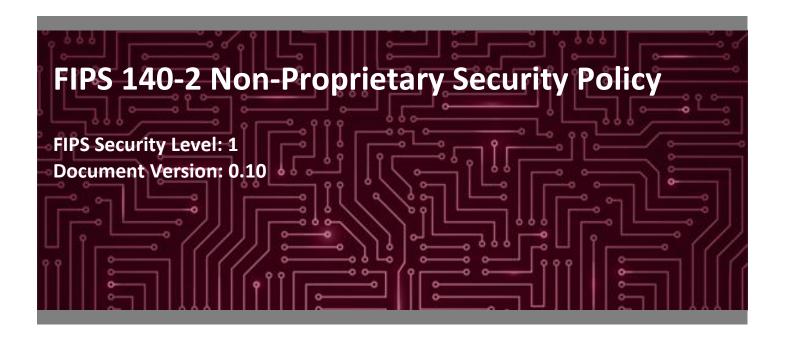
Hewlett Packard Enterprise Development LP


HPE Gen9 Smart Array P-Class RAID Controllers

Hardware Models: P240nr, P440, P440ar, P542D, and P840

Firmware Version: 6.06

HPE Gen9 Smart HBA H-Class Adapter

Hardware Model: H240nr Firmware Version: 6.06

Prepared for:

Hewlett Packard Enterprise Development LP 11445 Compaq Center Dr. W.

Houston, TX 77070 United States of America

Phone: +1 281 370 0670

www.hpe.com

Prepared by:

Corsec Security, Inc.

13921 Park Center Road Suite 460 Herndon, VA 20171 United States of America

Phone: +1 703 267 6050 www.corsec.com

Table of Contents

1.	Intro	duction	4									
	1.1	Purpose	4									
	1.2	References										
	1.3	Document Organization	4									
2.	Gen9	Gen9 Smart Devices5										
	2.1 Overview											
	2.2	Module Specification										
	2.3	Module Interfaces										
	2.4	Roles, Services, and Authentication										
		2.4.1 Authorized Roles										
		2.4.2 Module Services										
		2.4.3 Authentication Mechanisms										
	2.5	Physical Security										
	2.6	Operational Environment										
	2.7	·										
	2.8	- 110 -110										
	2.9	Self-Tests										
		2.9.1 Power-Up Self-Tests	17									
		2.9.2 Conditional Self-Tests	17									
		2.9.3 Critical Functions Self-Tests	17									
	2.10	.0 Mitigation of Other Attacks										
3.	Secur	re Operation	19									
	3.1	Installation and Setup	19									
		3.1.1 Initial Setup	19									
	3.2	Crypto Officer Guidance	21									
		3.2.1 Management	21									
		3.2.2 Monitoring Status	21									
		3.2.3 Zeroization	21									
	3.3	User Guidance										
	3.4	Additional Usage Policies										
	3.5	Non-Approved Mode										
4.	Acror	nyms	23									

List of Tables

Table 1 – Security Level per FIPS 140-2 Section	8
Table 2 – Controller Form Factor/Processor Configurations	10
Table 3 – FIPS-Approved Algorithm Implementations	10

Table 4 – FIPS 140-2 Logical Interface Mappings	11
Table 5 – Mapping of Operator Services to Inputs, Outputs, CSPs, and Type of Access	
Table 6 – Unallocated Services	14
Table 7 – Authentication Mechanism	15
Table 8 – List of Cryptographic Keys, Cryptographic Key Components, and CSPs	16
Table 9 – Acronyms	

List of Figures

Figure 1 – H240nr Adapter	6
Figure 2 – P240nr Controller	
Figure 3 – P440 Controller	
Figure 4 – P440ar Controller	7
Figure 5 – P542D Controller	
Figure 6 – P840 Controller	7
Figure 7 – Gen9 Smart Devices Block Diagram	9

Introduction

1.1 **Purpose**

This is a non-proprietary Cryptographic Module Security Policy for the HPE Gen9 Smart Array P-Class RAID Controllers (Hardware Models: P240nr, P440, P440ar, P542D, and P840; Firmware Version: 6.06) and HPE Gen9 Smart HBA H-Class Adapter (Hardware Model: H240nr; Firmware Version: 6.06) by Hewlett Packard Enterprise Development LP. This Security Policy describes how the HPE Gen9 Smart Array P-Class RAID Controllers and HPE Gen9 Smart HBA H-Class Adapter meet the security requirements of Federal Information Processing Standards (FIPS) Publication 140-2, which details the U.S. and Canadian Government requirements for cryptographic modules. More information about the FIPS 140-2 standard and validation program is available on the National Institute of Standards and Technology (NIST) and the Communications Security Establishment (CSE) Cryptographic Module Validation Program (CMVP) website at http://csrc.nist.gov/groups/STM/cmvp.

