
TLS Communication Secret Keyset (TLS Record Protocol Keys)	AES CBC: 2 x 128 bits; HMAC-SHA-256: 2 x 256 bits	Encrypt & Decrypt & Integrity TLS Communication	Approved TLS KDF	N/A	N/A	TLS session closure

Figure 9 – TLS v1.2 Record Protocol Critical Security Parameters

The CSPs are protected from unauthorized disclosure, modification and substitution.

The plaintext CSPs are stored in the tamper protected memory. All other CSPs are stored encrypted by the Master Secret Key.

The Neopost PSD detects data corruption of the value held for any particular CSP by the incorporation of 16-bit error detection code. Any CSPs access failure causes the zeroization of tamper protected memory.

The Neopost PSD never output the CSPs in plaintext.

3.2 Public Security Parameters

Name	Algorithm/Size	Description	Generation	Storage
Root Public Key (Neopost Root Certificate)	RSA PKCS #1 v1.5 2048 bits	Signed X509 Certificate of the current Root Public key used for the verification of authenticated messages input from the Neopost server	N/A	Plaintext
Previous Root Public Key (Neopost Previous Root Certificate)	RSA PKCS #1 v1.5 2048 bits	Signed X509 Certificate of the next Root Public key used for the verification of authenticated messages input from the Neopost server.	N/A	Plaintext
Region Public Key (Neopost Region Certificate)	RSA PKCS #1 v1.5 2048 bits	Signed X509 Certificate of the current Region Public key used for the verification of authenticated messages input from the Neopost server.	N/A	Plaintext
TLS Communication Public Key (Neopost PSD Certificate)	RSA PKCS #1 v1.5 2048 bits	Used to authenticate messages and data output from the Neopost PSD (TLS Handshake protocol). The key resides in a signed X509 certificate used for authentication the cryptographic module to the Neopost server.	FIPS186-4 RSA KEYGEN	Plaintext
TLS Diffie-Hellman Public Parameters	Diffie-Hellman 2048 bits	Diffie-Hellman parameters (p, g, Y) used during TLS handshake to agree upon a TLS premaster secret.	N/A	Plaintext
Indicia Authentication Public Key	ECDSA P224 or ECDSA P192 ⁴	Indicia authentication	Internal DRBG	Plaintext
Key Encapsulation Public Key	RSA PKCS #1 v1.5 2048 bits	Encrypts the Neopost PSD Indicia Secret Keys before sending to the Neopost server	N/A	Plaintext
m-secret Encapsulation Public Key ⁵	RSA PKCS #1 v1.5 1024 bits	Encrypts the "m-secret" before sending it to the PSD	N/A	Plaintext

Figure 10 – Public Security Parameters

All public keys are protected from unauthorized modification and substitution.

3.3 Status Indicator

A status indicator will be output by the Neopost PSD via the status output interface. It consists of a unique text message which will be displayed on the franking machine User Interface.

The following module states are indicated:

- CSPs zeroed
- Private/Public key pairs invalid (module not initialized)
- Tamper mechanism tampered
- Power Up tests error
- DRBG error
- High temperature detected error
- Conditional test error
 - ECDSA Pairwise Consistency

⁴ This key is non-compliant because it offers less than 112-bit of security strength and is not used in the approved mode of operation

⁵ This key is non-compliant because it offers less than 112-bit of security strength and is not used in the approved mode of operation

- RSA Pairwise Consistency
- DH Pairwise Consistency Tests
- FIPS Approved Mode

The absence of one of these messages indicates that the module is in a 'ready' state.

4 PORTS AND INTERFACES

To communicate with the franking machine's base the module provides a physical 10-pin serial connector with five logical interfaces:

- power interface
- data input interface
- data output interface
- control input interface
- status output interface

PIN	Description	Interface Type
1	Ground	
2	Ground	
3	RX	Data Input/Control Input
4	RX	Data Input/Control Input
5	ТХ	Data Output/Status Output
6	ТХ	Data Output/Status Output
7	Power (5V – 17V)	Power
8	Power (5V – 17V)	Power
9	Ground	
10	Ground	

Figure 11 – Interface

The data output interface and cryptographic operations are inhibited during zeroization, key generation, self-tests and error states.

No plaintext CSPs are input or output from the module through this serial interface.

5 ROLES, SERVICES AND AUTHENTICATION

The Neopost PSD supports authorized roles for operators and corresponding services within each role. In order to control access to the module the Neopost PSD employs identity-based authentication mechanism. The Neopost PSD supports the following operators:

- **Neopost Administrator** (Field Server): The Crypto-Officer can assume the following Crypto-Officer roles:
 - Postal User
 - Field Crypto-Officer
 - o Postal Crypto-Officer
 - o Root
 - Region

The Neopost Administrator authenticates to the module via digitally signed X509 certificates using the TLS v1.2 Handshake protocol.

