
24.08.20 
RSA® BSAFE® Crypto-J JSAFE and JCE 
Software Module 6.2.4 Security Policy Level 1   

This document is a non-proprietary security policy for the RSA BSAFE Crypto-J 
JSAFE and JCE Software Module 6.2.4 (Crypto-J JSAFE and JCE Software Module) 
security software.

This document may be freely reproduced and distributed whole and intact including 
the copyright notice.

Note: Refer to the Change Summary for the location of the latest change to 
this document.

Contents:
Preface ............................................................................................................ 2

Terminology ............................................................................................. 2

Document Organization ......................................................................... 3

1 The Cryptographic Module ......................................................................... 4

1.1 Introduction ......................................................................................... 4

1.2 Module Characteristics ..................................................................... 4

1.3 Module Interfaces .............................................................................. 9

1.4 Roles, Services and Authentication .............................................. 10

1.5 Cryptographic Key Management ................................................... 21

1.6 Cryptographic Algorithms ............................................................... 24

1.7 Self-tests ........................................................................................... 27

2 Secure Operation of the Module .............................................................. 29

2.1 Module Configuration ...................................................................... 29

2.2 Security Roles, Services and Authentication Operation ............ 30

2.3 Crypto User Guidance .................................................................... 30

2.4 Crypto Officer Guidance ................................................................. 38

2.5 Operating the Cryptographic Module ............................................ 39

3 Acronyms .................................................................................................... 40

4 Change Summary ...................................................................................... 43
August 2020 Copyright © 2020 Dell Inc. or its subsidiaries. All rights reserved. 1



Preface

This document is a non-proprietary security policy for the Crypto-J JSAFE and JCE 

Software Module from Dell Technologies1. 

This security policy describes how the Crypto-J JSAFE and JCE Software Module 
meets the Level 1 security requirements of FIPS 140-2.

Federal Information Processing Standards Publication 140-2 - Security Requirements 
for Cryptographic Modules (FIPS 140-2) details the U.S. Government requirements 
for cryptographic modules. More information about the FIPS 140-2 standard and 
validation program is available on the NIST website.

Terminology

In this document, the term Crypto-J JSAFE and JCE Software Module denotes the 
Crypto-J JSAFE and JCE Software Module 140-2 Security Level 1 validated 
Cryptographic Module.

The Crypto-J JSAFE and JCE Software Module is also referred to as:

• The Cryptographic Module

• The Java Crypto Module (JCM)

• The module.

Document Organization

This document explains the Crypto-J JSAFE and JCE Software Module features and 
functionality relevant to FIPS 140-2, and contains the following sections:

• This section, Preface provides an overview and introduction to the Security 
Policy.

• The Cryptographic Module, describes the module and how it meets the FIPS 
140-2 Security Level 1 requirements.

• Secure Operation of the Module, addresses the required configuration for the FIPS 
140-2 mode of operation.

• Acronyms, lists the definitions for the acronyms used in this document.

With the exception of the Non-Proprietary RSA BSAFE Crypto-J JSAFE and JCE 
Software Module Security Policy documents, the FIPS 140-2 Security Level 1 
validation submission documentation is proprietary to Dell Technologies and is 
releasable only under appropriate non-disclosure agreements. For access to the 
documentation, please contact Dell Technologies.

1Dell Technologies has acquired the BSAFE product line, which is now referred to as Dell BSAFE. 
Future module versions will be renamed to reflect this change.
2 Preface

http://csrc.nist.gov/index.html


1 The Cryptographic Module

This section provides an overview of the module, and contains the following topics:

• Introduction 

• Module Characteristics 

• Module Interfaces 

• Roles and Services 

• Cryptographic Key Management 

• Cryptographic Algorithms 

• Self-tests.

1.1 Introduction

More than a billion copies of the Dell BSAFE technology are embedded in today's 
most popular software applications and hardware devices. Encompassing one of the 
most widely-used and rich set of cryptographic algorithms as well as secure 
communications protocols, Dell BSAFE software is a set of complementary security 
products relied on by developers and manufacturers worldwide.

The Dell BSAFE™ Crypto-J (Crypto-J) software library relies on the JCM library. It 
includes a wide range of data encryption and signing algorithms, including AES, 
Triple-DES, the RSA Public Key Cryptosystem, the Elliptic Curve Cryptosystem, 
DSA, and the SHA-1 and SHA-2 message digest routines. Its software libraries, 
sample code and complete standards-based implementation enable near-universal 
interoperability for your networked and e-business applications. 

1.2 Module Characteristics

The JCM is classified as a FIPS 140-2 multi-chip standalone module. As such, the 
JCM is tested on particular operating systems and computer platforms. The 
cryptographic boundary includes the JCM running on selected platforms that are 
running selected operating systems.

The JCM is validated for FIPS 140-2 Security Level 1 requirements. 
The Cryptographic Module 3



The following table lists the certification levels sought for the JCM for each section of 
the FIPS 140-2 specification.

The JCM is packaged in a Java Archive (JAR) file containing all the code for the 
module.

The JCM API of the module is provided in the jcmFIPS.jar and 
jcmandroidfips.jar files.

1.2.1 Laboratory Validated Operating Environments

For FIPS 140-2 validation, the JCM is tested by an accredited FIPS 140-2 testing 
laboratory on the following operating environments:

• Google™ ART™ JRE 8.0 on Google Android™ 7.1.2 ARMv8 (64-bit) running 
on Google Nexus™ 5x with a Qualcomm® Snapdragon™ processor

• Oracle® JRE 8.0 on Microsoft® Windows® 10 (64-bit) running on 
Dell™ OptiPlex™ with an Intel® Core™ i5 processor.

• OpenJDK 8.0 on CentOS 7.3 (64-bit) running on Dell PowerEdge™ with an Intel 
Xeon® processor.

Table 1 Certification Levels

Section of the FIPS 140-2 Specification Level

Cryptographic Module Specification 1

Cryptographic Module Ports and Interfaces 1

Roles, Services, and Authentication 1

Finite State Model 1

Physical Security N/A

Operational Environment 1

Cryptographic Key Management 1

EMI/EMC 1

Self-Tests 1

Design Assurance 3

Mitigation of Other Attacks 1

Overall 1
4 The Cryptographic Module



1.2.2 Affirmation of Compliance for other Operating 
Environments

Affirmation of compliance is defined in Section G.5, “Maintaining Validation 
Compliance of Software or Firmware Cryptographic Modules,” in Implementation 
Guidance for FIPS PUB 140-2 and the Cryptographic Module Validation Program. 
Compliance is maintained in all operational environments for which the binary 
executable remains unchanged. Specifically, Dell Technologies affirms compliance 
for the following operational environments:

• Apple®

– Mac OS® X 10.6+

• x86 (32-bit) Apple JDK 8.0

• x86_64 (64-bit) Apple JDK 8.0.

• Canonical™

– Ubuntu™ 16.04 Server

• x86 (32-bit) IBM JDK 8.0, OpenJDK 8u, Oracle JDK 8.0, 
Oracle JRockit 6.0

• x86_64 (64-bit) IBM JDK 8.0, OpenJDK 8u, Oracle JDK 8.0 and 9.0.1, 
Oracle JRockit 6.0.

• Google®

– Android™ 4.4.x

• ARM® v7 (32-bit) Android JDK 7.0

• x86 (32-bit) Android JDK 7.0.

– Android 5.x

• ARM v7 (32-bit) Android JDK 7.0

• x86 (32-bit) Android JDK 7.0.

– Android 6.x

• ARM v7 (32-bit) Android JDK 7.0

• ARM v8 (32-bit) Android JDK 7.0

• ARM v8 (64-bit) Android JDK 7.0

• x86 (32-bit) Android JDK 7.0.

– Android 7.x

• ARM v7 (32-bit) Android JDK 7.0

• ARM v8 (32-bit) Android JDK 7.0

• ARM v8 (64-bit) Android JDK 7.0

• x86 (32-bit) Android JDK 7.0.
The Cryptographic Module 5

http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf


– Android 8.0

• ARM v7 (32-bit) Android JDK 7.0

• ARM v8 (32-bit) Android JDK 7.0

• ARM v8 (64-bit) Android JDK 7.0

• x86 (32-bit) Android JDK 7.0.