This document also describes how to run the module in a secure FIPS-Approved mode of operation. This policy was prepared as part of the Level 1 FIPS 140-2 validation of the module. The HPE Gen9 Smart Array P-Class RAID Controllers and HPE Gen9 Smart HBA H-Class Adapter are referred to in this document collectively as "Gen9 Smart Devices", "controllers", or "modules".

References 1.2

This document deals only with operations and capabilities of the modules in the technical terms of a FIPS 140-2 cryptographic module security policy. More information is available on the modules from the following sources:

- The HPE website (www.hpe.com) contains information on the full line of products from HPE.
- The CMVP website (http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-all.htm) contains contact information for individuals to answer technical or sales-related questions for the module.

1.3 **Document Organization**

The Security Policy document is organized into two (2) primary sections. Section 2 provides an overview of the validated modules. This includes a general description of the capabilities and the use of cryptography, as well as a presentation of the validation level achieved in each applicable functional areas of the FIPS standard. It also provides high-level descriptions of how the modules meet FIPS requirements in each functional area. Section 3 documents the guidance needed for the secure use of the module, including initial setup instructions and management methods and policies.

2. Gen9 Smart Devices

2.1 Overview

The Gen9 Smart Devices make up a family of serial-attached SCSI¹ host bus adapters that provide intelligent control for storage arrays. The Gen9 Smart Devices can be card-based or embedded within an HPE server, and provide a high-speed data path, on-board storage cache, remote management, and encryption of data at rest, for the controlled storage arrays. Additional drives can be easily added to increase throughput. The purpose of the Gen9 Smart Devices is to transform an application's high-level 'read' or 'write' disk operations into the individual instructions required for a RAID² array using an embedded RAID-on-Chip (ROC) processor. Disk operations are protected in transit via the Gen9 Smart Devices' on-board memory cache that acts as a buffer for disk input/output operations. When a controller detects a power loss, any data in the cache is written to the flash memory for retrieval when the power returns.

Caching allows the Gen9 Smart Devices to use write-back caching that informs the operating system of a completed write when data is written to the cache instead of waiting until it is written to disk. Gen9 Smart Devices also implement a read-ahead caching algorithm that detects sequential read activity and predicts when a sequential-read will follow. This allows the controller to anticipate data needs and reduce wait times. The read-ahead caching is disabled when a non-sequential read activity is detected to reduce any slowdown for random read requests. Note that, while the Gen9 Smart Devices all share the same cryptographic capabilities, only the HPE Gen9 Smart Array P-Class RAID Controllers support the RAID manipulation and accelerated read-ahead/write-back caching functionality described above.

While each controller contains a PCle³ connector, multiple serial attached SCSI (SAS) ports, and a cryptographic state LED⁴, the Gen9 Smart Devices can be delivered in a variety of form factors for use with the HPE ProLiant Gen9 server platform (see Figure 1 through Figure 6 below). HPE ProLiant Gen9 servers include the HPE Smart Storage Administrator (SSA) GUI⁵, which is the main tool for configuring arrays on Smart Array controllers. For a list of servers compatible with the Gen9 Smart Devices, refer to the HP Smart Array Controllers and Smart Host Bus Adapters for HP ProLiant Servers compatibility matrix datasheet.

¹ SCSI – Small Computer System Interface

² RAID - Redundant Array of Independent Disks

³ PCIe – Peripheral Component Interconnect Express

⁴ LED – Light Emitting Diode

⁵ GUI – Graphical User Interface

Figure 1 – H240nr Adapter

Figure 2 – P240nr Controller

Figure 3 - P440 Controller

Figure 4 – P440ar Controller

Figure 5 - P542D Controller

Figure 6 - P840 Controller

The Gen9 Smart Devices provide encryption for data at rest. Each controller includes a PMC-Sierra ASIC⁶ that generates the keys to be used for encryption. The Gen9 Smart Devices utilize a front-end strategy to encrypt all host data. Data from the host first enters the encryption engine before moving to the cache module and then to the RAID storage. The Gen9 Smart Devices also include a key management framework for managing disk encryption keys. Each logical drive in the storage array is encrypted with its own disk encryption key. These keys are then encrypted with a second key for storage on the drive. Smart Array stores keys in encrypted form in multiple locations to provide data storage that is secure and mobile. The Gen9 Smart Devices are validated at the FIPS 140-2 section levels shown in Table 1.