- **Customer** (Base): is the end user of the cryptographic module and can assume one User Role: the Printing Base role. The Neopost Administrator authenticates to the module via digitally signed X509 certificates using the TLS v1.2 Handshake protocol.
- **R&D File Signer Tool**: assumes the R&D Signer role and is authenticated via signed X509 certificates. This role allows the Neopost PSD to authenticate and use additional external files.
- **Expertise Tool:** assumes an unauthenticated User Role.

OPERATOR	ROLES	SERVICES	CSP ACCESS MODE
Neopost Administrator	Postal User	Postal Core Services ⁶	(Read) m-secret Encapsulation Key (Germany only)
			NA (All other configurations)
		Read Status Data	NA
		Read Part Number	NA
	Field Crypto-Officer	Generate PKI Key	(Write/Read) Master Secret Key, DRBG parameters (V, Key), TLS Communication private key & secret key
		Get/Set PKI Certificate	(Write) TLS Communication private key
		Read Status Data	NA
		Read Part Number	NA
	Postal Crypto-Officer	Generate Stamp Key ⁷	(Write) Indicia Authentication Key(s) (Secret or Private)
		Set Stamp Info	NA
	Root	Verify Region Certificate	NA
		Verify Root Certificate	NA
	Region	Verify Device Certificate	NA
Customer	Printing Base (User)	Initiate/End Postal Core Connection	(Write) TLS Communication private key (Write) TLS Communication secret keys

⁶ Non-Approved when configured for Germany.

⁷ This service is considered non-Approved if Indicia Authentication Key is of type ECDSA P192 (non-compliant). This service is not available when configured for Germany.

		Initiate/End Rekey Connection	(Write) TLS Communication private key (Write) TLS Communication secret keys
		Postal Indicia ⁸	(Read) Indicia Authentication Key
		Other Base Services	NA
		Read Status Data	NA
		Read Part Number	NA
File Signer Tool	R&D Signer	Verify Files	NA
Expertise Tool	Unauthenticated User role	Read Status Data	NA
		Read Part Number	NA
		Zeroize CSP	(Zeroize) Master Secret Key and DRBG internal status (V, Key)
All	All	Invoke Tests	NA

Figure 12 – Roles, Services, Operators

⁸ This service is considered non-Approved if Indicia Authentication Key is of type ECDSA P192 (non-compliant).

5.1 Operator Authentication

The mutual authentication between the Customer / Neopost Administrator and the Neopost PSD is based on the TLS v1.2 Handshake Protocol using the "TLS-DHE-RSA" cryptographic suite, with 2048 RSA key length for authentication.

- The RSA key is 2048 bits and is considered to have 112-bits of strength. For any attempt to use the authentication mechanism, the probability that a random attempt will succeed or a false acceptance will occur will be at least 1 in 2¹¹² (equivalent to less than 2 x 10⁻³⁴). This is considerably more difficult to break than the 1 in 1,000,000 requirement.
- The time necessary to generate an authentication is 100ms; therefore 600 attempts could occur in a one minute period. For multiple attempts to use the authentication mechanism during a one minute period the probability that a random attempt will be accepted or that a false acceptance will occur will be 1 in 2¹¹² multiplied by 600 maximum number of attempts in one minute (equivalent to 1 x 10⁻³¹). This is considerably more difficult to break than the 1 in 100,000 requirement.

6 OPERATIONAL ENVIRONMENT

The cryptographic module's operational environment is non-modifiable.

7 PHYSICAL SECURITY

The Neopost PSD is designed to meet FIPS 140-2 Level 3 + EFP/EFT Physical Security requirements.

The Neopost PSD defined as a multi-chip embedded cryptographic module includes a non-removable enclosure that comprises a hard epoxy resin with an outer plastic casing. The non-removable enclosure and epoxy resin was tested and verified to be effective within the environmental operational range of the module (environmental temperature between -30°C and 84°C). No assurance is provided for Level 3 hardness conformance at any temperature outside this range.

The Neopost PSD employs a tamper detection envelope designed to detect penetration attempts, and a response mechanism that will zeroize all plaintext Critical Security Parameters.

The outer plastic casing is defined as the cryptographic boundary of the cryptographic module. It is inspected for tampering each time the module is returned to Neopost manufacturing or for servicing.