• HP

– HP-UX 11.31

• Itanium® 2 (32-bit) HP JDK 8.0

• Itanium 2 (64-bit) HP JDK 8.0.

• IBM

– AIX® 7.1 

• PowerPC® (32-bit) IBM JDK 8.0

• PowerPC (64-bit) IBM JDK 8.0.

– AIX 7.2

• PowerPC (32-bit) IBM JDK 8.0

• PowerPC (64-bit) IBM JDK 8.0.

• Linux®

– CentOS 6.9

• x86_64 (64-bit) IBM JDK 8.0, OpenJDK 8.u, Oracle JDK 8.0 and 9.0.1, 
Oracle JRockit 6.0.

– CentOS 7.4 

• x86_64 (64-bit) IBM JDK 8.0, OpenJDK 8.u, Oracle JDK 8.0 and 9.0.1, 
Oracle JRockit 6.0.

– Micro Focus® SUSE Linux Enterprise Server 12.0 SP2 

• x86_64 (64-bit) IBM JDK 8.0 OpenJDK 8u, Oracle JDK 8.0 and 9.0.1, 
Oracle JRockit 6.0.

– Red Hat® Enterprise Linux 7.3 

• x86_64 (64-bit) IBM JDK 8.0, OpenJDK 8.u, Oracle JDK 8.0 and 9.0.1, 
Oracle JRockit 6.0.

• Microsoft®

– Windows® 7 Enterprise SP1

• x86 (32-bit) Oracle JRockit 6.0

• x86_64 (64-bit) IBM JDK 8.0, Oracle JDK 8.0 and 9.0.1, 
Oracle JRockit 6.0.
6 The Cryptographic Module



– Windows 8.1 Enterprise

• x86 (32-bit) Oracle JRockit 6.0

• x86_64 (64-bit) IBM JDK 8.0, Oracle JDK 8.0 and 9.0.1, 
Oracle JRockit 6.0.

– Windows 10 Enterprise

• x86 _64 (64-bit) IBM JDK 8.0, Oracle JDK 8.0 and 9.0.1, 
Oracle JRockit 6.0.

– Windows Server 2008 SP2

• x86 (32-bit) Oracle JRockit 6.0

• x86_64 (64-bit) IBM JDK. 8.0, Oracle JDK 8.0, Oracle JRockit 6.0.

– Windows Server 2012 

• x86_64 (64-bit) IBM JDK 8.0, Oracle JDK 8.0 and 9.0.1, 
Oracle JRockit 6.0.

– Windows Server 2012 R2 

• x86_64 (64-bit) IBM JDK 8.0, Oracle JDK 8.0 and 9.0.1, 
Oracle JRockit 6.0.

– Windows Server 2016

• x86_64 (64-bit) IBM JDK 8.0, Oracle JDK 8.0 and 9.0.1, 
Oracle JRockit 6.0.

• Oracle

– Solaris® 10

• SPARC® v9 (64-bit) IBM JDK 8.0, Oracle JDK 8.0, Oracle JRockit 6.0

• x86_64 (64-bit) Oracle JDK 8.0.

– Solaris 11 

• SPARC v9 (64-bit) IBM JDK 8.0, Oracle JDK 8.0 and 9.0.1, 
Oracle JRockit 6.0

• x86_64 (64-bit) Oracle JDK 8.0.

• The FreeBSD® Foundation

– FreeBSD 10.3 

• x86_64 (64-bit) OpenJDK 8.u.

– FreeBSD 11.x

• x86_64 (64-bit) OpenJDK 8.u.

Note: The Cryptographic Module Validation Program (CMVP) makes no 
statement as to the correct operation of the module or the security strengths of 
the generated keys when the specific operational environment is not listed on 
the validation certificate.
The Cryptographic Module 7



1.3 Module Interfaces

As a multi-chip standalone module, the physical interface to the JCM consists of a 
keyboard, mouse, monitor, serial ports and network adapters.

The underlying logical interface to the module is the API, documented in the relevant 
API Javadoc. The module provides the following four logical interfaces that have 
been designed within the module where “input” and “output” are indicated from 
the perspective of the module: 

• Control Input - the invocation of all methods, the function and API names 

• Data Input - input arguments to all constructors and methods specifying input 
parameters 

• Data Output - modified input arguments, those passed by reference, and return 
values for all constructors and methods modifying input arguments and returning 
values 

• Status Output - information returned by the methods and any exceptions thrown 
by constructors and methods. 

This is shown in the following diagram.

Figure 1 JCM Logical Diagram 

Physical Boundary

Cryptographic Module
FIPS class files within the JCM jar

Java Virtual Machine (JVM)

Operating System (OS)

Hardware

Cryptographic Boundary

Software

Hardware

Runs on JVM

Run on OS

Runs on Hardware

Provides service for OS

Provides services for 
JVM

Provides services for 
Module

Application

Data In Data Out Control In Status Out
8 The Cryptographic Module



1.4 Roles and Services

The JCM is designed to meet all FIPS 140-2 Level 1 requirements, implementing both 
a Crypto Officer role and a Crypto User role. As allowed by FIPS 140-2, the JCM 
does not require user identification or authentication for these roles.

1.4.1 Crypto Officer Role

The Crypto Officer is responsible for installing and loading the module. Once the 
module has been installed and is operational, an operator can assume the Crypto 
Officer Role by constructing a com.rsa.crypto.FIPS140Context object by 
invoking the ModuleConfig.getFIPS140Context(int mode, int role) 
method with a role argument of 
com.rsa.crypto.FIPS140Context.ROLE_CRYPTO_OFFICER.

The Services section provides a list of services available to the Crypto Officer .

1.4.2 Crypto User Role

An operator can assume the Crypto User Role by constructing a 
com.rsa.crypto.FIPS140Context object by invoking the 
ModuleConfig.getFIPS140Context(int mode, int role) method with a 
role argument of com.rsa.crypto.FIPS140Context.ROLE_USER.

The Services section provides a list of services available to the Crypto User Role.

1.4.3 Services

The JCM provides services which are available for both FIPS 140-2 and non-FIPS 
140-2 usage. For a list of FIPS 140-2 approved and FIPS 140-2 allowed algorithms, 
see Table 5.

The following table lists the un-authenticated services provided by the JCM which 
may be used by either Role, in either the FIPS or non-FIPS mode, in terms of the 
module interface. For each interface, lists of algorithms that are allowed and not 
allowed when operating the module in a FIPS 140-2 compliant way are specified.
The Cryptographic Module 9



  

Table 2 Services Available to the Crypto User and Crypto Officer Roles

Services Available to the Crypto User and Crypto Officer Roles

Encryption/Decryption:

SymmCipher clearSensitiveData
clone
doFinal
getAlg
getAlgorithmParams
getBlockSize
getCryptoModule

getFeedbackSize
getMaxInputLen
getOutputSize
init
isIVRequired
reInit
update

Algorithms allowed for FIPS 140-2 usage

AES (CBC, CCM, CFB, CTR, ECB, GCM, OFB, XTS)

Triple-DES (CBC, CFB, ECB, OFB)

PBE (PKCS #5 V2 - Approved for key storage)

Algorithms not allowed for FIPS 140-2 usage

AES (BPS, CBC_CS1, CBC_CS2, CBC_CS3)

Triple-DES (CBC_CS1, CBC_CS2, CBC_CS3)

DES

DESX

RC2®

RC4®

RC5®

PBE (PKCS #12, PKCS #5, SSLCPBE)
10 The Cryptographic Module



Encryption/Decryption: (continued)

Cipher clearSensitiveData
clone
doFinal
getAlg
getAlgorithmParams
getBlockSize

getCryptoModule
getMaxInputLen
getOutputSize
init
reInit
update

Algorithms allowed for FIPS 140-2 usage

RSA (Allowed for key transport, provides 112 or 128 bits of 
encryption strength)

SP800-38F KW (AE, AD, provides between 128 and 256 bits of 
encryption strength)

SP800-38F KWP (AE, AD, provides between 128 and 256 bits 
of encryption strength)

RSA-KEM-KWS (When used with approved KDF and Key 
Wrap algorithms)

Algorithms not allowed for FIPS 140-2 usage

ECIES

Signature Generation/Verification:

Signature clearSensitiveData
clone
getAlg
getCryptoModule
getSignatureSize
initSign

initVerify
reInit
sign
update
verify

Algorithms allowed for FIPS 140-2 usage

RSA X9.31, PKCS #1 V.1.5, RSASSA-PSS

DSA

ECDSA

Algorithms not allowed for FIPS 140-2 usage

None

Table 2 Services Available to the Crypto User and Crypto Officer Roles (continued)

Services Available to the Crypto User and Crypto Officer Roles
The Cryptographic Module 11



MAC Generation/Verification:

MAC clearSensitiveData
clone
getAlg
getCryptoModule
getMacLength

init
mac
reset
update
verify

Algorithms allowed for FIPS 140-2 usage

HMAC (when used with an approved Message Digest 
algorithm)

Algorithms not allowed for FIPS 140-2 usage

HMAC-MD5

PBHMAC (PKCS #12, PKIX)

Digest Generation:

MessageDigest clearSensitiveData
clone
digest
getAlg

getCryptoModule
getDigestSize
reset
update

Algorithms allowed for FIPS 140-2 usage

SHA-1

SHA-224

SHA-256

SHA-384

SHA-512

SHA-512/224

SHA-512/256

Algorithms not allowed for FIPS 140-2 usage

MD2

MD5 (Allowed in FIPS mode only for use in TLS)

RIPEMD160

Table 2 Services Available to the Crypto User and Crypto Officer Roles (continued)

Services Available to the Crypto User and Crypto Officer Roles
12 The Cryptographic Module



Parameters:

AlgInputParams clone
get

getCryptoModule
set

AlgorithmParams getCryptoModule

DHParams getCounter
getCryptoModule
getG
getJ

getMaxExponentLen
getP
getQ
getSeed

DomainParams getCryptoModule

DSAParams getCounter
getCryptoModule
getDigestAlg
getG

getP
getQ
getSeed

ECParams getA
getB
getBase
getBaseDigest
getBaseSeed
getCofactor
getCryptoModule
getCurveName

getDigest
getFieldMidTerms
getFieldPrime
getFieldSize
getFieldType
getOrder
getSeed
getVersion

ECPoint clearSensitiveData
getEncoded

getX
getY

PQGParams getCryptoModule
getG

getP
getQ

Parameter Generation:

AlgParamGenerator generate
getCryptoModule
initGen

initVerify
verify

Algorithms allowed for FIPS 140-2 usage

EC

DSA

Diffie-Hellman (DH)

Algorithms not allowed for FIPS 140-2 usage

None

Table 2 Services Available to the Crypto User and Crypto Officer Roles (continued)

Services Available to the Crypto User and Crypto Officer Roles
The Cryptographic Module 13



Key Establishment:

KeyAgreement clearSensitiveData
clone
doPhase
getAlg

getCryptoModule
getSecret
init

Algorithms allowed for FIPS 140-2 usage

Diffie-Hellman (primitives only, provides 112 bits or 128 bits of 
encryption strength)

EC Diffie-Hellman (primitives only, provides between 112 bits 
and 256 bits of encryption strength)

Algorithms not allowed for FIPS 140-2 usage

None

KeyConfirmation clearSensitiveData
computeMacTag

verifyMacTag

Algorithms allowed for FIPS 140-2 usage

Diffie-Hellman (primitives only, provides 112 bits or 128 bits of 
encryption strength)

EC Diffie-Hellman (primitives only, provides between 112 bits 
and 256 bits of encryption strength)

Algorithms not allowed for FIPS 140-2 usage

None

Key Generation:

KeyGenerator clearSensitiveData
generate

getCryptoModule
initialize

Algorithms allowed for FIPS 140-2 usage

AES Triple-DES

Algorithms not allowed for FIPS 140-2 usage

DES

DESX

Shamir Secret Sharing

RC2

RC4

RC5

Table 2 Services Available to the Crypto User and Crypto Officer Roles (continued)

Services Available to the Crypto User and Crypto Officer Roles
14 The Cryptographic Module



Key Generation: (continued)

KeyPairGenerator clearSensitiveData
clone
generate

getCryptoModule
initialize

Algorithms allowed for FIPS 140-2 usage

EC

DSA

Diffie-Hellman

RSA

Algorithms not allowed for FIPS 140-2 usage

RSA Keypair Generation MultiPrime

Keys:

DHPrivateKey clearSensitiveData
clone
getAlg
getCryptoModule

getParams
getX
isValid

DHPublicKey clearSensitiveData
clone
getAlg
getCryptoModule

getParams
getY
isValid

DSAPrivateKey clearSensitiveData
clone
getAlg
getCryptoModule

getParams
getX
isValid

DSAPublicKey clearSensitiveData
clone
getAlg
getCryptoModule

getParams
getY
isValid

ECPrivateKey clearSensitiveData
clone
getAlg
getCryptoModule

getD
getParams
isValid

ECPublicKey clearSensitiveData
clone
getAlg
getCryptoModule

getParams
getPublicPoint
isValid

Key clearSensitiveData
clone

getAlg
getCryptoModule

Table 2 Services Available to the Crypto User and Crypto Officer Roles (continued)

Services Available to the Crypto User and Crypto Officer Roles
The Cryptographic Module 15



Keys: (continued)

KeyBuilder newDHParams
newDHPrivateKey
newDHPublicKey
newDSAParams
newDSAPrivateKey
newDSAPublicKey
newECParams
newECPrivateKey

newECPublicKey
newPasswordKey
newPQGParams
newRSAPrivateKey
newRSAPublicKey
newSecretKey
recoverShamirSecretKey

KeyPair clearSensitiveData
clone
getAlgorithm

getPrivate
getPublic

PasswordKey clearSensitiveData
clone
getAlg

getCryptoModule
getKeyData
getPassword

PrivateKey clearSensitiveData
clone
getAlg

getCryptoModule
isValid

PublicKey clearSensitiveData
clone
getAlg

getCryptoModule
isValid

RSAPrivateKey clearSensitiveData
clone
getAlg
getCoeff
getCryptoModule
getD
getE
getExpP

getExpQ
getN
getOtherMultiPrimeInfo
getP
getQ
hasCRTInfo
isMultiprime
isValid

RSAPublicKey clearSensitiveData
clone
getAlg
getCryptoModule

getE
getN
isValid

SecretKey clearSensitiveData
getAlg

getCryptoModule
getKeyData

SharedSecretKey clearSensitiveData
clone
getAlg

getCryptoModule
getKeyData
getSharedParams

Table 2 Services Available to the Crypto User and Crypto Officer Roles (continued)

Services Available to the Crypto User and Crypto Officer Roles
16 The Cryptographic Module



Key Derivation:

KDF clearSensitiveData
clone

generate
getCryptoModule

Algorithms allowed for FIPS 140-2 usage

PBKDF2 (Approved for key storage)

KDFTLS10 (For use with TLS versions 1.0 and 1.1)

KDFTLS12 (For use with TLS version 1.2)

Single-step KDF

Algorithms not allowed for FIPS 140-2 usage

PKCS #5 KDF

PKCS #12 KDF

scrypt

Random Number Generation:

SecureRandom autoseed
clearSensitiveData
getCryptoModule
newInstance
nextBytes

selfTest
setAlgorithmParams
setOperationalParameters
setSeed

Algorithms allowed for FIPS 140-2 usage

CTR DRBG

Hash DRBG

HMAC DRBG

Algorithms not allowed for FIPS 140-2 usage

FIPS 186-2 PRNG (Change Notice General)

Other Services:

BigNum getBitLength toOctetString

CryptoModule getDeviceType
getKeyBuilder
getModuleOperations
newAlgInputParams
newAlgParamGenerator
newAsymmetricCipher
newKDF
newKeyAgreement

newKeyGenerator
newKeyPairGenerator
newKeyWrapCipher
newMAC
newMessageDigest
newSecureRandom
newSignature
newSymmetricCipher

JCMCloneable clone

Table 2 Services Available to the Crypto User and Crypto Officer Roles (continued)

Services Available to the Crypto User and Crypto Officer Roles
The Cryptographic Module 17



For more information on each function, see the relevant API Javadoc.