The module mitigates environmental attacks by employing a high temperature fuse for the EFP circuitry such that when the module temperature exceeds 84°C, the module will zeroize all plaintext CSPs.

8 SELF-TESTS

The Neopost PSD performs power up and conditional self-tests. The Neopost PSD inhibits the data output interface during the self-tests. The module can exercise the power-up self-tests, from within any role, at any time by power-cycling the module.

8.1 Power Up Self-Tests

8.1.1 Cryptographic Algorithm Tests

Upon power-up the Neopost PSD performs the following cryptographic algorithms self-tests without operator intervention:

- SHA-1 KAT
- SHA-256 KAT
- RSA encrypt KAT
- RSA decrypt KAT
- RSA sign KAT
- RSA signature verify KAT
- ECDSA sign KAT
- ECDSA signature verification KAT
- AES Encrypt KAT
- AES Decrypt KAT
- AES CMAC KAT
- HMAC (SHA-1) KAT
- HMAC (SHA-256) KAT
- Diffie-Hellman KAT
- DRBG KATs (Instantiate, Generate, Reseed)
- TLS-KDF KAT

If a cryptographic algorithms self-test fails, the Neopost PSD enters in error state and zeroizes all plaintext CSPs.

8.1.2 Firmware Integrity Tests

The Neopost PSD tests the contents of its program memory area at power up by calculating the hash (SHA-256) of the contents and comparing the result with a known answer. If the test fails, the Neopost PSD enters an error state and zeroizes all plaintext CSPs.

8.1.3 CSP Integrity Tests (Critical Function Test)

The Neopost PSD tests the accessibility and validity of all keys and CSP values in non-volatile memory at power up. If any are not accessible (i.e. device failure) or contain erroneous data (16 bit EDC fails) then the Neopost PSD enters an error state and zeroizes all plaintext CSPs.

8.2 Conditional Self-Tests

The PSD performs the following conditional self-tests:

- RSA Pairwise Consistency Tests
- ECDSA Pairwise Consistency Tests
- DH Pairwise Consistency Tests
- NDRNG Continuous Test
 - Repetition Count Test (ref. SP 800-90B)
 - Adaptive Proportion Test (ref. SP 800-90B)
- DRBG Continuous test

8.3 Other-Tests

The Neopost PSD also performs the following tests:

- RAM Integrity test
- Tamper Detection test

9 DESIGN ASSURANCE

Neopost Technologies is using the Windchill configuration management system to manage product configurations (including the cryptographic module).

All firmware implemented within the cryptographic module has been implemented using a high-level language (C), except for the limited use of assembly language where it was essential for performance.

10 MITIGATION OF OTHER ATTACKS

The module employs a tamper detection envelope designed to detect penetration attempts and a response mechanism that zeroizes all plaintext CSPs.

11 GLOSSARY

Abbreviation	Description	
AES	Advanced Encryption Standard	
CMAC	Message Authentication Code	
CSP	Critical Security Parameter	
DH	Diffie-Hellman key exchange (DHE Diffie Hellman Ephemeral)	
DRBG	Deterministic Random Bit Generator	
ECDSA	Elliptical Curve Digital Signature Algorithm	
EFP/EFT	Environmental Failure Protection /Testing	
EMI/EMC	Electromagnetic Interference/Compatibility	
FIPS	Federal Information Processing Standard	
НМАС	Hashed Message Authentication Code	
NIST	National Institute of Standards and Technology	
NDRNG	Non-deterministic Random Number Generator	
PSD	Postal Security Device	
РКІ	Public Key Infrastructure	
RNG	Random Number Generator	
RSA	Rivest Shamir Adleman	
SHA	Secure Hash Algorithm	
SHS	Secure Hash Standard	
TLS	Transport Layer Security	

Revision History

Version	Date	Revision Description	
0.1	11/04/2014	Original document	
1.0	22/08/2014	Update after review with Penumbra Security	
2.0	28/08/2014	[Penumbra]Added additional tests performed (Ram integrity, Tamper test)	
3.0	16/03/2015	[Penumbra]Added clarifications per CMVP comments	
4.0	07/09/2017	[Neopost]Updated document template (new brand)	
5.0	10/10/2017	[Neopost] Added new hardware and firmware version; increased RSA Key size to 2048 (Key Wrapping) for Belgium; added approved FIPS mode	
6.0	14/12/2017	[Penumbra] Updated DRBG certificate; added clarifications	
7.0	22/03/2018	[Penumbra] Specified CKG; added minor clarifications	
8.0	23/05/2018	[Penumbra] Specified additional firmware version	