Other Services: (continued)

ModuleConfig getEntropySource
getFIPS140Context
getSecurityLevel
getVersionDouble
getVersionInfo

getVersionString

initFIPS140RolePINs
isFIPS140Compliant
newCryptoModule
runSelfTests
setEntropySource

ModuleLoader load

ModuleOperations perform

PasswordKey clearSensitiveData
clone
getAlg

getCryptoModule
getKeyData
getPassword

SelfTestEvent getTestId getTestName

SelfTestEventListener failed
finished

passed
started

SensitiveData clearSensitiveData

Table 2 Services Available to the Crypto User and Crypto Officer Roles (continued)

Services Available to the Crypto User and Crypto Officer Roles
18 The Cryptographic Module



1.5 Cryptographic Key Management

Cryptographic key management is concerned with generating and storing keys, 
protecting keys during use, zeroizing keys when they are no longer required and 
managing access to keys.

1.5.1 Key Generation

The module supports the generation of the DSA, RSA, and Diffie-Hellman (DH) and 
ECC public and private keys. In the FIPS-Approved mode, RSA keys can only be 
generated using the Approved 186-4 RSA key generation method. 

The module also employs a FIPS-Approved AES Counter-mode DRBG 
(AES-128-CTR DRBG) for generating asymmetric and symmetric keys used in 
algorithms such as AES, Triple-DES, RSA, DSA, DH and ECC.

1.5.2 Key Protection

All key data resides in internally allocated data structures and can only be output using 
the JCM API. The operating system and the JRE safeguards memory and process 
space from unauthorized access.

1.5.3 Key Zeroization

The module stores all its keys and Critical Security Parameters (CSPs) in volatile 
memory. Users can ensure CSPs are properly zeroized by making use of the 
<object>.clearSensitiveData() method. All of the module’s keys and CSPs 
are zeroizable. For more information about clearing CSPs, see the relevant API 
Javadoc.

1.5.4 Key Storage

The JCM does not provide long-term cryptographic key storage. Storage of keys is the 
responsibility of the JCM user. The Crypto User and Crypto Officer roles have equal 
and complete access to all keys and CSPs.

The following table shows how the storage of keys and CSPs are handled: 

Table 3 Key and CSP Storage

Item Storage

AES keys In volatile memory only (plaintext)

Triple-DES keys In volatile memory only (plaintext)

HMAC with SHA-1 and SHA-2 keys 
(SHA-224, SHA-256, SHA-384, SHA-512, 
SHA-512/224, and SHA-512/256)

In volatile memory only (plaintext)
The Cryptographic Module 19



ECC private keys/public key In volatile memory only (plaintext)

ECDH Shared Secret In volatile memory only (plaintext)

DH Shared Secret In volatile memory only (plaintext)

Diffie-Hellman private key/public key In volatile memory only (plaintext)

RSA private key/public key In volatile memory only (plaintext)

DSA private key/public key In volatile memory only (plaintext)

CTR DRBG Entropy In volatile memory only (plaintext)

CTR DRBG V Value In volatile memory only (plaintext)

CTR DRBG Key In volatile memory only (plaintext)

CTR DRBG init_seed In volatile memory only (plaintext)

Hash DRBG Entropy In volatile memory only (plaintext)

Hash DRBG V Value In volatile memory only (plaintext)

Hash DRBG C In volatile memory only (plaintext)

Hash DRBG init_seed In volatile memory only (plaintext)

HMAC DRBG Entropy In volatile memory only (plaintext)

HMAC DRBG V Value In volatile memory only (plaintext)

HMAC DRBG Key In volatile memory only (plaintext)

HMAC DRBG init_seed In volatile memory only (plaintext)

TLS Pre-Master Secret In volatile memory only (plaintext)

TLS Master Secret In volatile memory only (plaintext)

TLS Session Keys In volatile memory only (plaintext)

Katstatus In volatile memory and on disk 
(protected with HMAC SHA256)

Table 3 Key and CSP Storage (continued)

Item Storage
20 The Cryptographic Module



1.5.5 Key Access

An authorized operator of the module has access to all key data created during JCM 
operation. The User and Officer roles have equal and complete access to all keys.

The following table lists the different services provided by the module with the type 
of access to keys or CSPs. 

Table 4 Key and CSP Access

Service Key or CSP Type of Access

Asymmetric 
encryption and decryption

Asymmetric keys (RSA) Read/Execute

Encryption and decryption Symmetric keys (AES, Triple-DES) Read/Execute

Digital signature and 
verification

Asymmetric keys (DSA, ECDSA, RSA) Read/Execute

Hashing None N/A

MAC HMAC keys Read/Execute

Random number generation CTR DRBG entropy, V, key, init_seed
Hash DRBG entropy, V, C, init_seed
HMAC DRBG entropy, V, key, init_seed

Read/Write/Execute

Key derivation TLS Pre-Master Secret
TLS Master Secret
TLS Session keys
Single-step KDF keys

Read/Execute

Key establishment Asymmetric keys (DH, ECDH) Read/Execute

Key generation Symmetric keys (AES, Triple-DES)
Asymmetric keys 
(DH, DSA, ECDSA, ECDH, RSA)
MAC keys (HMAC)

Write

Self-test Hard-coded keys, 
(AES, Triple-DES, RSA, DSA, ECDSA, 
HMAC)
Hard-coded entropy, strength, and seed
(HMAC DRBG, HASH DRBG, CTR DRBG)

Read/Execute

Show status None N/A

Zeroization All Read/Write
The Cryptographic Module 21



1.6 Cryptographic Algorithms

The JCM offers a wide range of cryptographic algorithms. This section describes the 
algorithms that can be used when operating the module in a FIPS 140-2 compliant 
manner.

The following table lists the FIPS 140-2 approved and FIPS 140-2 allowed algorithms 
that can be used when operating the module in a FIPS 140-2 compliant way. 

Table 5 JCM FIPS 140-2 Approved Algorithms

Algorithm Type Algorithm Standard
Validation 
Certificate

Asymmetric 
Cipher

RSA-OAEP, RSA-KEM-KWS 
(2048 and 3072 bit key sizes)

Vendor Affirmed as 
part of Key 
Transport Schemes

Asymmetric Key RSADP Component Test Certificate #1572

Key Agreement 
Primitives

FFC DH (2048 and 3072 bit key sizes) SP 800-56A Vendor affirmed 

ECDHC (224 to 571 bit key sizes)

KASECC_(ECCCDH) Primitive Component Test Certificate #1570

Key Agreement 
Schemes

FFC, ECC primitive / Single-Step KDF / Key 
Confirmation
[dhHybrid1, dhEphem, dhHybridOneFlow, dhOneFlow, 
dhStatic, (Cofactor) Full Unified Model, (Cofactor) 
Ephemeral Unified Model, (Cofactor) One-Pass Unified 
Model, (Cofactor) One-Pass Diffie-Hellman, (Cofactor) 
Static Unified Model]

Certificate #156

Key Transport 
Schemes

RSA-OAEP, RSA-KEM-KWS cipher / Single-Step KDF / 
Key Confirmation
[KTS-OAEP, KTS-OAEP-Party_V-confirmation, 
KTS-KEM-KWS, 
KTS-KEM-KWS-Party_V-confirmation]

SP 800-56B Vendor affirmed 

Key Derivation PBKDF2 SP 800-132 Vendor Affirmed 
(Approved in FIPS 
mode for key 
storage*)

KDFTLS10** SP 800-135 rev1 Certificate #1571

KDFTLS12*** with SHA-256, SHA-384, SHA-512

Key Wrap KTS (AES Certificate #5026: key establishment 
methodology provides between 128 and 256 bits of 
encryption strength)

SP800-38F

Key Generation Cryptographic Key Generation (CKG) SP800-133 Vendor affirmed

Message 
Authentication 
Code

HMAC**** FIPS 198-1 Certificate #3340
22 The Cryptographic Module



Message Digest SHA-1*****, SHA-224, SHA-256, SHA-384, 
SHA-512

FIPS 180-4 Certificate #4085

SHA-512/224, SHA-512/256

Random Bit 
Generator

CTR DRBG SP 800-90A rev1 Certificate #1841

Hash DRBG

HMAC DRBG SP 800-90A rev1

Signature***** RSA X9.31, PKCS #1 V.1.5, RSASSA-PSS 
(2048 and 3072 bit key sizes)

Certificate #2711

DSA (2048 and 3072 bit key sizes) FIPS 186-4 Certificate #1321

 ECDSA (224 to 571 bit key sizes) Certificate #1283

Symmetric 
Cipher

AES in CBC, CFB, CTR, ECB, OFB modes 
(128, 192, 256 bit key sizes)

SP 800-38A Certificate #5026

AES in CCM modes (128, 192, 256 bit key sizes) SP 800-38C

AES in GCM mode (128, 192, 256 bit key sizes) SP 800-38D

AES in XTS mode (128, 256 bit key sizes) SP 800-38E

Triple-DES****** (CBC, CFB, ECB, OFB) SP 800-67 and 
SP 800-38A

Certificate #2591

*The module implements PBKDF2 as the PBKDF algorithm as defined in SP800-132. This can be used in FIPS mode when 
used with a FIPS-approved Symmetric Cipher and Message Digest algorithm. 
For information on how to use PBKDF, see The following restrictions apply to the use of PBKDF: 

**Key Derivation in TLS for versions 1.0 and 1.1. The TLS protocol has not been tested by the CAVP and CMVP.
***Key Derivation in TLS for versions 1.2. The TLS protocol has not been tested by the CAVP and CMVP.
****When used with a FIPS-approved Message Digest algorithm.
*****SHA-1 is allowed for use in the TLS protocol but no longer allowed to be used in digital signature generation.
******For information on the restrictions applicable to the use of two-key Triple-DES, see The following restrictions apply to the use of 
Triple-DES:

Table 5 JCM FIPS 140-2 Approved Algorithms (continued)

Algorithm Type Algorithm Standard
Validation 
Certificate
The Cryptographic Module 23



The following lists all other available algorithms in the JCM that are not allowable 
for FIPS 140-2 usage. These algorithms must not be used when operating the module 
in a FIPS 140-2 compliant way. 

• AES in BPS mode for FPE

• AES in CBC_CS1, CBC_CS2 or CBC_CS3 mode for CTS

• DES

• DESX

• ECIES

• FIPS 186-2 PRNG (Change Notice General)

• HMAC-MD5

• MD2

• MD52

• PKCS #5 KDF

• PKCS #12 KDF

• RC2 block cipher

• RC4 stream cipher

• RC5 block cipher

• RSA Keypair Generation MultiPrime (2 or 3 primes)

• RIPEMD160

• scrypt

• Shamir Secret Sharing

• Triple-DES in CBC_CS1, CBC_CS2 or CBC_CS3 mode for CTS.

2MD5 is allowed in FIPS mode only for use in TLS.
24 The Cryptographic Module



1.7 Self-tests

The module performs power-up and conditional self-tests to ensure proper operation. 

If the power-up self-test fails, the module is disabled and throws a 
SecurityException. The module cannot be used within the current JVM. 
If the conditional self-test fails, the module throws a SecurityException and 
aborts the operation. A conditional self-test failure does NOT disable the module.

1.7.1 Power-up Self-tests

Power-up self-tests are executed automatically when the module is loaded into 
memory. The power-up self-tests include the FIPS140-2 required Software Integrity 
Test and a set of Cryptographic Algorithms tests. The following Cryptographic 
Algorithm tests are implemented in the module: 

• AES Decrypt KAT

• AES Encrypt KAT

• CTR DRBG KAT

• Diffie-Hellman KAT

• DSA Sign/Verify Test

• EC Diffie-Hellman KAT

• ECDSA Sign/Verify Test

• Hash DRBG KAT

• HMAC DRBG KAT

• KDFTLS10 KAT

• KDFTLS12 SHA-256 KAT

• RSA Signature Generation KAT

• RSA Signature Verification KAT

• SHA-512 KAT

• Triple-DES Decrypt KAT

• Triple-DES Encrypt KAT.

By default, all Cryptographic Algorithm tests are run at power-up. However, if 
configured to do so, the module will run all of the power-up self-tests when first 
loaded in an operational environment, and run only the Software Integrity Test on 
subsequent restarts.
The Cryptographic Module 25



1.7.2 Conditional Self-tests

The module performs two conditional self-tests:

• Pair-wise Consistency Tests each time the module generates a DSA, DH, RSA or 
EC public/private key pair.

• Continuous RNG (CRNG) Test each time the module produces random data, as 
per the FIPS 140-2 standard. The CRNG test is performed on all approved and 
non-approved PRNGs (HMAC DRBG, HASH DRBG, CTR DRBG, FIPS186 
PRNG, non-approved entropy source).

1.7.3 Mitigation of Other Attacks

RSA key operations implement blinding by default. Blinding is a reversible way of 
modifying the input data, so as to make the RSA operation immune to timing attacks. 
Blinding has no effect on the algorithm other than to mitigate attacks on the algorithm.

RSA Blinding is implemented through blinding modes, for which the following 
options are available:

• Blinding mode off

• Blinding mode with no update, where the blinding value is squared for each 
operation

• Blinding mode with full update, where a new blinding value is used for each 
operation.

For other types of timing attacks the module implements time invariant comparisons 
and operations (for example, PKCS #1 unpadding, HMAC verify, and RSA verify).
26 The Cryptographic Module



2 Secure Operation of the Module

The following guidance must be followed in order to operate the module in a 
FIPS 140-2 mode of operation, in conformance with FIPS 140-2 requirements. 

Note: The module operates as a Validated Cryptographic Module only when 
the rules for secure operation are followed.

2.1 Module Configuration

To operate the module in compliance with FIPS 140-2 Level 1 requirements, the 
module must be loaded using the following method:

com.rsa.crypto.jcm.ModuleLoader.load()

The ModuleLoader.load() method extracts arguments from the 
com.rsa.cryptoj.common.jcm.JavaModuleProperties class, which is created 
using the com.rsa.cryptoj.jcm.module.CryptoJModulePropertiesFactory 
class.

The following arguments are extracted:

– The module jar file.

– The security level, specified as the constant ModuleConfig.LEVEL_1. 
This should have a value of 1.

– An optional SelfTestEventListener to use for logging power-up 
self-test events. 

– An optional java.util.concurrent.ExecutorService used for 
running the power-up self-tests.

– An optional File for reading and writing the status of the algorithm 
power-up self-tests.

Using the specified securityLevel ensures that the module is loaded for use in a 
FIPS 140-2 Level 1 compliant way. 

Once the load method has been successfully called, the module is operational.
Secure Operation of the Module 27



2.2 Security Roles, Services and Authentication Operation

To assume a role once the module is operational, construct a FIPS140Context 
object for the desired role using the 
FIPS140Context.getFIPS140Context(int mode, int role) method. 
This object can then be used to perform cryptographic operations using the module. 

The mode argument must be the value FIPS140Context.MODE_FIPS140.

The available role values are the constants 
FIPS140Context.ROLE_CRYPTO_OFFICER and 
FIPS140Context.ROLE_USER. 

No role authentication is required for operation of the module in Security Level 1 
mode. When in Security Level 1 mode, invocation of methods which are particular to 
Security Level 2 Roles, Services and Authentication will result in an error.

2.3 Crypto User Guidance

This section provides guidance to the module user to ensure that the module is used in 
a FIPS 140-2 compliant way.

Section 2.3.1 provides algorithm-specific guidance. The requirements listed in this 
section are not enforced by the module and must be ensured by the module user.

Section 2.3.2 provides guidance on obtaining assurances for Digital Signature 
Applications.

Section 2.3.3 provides guidance on obtaining assurances for Key Agreement 
Applications.

Section 2.3.4 provides guidance on obtaining assurances for Key Transport 
Applications.

Section 2.3.5 provides guidance on the entropy requirements for secure key 
generation.

Section 2.3.6 provides general crypto user guidance.

2.3.1 Crypto User Guidance on Algorithms

• The Crypto User must only use algorithms approved for use in a FIPS 140-2 mode 
of operation, as listed in Table 5.

• Only FIPS 140-2 Approved DRBGs may be used for generation of keys 
(asymmetric and symmetric).

• When using an approved DRBG, the number of bytes of seed key input must be 
equivalent to or greater than the security strength of the keys the caller wishes to 
generate. For example, a 256-bit or higher seed key input when generating 256-bit 
AES keys.
28 Secure Operation of the Module



• When using an Approved DRBG to generate keys or DSA parameters, the 
DRBG’s requested security strength must be at least as great as the security 
strength of the key being generated. That means that an Approved DRBG with an 
appropriate strength must be used. For more information on requesting the DRBG 
security strength, see the relevant API Javadoc.

• Since the module does not modify the output of an Approved DRBG, any 
generated symmetric keys or seed values are created directly from the output of 
the Approved DRBG.

• FIPS 186-2 RNG is not to be used in an approved FIPS 140-2 mode of operation.

• In case the power to the module is lost and then restored, the key used for the AES 
GCM encryption/decryption shall be re-distributed.

• When generating key pairs using the KeyPairGenerator object, the 
generate(boolean pairwiseConsistency) method must not be invoked 
with an argument of false. Use of the no-argument generate() method is 
recommended.

• The AES-GCM cipher, when used for symmetric encryption purposes other than 
TLS, must use an IV in one of the two possible ways, to comply with 
SP 800-38D:

– allow the module to generate the IV deterministically by not supplying any IV 
parameters during cipher initialization. The generated 96-bit (12-byte) IV 
consists of a 32-bit fixed field followed by a 64-bit invocation field where

• the fixed field bytes are derived from the module name, version 
information and memory address of a Java class within the module

• the invocation field is a 64-bit counter that is initialized, on startup, to a 
value consisting of the 44 bits of current time, as milliseconds since 
Epoch, followed by 22 bits of zero. By using the current time to prefix the 
counter start value, in the event of module restart, the counter will be 
ahead of any previous module states, ensuring that IV values cannot be 
reused.

– generate at least 12 bytes of IV using an Approved DRBG, and input the IV to 
the cipher at initialization time using the RAW_IV parameter.

• The AES-GCM cipher used for the TLS protocol as the cipher implementation 
complies with SP 800-52 and is compatible with RFC 5288 if the IV is configured 
as follows:

The four-byte salt derived from the TLS handshake process is input using the 
parameter PARTIAL_IV during cipher initialization. This is used as the first four 
bytes of IV. The remaining eight bytes of IV, referred to as nonce_explicit in RFC 
5288, are generated deterministically by the module using the 64-bit counter used 
for the invocation field described above.

• For RSASSA-PSS: If nLen is 1024 bits, and the output length of the approved 
hash function output block is 512 bits, then the length of the salt (sLen) shall be 
0<=sLen<=hLen - 2 
Otherwise, the length of the salt shall be 0 <=sLen<=hLen where hLen is the 
length of the hash function output block (in bytes or octets).
Secure Operation of the Module 29



• EC key pairs must have named curve domain parameters from the set of 
NIST-recommended named curves: P-224, P-256, P-384, P-521, B-233, B-283, 
B-409, B-571, K-233, K-283, K-409, and K-571. Named curves P192, B163, and 
K163 are allowed for legacy-use. The domain parameters can be specified by 
name or can be explicitly defined. 

• EC Diffie-Hellman primitives must use curve domain parameters from the set of 
NIST recommended named curves listed above. The domain parameters can be 
specified by name, or can be explicitly defined. Using the NIST-recommended 
curves, the computed Diffie-Hellman shared secret provides between 112 bits and 
256 bits of security.

• When using DSA key pair generation and signature generation or DH key pair 
generation and key agreement, the domain parameters must have prime P length 
(PRIME_LEN) and subprime Q length (SUBPRIME_LEN) within the set of 
acceptable pair sets (PRIME_LEN, SUBPRIME_LEN): (2048, 224), (2048, 256) 
or (3072, 256).

• When generating DSA and DH domain parameters, generation shall comply with 
FIPS 186-4 by specifying the algorithm string “DSA” when creating the 
AlgParameterGenerator object. Additionally:

– The PRIME_LEN and SUBPRIME_LEN must be from a set of acceptable pair 
set as stated above.

– The digest algorithm parameter shall be selected from the set: SHA224, 
SHA256, SHA384, SHA512. The digest algorithm shall be selected such that 
the output length is at least as large as the subprime length. That is:

• For subprime 224, all four algorithms may be used. 

• For subprime 256, only SHA256, SHA384, SHA512 may be used.

• For RSA digital signature generation, an Approved DRBG must be used.

• RSA keys used for signing shall not be used for any other purpose other than 
digital signatures.

• When generating RSA key pairs for signatures or key transport, generation shall 
comply with the following:

– the KEY_TYPE parameter must be omitted or have a value of 0.

– the KEY_BITS parameter must have value 2048 or 3072.

– the SECURITY_STRENGTH parameter may be input. Acceptable values are:

• 112, when used for KEY_BITS of 2048. 

• 128, when used for KEY_BITS of 3072.

– the PUB_EXP value must be an odd number and have a minimum value of 
0x10001 (65537).

• The length of an RSA key pair for digital signature generation and verification 
must be 2048 or 3072 bits. For digital signature verification, 1024 bits is allowed 
for legacy-use. RSA keys shall have a public exponent of at least 65537.

• SHA1 is disallowed for the generation of digital signatures.
30 Secure Operation of the Module



• The key length for an HMAC generation or verification must be equal to or 
greater than 112 bits. For HMAC verification, a key length greater than or equal to 
80 and less than 112 is allowed for legacy-use.

Note: JCE MAC APIs do not distinguish between generate and verify, 
therefore a key length check is not explicitly performed in JCE.

• When using Single-step KDF, a FIPS 140-2 approved hash function must be used. 

• The following restrictions apply to the use of PBKDF: 

– The minimum password length is 14 characters, which has a strength of 
approximately 112 bits, assuming a randomly selected password using the 
extended ASCII printable character set is used.
For random passwords - a string of characters from a given set of characters in 
which each character is equally likely to be selected - the strength of the 
password is given by: S=L*(log N/log 2) where N is the number of 
possible characters (for example, ASCII printable characters N = 95, 
extended ASCII printable characters N = 218) and L is the number of 
characters. A password of the strength S can be guessed at random with the 
probability of 1/2S.

– Keys generated using PBKDF shall only be used in data storage applications.

– The length of the randomly-generated portion of the salt shall be at least 16 
bytes. For more information see nist-sp800-132.pdf.

– The iteration count shall be selected as large as possible, a minimum of 1000 
iterations is recommended.

– The maximum key length is (232 -1)*b, where b is the digest size of the 
hash function.

– The key derived using PBKDF can be used as referred to in SP800-132, 
Section 5.4, option 1 and 2. 

• The following restrictions apply to the use of Triple-DES: 

– The use of three-key Triple-DES is approved beyond 2013 without restriction.

– The use of two-key Triple-DES is approved beyond 2013. Until 31 December 
2015, two-key Triple-DES is allowed with the restriction that at most 220 
blocks of data can be encrypted with the same key.

– The use of two-key Triple-DES is disallowed beyond 2015. Two-key 
Triple-DES can be used to decrypt ciphertext for legacy use after 2015.

– The use of three-key Triple-DES is limited to 232 encryption operations when 
the key is generated as a part of one of the following IETF protocols: TLS 1.0 
as specified in RFC 2246, TLS 1.1 as specified in RFC 4346, or TLS 1.2 as 
specified in RFC 5246.

– The use of three-key Triple-DES is limited to 228 encryption operations when 
the key is not generated as a part of a recognized IETF protocol.
Secure Operation of the Module 31

http://csrc.nist.gov/publications/nistpubs/800-132/nist-sp800-132.pdf


For more information about the use of two-key Triple-DES, see NIST Special 
Publication 800-131A “Transitions: Recommendation for Transitioning the 
Use of Cryptographic Algorithms and Key Lengths”.

• The JCM is affected by CVE-2019-3738 (Missing Required Cryptographic Step).

To mitigate against this issue and claim FIPS compliance, RSA recommends 
customers either: 

– Upgrade to a higher, unaffected release - 6.2.5 at time of writing

or 

– Apply the following workaround:

• When using a DHPublicKeySpec to create a JCE public key, check that 
the DH public (Y) is non-negative. For example:

BigInteger y = new BigInteger("1");
if (y.compareTo(BigInteger.ZERO) < 0) {
    throw new RuntimeException("Negative DH public value");
}
BigInteger p = new BigInteger("1");
BigInteger g = new BigInteger("1");
DHPublicKeySpec dhPublicKeySpec = new DHPublicKeySpec(y, p, g);

• Use the Assurance public API to validate the public key. For example:

if (Assurance.isValidPublicKey(publicKey)) {
Print.println("This Public key is valid according to the SP 
800-56A standard.");

} else {
    throw new SampleFailedException("This Public key is not 

valid according to the SP 800-56A standard.");
}

32 Secure Operation of the Module

http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-3738


2.3.2 Crypto User Guidance on Obtaining Assurances for 
Digital Signature Applications

The module provides support for the FIPS 186-4 standard for digital signatures. The 
following gives an overview of the assurances required by FIPS 186-4. NIST Special 
Publication 800-89: “Recommendation for Obtaining Assurances for Digital 
Signature Applications” provides the methods to obtain these assurances. 

The tables below describe the FIPS 186-4 requirements for signatories and verifiers 
and the corresponding module capabilities and recommendations.     

Table 6 Signatory Requirements

FIPS 186-4 Requirement Module Capabilities and Recommendations

Obtain appropriate DSA and 
ECDSA parameters when 
using DSA or ECDSA.

The generation of DSA parameters is in accordance with the 
FIPS 186-4 standard for the generation of probable primes. 
For ECDSA, use the NIST recommended curves as defined 
in section 2.3.1.

Obtain assurance of the 
validity of those parameters.

The module provides APIs to validate DSA parameters for 
probable primes as described in FIPS 186-4.
For ECDSA, use the NIST recommended curves as defined 
in section 2.3.1. For the JCM API, 
AlgParamGenerator.verify()

Obtain a digital signature key 
pair that is generated as 
specified for the appropriate 
digital signature algorithm.

The module generates the digital signature key pair 
according to the required standards. 
Choose a FIPS-Approved DRBG like HMAC DRBG to 
generate the key pair.

Obtain assurance of the 
validity of the public key.

The module provides APIs to explicitly validate the public 
key according to SP 800-89. For the JCM API, 
PublicKey.isValid(SecureRandom 
secureRandom)

Obtain assurance that the 
signatory actually possesses 
the associated private key.

The module verifies the signature created using the private 
key, but all other assurances are outside the scope of the 
module.

Table 7 Verifier Requirements

FIPS 186-4 Requirement Module Capabilities and Recommendations

Obtain assurance of the 
signatory’s claimed identity. 

The module verifies the signature created using the private 
key, but all other assurances are outside the scope of the 
module.

Obtain assurance of the 
validity of the domain 
parameters for DSA and 
ECDSA.

The module provides APIs to validate DSA parameters for 
probable primes as described in FIPS 186-4.
For the JCM API, AlgParamGenerator.verify()
For ECDSA, use the NIST recommended curves as defined 
in section 2.3.1. 
Secure Operation of the Module 33

https://csrc.nist.gov/publications/nistpubs/800-89/SP-800-89_November2006.pdf
https://csrc.nist.gov/publications/nistpubs/800-89/SP-800-89_November2006.pdf
https://csrc.nist.gov/publications/nistpubs/800-89/SP-800-89_November2006.pdf


2.3.3 Crypto User Guidance on Obtaining Assurances for 
Key Agreement Applications

The module provides support for the NIST SP800.56A recommendations for key 
agreement. NIST Special Publication 800-56A: “Recommendation for Pair-Wise Key 
Establishment Schemes Using Discrete Logarithm Cryptography” provides the 
methods to obtain these assurances. 

The tables below describe the SP800-56A recommendations for key establishment 
and the corresponding module capabilities and recommendations.   

Obtain assurance of the 
validity of the public key. 

The module provides APIs to explicitly validate the public 
key according to SP 800-89. For the JCM API, 
PublicKey.isValid(SecureRandom 
secureRandom)

Obtain assurance that the 
claimed signatory actually 
possessed the private key that 
was used to generate the 
digital signature at the time 
that the signature was 
generated.

Outside the scope of the module.

Table 8 Key Establishment Recommendations

NIST SP800-56A 
Recommendations

Module Capabilities and Recommendations

Obtain appropriate FFC and 
ECC domain parameters.

The generation of FFC parameters is in accordance with the 
FIPS 186-4 standard for the generation of probable primes. 
For ECC, use the NIST recommended curves as defined in 
section 2.3.1.

Obtain assurance of the 
validity of those domain 
parameters.

The module provides APIs to validate FFC parameters for 
probable primes as described in FIPS 186-4.
For ECC, use the NIST recommended curves as defined in 
section 2.3.1. For the JCM API, 
AlgParamGenerator.verify()

Obtain a key establishment 
key pair that is generated as 
specified for the appropriate 
algorithm.

The module generates the digital signature key pair according 
to the required standards. 
Choose a FIPS-Approved DRBG like HMAC DRBG to 
generate the key pair.

Owner assurance of the 
validity of the public key.

The module provides APIs to explicitly validate the public 
key according to SP 800-89. For the JCM API, 
PublicKey.isValid(SecureRandom secureRandom)

Table 7 Verifier Requirements (continued)

FIPS 186-4 Requirement Module Capabilities and Recommendations
34 Secure Operation of the Module

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf


2.3.4 Crypto User Guidance on Obtaining Assurances for 
Key Transport Applications

The module provides support for the NIST SP800.56B recommendations for key 
transport. NIST Special Publication 800-56B Revision 1: “Recommendation for 
Pair-Wise Key Establishment Schemes Using Integer Factorization Cryptography” 
provides the methods to obtain these assurances. 

The tables below describe the SP800-56B recommendations for key transport.  

Owner assurance of the 
validity of the private key.

The module provides APIs to explicitly validate the private 
key according to SP 800-56A. For the JCM API, 
PrivateKey.isValid()

Owner assurance of pairwise 
consistency

The module provides an API to explicitly validate the keypair 
according to the pairwise consistency requirements in SP 
800.56A. For the JCM API, 
KeyPair.validate(SecureRandom)

Table 9 Key Transport Recommendations

NIST SP800-56B 
Recommendations

Module Capabilities and Recommendations

Assurance of Key-Pair 
Validity

The module provides APIs to explicitly validate an RSA Key 
Pair according to SP 800.56B. The JCM API available is: 
KeyPair.validate(AlgInputParams, SecureRandom). 
The parameters object can be supplied with 
SECURITY_STRENGTH and KEY_BITS inputs.
This API performs both a pairwise consistency test and a key 
pair validation according to “rsakpv1-crt” and 
“crt_pkv” methods.

Assurance of Public Key 
Validity

The module provides APIs to explicitly validate the RSA 
public key according to SP 800.56B and SP 800-89. 
The JCM API available is: 
KeyPair.validate(AlgorithmParams, SecureRandom)

Assurance of Possession of 
Private Key

The module supports Key Confirmation for providing 
assurance of possession of a private key in a key transport 
scheme. The JCM API available is: KeyConfirmation.

Table 8 Key Establishment Recommendations (continued)

NIST SP800-56A 
Recommendations

Module Capabilities and Recommendations
Secure Operation of the Module 35

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br1.pdf


2.3.5 Crypto User Guidance on Key Generation and Entropy

The module generates cryptographic keys whose strengths are modified by available 
entropy. As a result, no assurance is given for the minimum strength of generated 
keys. The JCM provides the HMAC DRBG, CTR DRBG and Hash DRBG 
implementations for key generation. 

When generating secure keys, the DRBG used in key generation must be seeded with 
a number of bits of entropy that is equal to or greater than the security strength of the 
key being generated. The entropy supplied to the DRBG is referred to as the DRBG 
security strength.

The following table lists each of the keys that can be generated by the JCM, with the 
key sizes available, security strengths for each key size and the security strength 
required to initialize the DRBG.

2.3.6 General Crypto User Guidance

JCM users should take care to zeroize CSPs when they are no longer needed. For more 
information on clearing sensitive data, see section 1.5.3 and the relevant API Javadoc.

2.4 Crypto Officer Guidance

The Crypto Officer is responsible for installing the module. Installation instructions 
are provided in the RSA BSAFE Crypto-J Installation Guide.

The Crypto Officer is responsible for loading the module, as specified in section 2.1 
Module Configuration.

2.5 Operating the Cryptographic Module

Both FIPS and non-FIPS algorithms are available to the operator. In order to operate 
the module in the FIPS-Approved mode, all rules and guidance provided in Secure 
Operation of the Module must be followed by the module operator. The module does 
not enforce the FIPS 140-2 mode of operation. 

Table 10 Generated Key Sizes and Strength

Key Type Key Size Security Strength
Required DRBG 
Security Strength

AES Key 128, 192, 256 128, 192, 256 128, 192, 256

Triple-DES 3-Key 192 112 112

RSA Key Pair  2048, 3072 112, 128 112, 128

DSA Key Pair 2048, 3072, 4096 112, 128, 128 112, 128, 128

EC Key Pair 224, 256, 384, 521 112, 128, 192, 256 112, 128, 192, 256
36 Secure Operation of the Module



3 Acronyms

The following table lists the acronyms used with the JCM and their definitions.

Table 11 Acronyms used with the JCM

Acronym Definition

3DES Refer to Triple-DES

AD Authenticated Decryption. A function that decrypts purported ciphertext 
and verifies the authenticity and integrity of the data.

AE Authenticated Encryption. A block cipher mode of operation which 
provides a means for the authenticated decryption function to verify the 
authenticity and integrity of the data. 

AES Advanced Encryption Standard. A fast block cipher with a 128-bit block, 
and keys of lengths 128, 192 and 256 bits. This will replace DES as the 
US symmetric encryption standard.

API Application Programming Interface.

Attack Either a successful or unsuccessful attempt at breaking part or all of a 
crypto-system. Attack types include an algebraic attack, birthday attack, 
brute force attack, chosen ciphertext attack, chosen plaintext attack, 
differential cryptanalysis, known plaintext attack, linear cryptanalysis, 
middleperson attack and timing attack.

BPS BPS is a format preserving encryption mode. 
BPS stands for Brier, Peyrin and Stern, the inventors of this mode.

CBC Cipher Block Chaining. A mode of encryption in which each ciphertext 
depends upon all previous ciphertexts. Changing the IV alters the 
ciphertext produced by successive encryptions of an identical plaintext.

CFB Cipher Feedback. A mode of encryption that produces a stream of 
ciphertext bits rather than a succession of blocks. In other respects, it has 
similar properties to the CBC mode of operation.

CKG Cryptographic Key Generation.

CRNG Continuous Random Number Generation.

CSP Critical Security Parameters.

CTR Counter mode of encryption, which turns a block cipher into a stream 
cipher. It generates the next keystream block by encrypting successive 
values of a counter.

CTS Cipher Text Stealing. A mode of encryption which enables block ciphers 
to be used to process data not evenly divisible into blocks, without the 
length of the ciphertext increasing.
Acronyms 37



DES Data Encryption Standard. A symmetric encryption algorithm with a 
56-bit key.

DH, 
Diffie-Hellman

The Diffie-Hellman asymmetric key exchange algorithm. There are many 
variants, but typically two entities exchange some public information (for 
example, public keys or random values) and combines them with their 
own private keys to generate a shared session key. As private keys are not 
transmitted, eavesdroppers are not privy to all of the information that 
composes the session key.

DPK Data Protection Key.

DRBG Deterministic Random Bit Generator.

DSA Digital Signature Algorithm. An asymmetric algorithm for creating 
digital signatures.

EC Elliptic Curve.

ECB Electronic Code Book. A mode of encryption in which identical 
plaintexts are encrypted to identical ciphertexts, given the same key.

ECC Elliptic Curve Cryptography.

ECDH Elliptic Curve Diffie-Hellman.

ECDHC Elliptic Curve Cryptography Diffie-Hellman 

ECDSA Elliptic Curve Digital Signature Algorithm.

ECIES Elliptic Curve Integrated Encryption Scheme.

Encryption The transformation of plaintext into an apparently less readable form 
(called ciphertext) through a mathematical process. The ciphertext may 
be read by anyone who has the key that decrypts (undoes the encryption) 
the ciphertext.

FFC Finite Field Cryptography

FIPS Federal Information Processing Standards.

FPE Format Preserving Encryption.

HKDF HMAC-based Extract-and-Expand Key Derivation Function.

HMAC Keyed-Hashing for Message Authentication Code.

IV Initialization Vector. 
Used as a seed value for an encryption operation.

JCE Java Cryptography Extension. 

JVM Java Virtual Machine. 

Table 11 Acronyms used with the JCM (continued)

Acronym Definition
38 Acronyms



KAT Known Answer Test.

KDF Key Derivation Function. Derives one or more secret keys from a secret 
value, such as a master key, using a pseudo-random function.

Key A string of bits used in cryptography, allowing people to encrypt and 
decrypt data. Can be used to perform other mathematical operations as 
well. Given a cipher, a key determines the mapping of the plaintext to the 
ciphertext. Various types of keys include: distributed key, private key, 
public key, secret key, session key, shared key, subkey, symmetric key, 
and weak key.

KW AES Key Wrap.

KWP AES Key Wrap with Padding

MD5 A secure hash algorithm created by Ron Rivest. MD5 hashes an 
arbitrary-length input into a 16-byte digest.

NIST National Institute of Standards and Technology. A division of the US 
Department of Commerce (formerly known as the NBS) which produces 
security and cryptography-related standards.

OFB Output Feedback. A mode of encryption in which the cipher is decoupled 
from its ciphertext.

OS Operating System.

PBE Password-Based Encryption.

PBKDF Password-Based Key Derivation Function.

PC Personal Computer.

private key The secret key in public key cryptography. Primarily used for decryption 
but also used for encryption with digital signatures.

PRNG Pseudo-random Number Generator.

RC2 Block cipher developed by Ron Rivest as an alternative to the DES. It has 
a block size of 64 bits and a variable key size. It is a legacy cipher and 
RC5 should be used in preference.

RC4 Symmetric algorithm designed by Ron Rivest using variable length keys 
(usually 40 bit or 128 bit).

RC5 Block cipher designed by Ron Rivest. It is parameterizable in its word 
size, key length and number of rounds. Typical use involves a block size 
of 64 bits, a key size of 128 bits and either 16 or 20 iterations of its round 
function.

RNG Random Number Generator.

Table 11 Acronyms used with the JCM (continued)

Acronym Definition
Acronyms 39



4 Change Summary

11 March 2020 Addition - Section 2.3.1 Crypto User Guidance on Algorithms
The JCM is affected by CVE-2019-3738 (Missing Required 
Cryptographic Step).

24 August 2020 Update - Preface - Notice of Dell acquisition
Update - Section 2.1 Module Configuration - path change.

RSA Public key (asymmetric) algorithm providing the ability to encrypt data 
and create and verify digital signatures. RSA stands for Rivest, Shamir, 
and Adleman, the developers of the RSA public key crypto-system.

SHA Secure Hash Algorithm. An algorithm which creates a hash value for 
each possible input. SHA takes an arbitrary input which is hashed into a 
160-bit digest.

SHA-1 A revision to SHA to correct a weakness. It produces 160-bit digests. 
SHA-1 takes an arbitrary input which is hashed into a 20-byte digest.

SHA-2 The NIST-mandated successor to SHA-1, to complement the Advanced 
Encryption Standard. It is a family of hash algorithms (SHA-256, 
SHA-384 and SHA-512) which produce digests of 256, 384 and 512 bits 
respectively.

Shamir Secret 
Sharing

A form of secret sharing where a secret is divided into parts, and each 
participant is given a unique part. Some or all of the parts are needed to 
reconstruct the secret. This is also known as a (k,n) threshold scheme 
where any k of the n parts are sufficient to reconstruct the original secret.

TDES Refer to Triple-DES.

TLS Transport Layer Security.

Triple-DES A symmetric encryption algorithm which uses either two or three DES 
keys. The two key variant of the algorithm provides 80 bits of security 
strength while the three key variant provides 112 bits of security strength.

Table 11 Acronyms used with the JCM (continued)

Acronym Definition
40 Change Summary


	RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.2.4 Security Policy Level 1
	Preface
	Terminology
	Document Organization

	1 The Cryptographic Module
	1.1 Introduction
	1.2 Module Characteristics
	1.3 Module Interfaces
	1.4 Roles and Services
	1.5 Cryptographic Key Management
	1.6 Cryptographic Algorithms
	1.7 Self-tests

	2 Secure Operation of the Module
	2.1 Module Configuration
	2.2 Security Roles, Services and Authentication Operation
	2.3 Crypto User Guidance
	2.4 Crypto Officer Guidance
	2.5 Operating the Cryptographic Module

	3 Acronyms
	4 Change Summary