Section **Section Title** Level 1 Cryptographic Module Specification 1 Cryptographic Module Ports and Interfaces 2 1 3 Roles, Services, and Authentication 2 4 Finite State Model 1 5 **Physical Security** 1 6 **Operational Environment** N/A 7 Cryptographic Key Management 1 EMI/EMC7 8 1 9 Self-tests 1 10 Design Assurance 2 Mitigation of Other Attacks N/A 11

Table 1 - Security Level per FIPS 140-2 Section

2.2 Module Specification

Each controller is a hardware module with a multiple-chip embedded embodiment. The overall security level of the modules is 1. Each controller consists of a printed circuit board (PCB) with connectors, making up the modules' physical cryptographic boundary. Each module includes the Smart Array firmware v6.06 and Express Logic's ThreadX RTOS⁸ v5.6.

The modules are primarily composed of the following components:

- PMC-Sierra 806x ROC processor
- Flash NVRAM⁹
- Dual in-line memory (DIMM) module
- Bootstrap and Crypto NVRAM
- SAS Support Logic module
- PCle connector
- A multistate LED

⁶ ASIC – Application-Specific Integrated Circuit

⁷ EMI/EMC – Electromagnetic Interference / Electromagnetic Compatibility

⁸ RTOS – Real-Time Operating System

⁹ NVRAM – Non-Volatile Random Access Memory

A block diagram of the Gen9 Smart Devices, including major physical components and logical interfaces, is provided as Figure 7. Note that there are Manufacturing NVRAM, Local NVRAM, and SAS Mfg ID NVRAM components that do not process any cryptographic information.

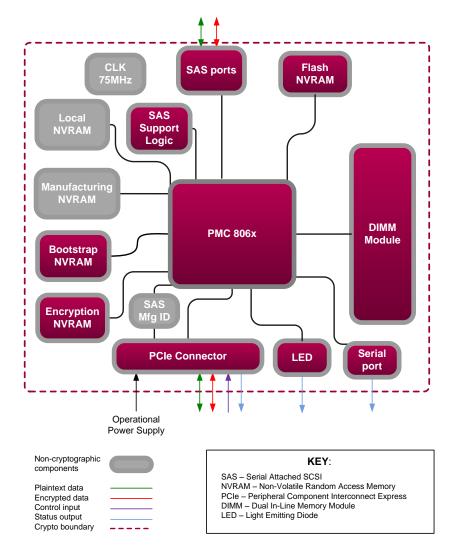


Figure 7 - Gen9 Smart Devices Block Diagram

These components appear in a variety of physical layouts depending on the module form factor. Table 2 below provides details regarding the form factor and embedded ROC for each controller model.

Table 2 - Controller Form Factor/Processor Configurations

Controller Model	Form Factor	Embedded ROC
H240nr	Flexible card (SAS HBA ¹⁰)	PMC-Sierra 8062
P240nr	Flexible card (daughterboard)	PMC-Sierra 8062
P440	Stand-up PCIe plugin card	PME-Sierra 8061
P440ar	Flexible card (daughterboard)	PME-Sierra 8061
P542D	Mezzanine card	PMC-Sierra 8064
P840	Stand-up PCIe plugin card	PMC-Sierra 8064

The Gen9 Smart Devices implement the FIPS-Approved algorithms listed in Table 3 below.

Table 3 - FIPS-Approved Algorithm Implementations

CAVP Certificate		Almorathum			Key Lengths,		
PM8064	PM8062	PM8061	Algorithm	Standard	Mode/Method	Curves or Moduli	Use
W2004	#2002	#2002	A F.C.11	FIPS PUB 197	ECB ¹²	256	data encryption/decryption
#2904	#2904 #2903 #2902	#2902	AES ¹¹	NIST SP ¹³ 800-38E	XTS ^{14,15,16}	256	data encryption/decryption
Vendor Affirmed	Vendor Affirmed	Vendor Affirmed	CKG ¹⁷	NIST SP 800-133	-	-	cryptographic key generation
#531	#530	#529	DRBG ¹⁸	NIST SP 800-90A	CTR_based	-	deterministic random bit generation
#1839	#1838	#1837	HMAC ¹⁹	FIPS PUB 198-1	SHA-256	-	message authentication
Vendor Affirmed	Vendor Affirmed	Vendor Affirmed	PBKDF ²⁰	NIST SP 800-132	PBKDF2	-	password-based key derivation
#2444	#2443	#2442	SHS ²¹	FIPS PUB 180-4	SHA-256	-	message digest

Note: AES XTS is only Approved for storage applications.

¹⁰ HBA – Host Bus Adapter

¹¹ AES – Advanced Encryption Standard

¹² ECB – Electronic Codebook

¹³ SP – Special Publication

¹⁴ XTS – XEX-Based Tweaked-Codebook Mode with Ciphertext Stealing

¹⁵ XEX – XOR-Encrypt-XOR

¹⁶ XOR – Exclusive Or

¹⁷ CKG – Cryptographic Key Generation

¹⁸ DRBG – Deterministic Random Bit Generator

¹⁹ HMAC – Hash Message Authentication Code

²⁰ PBKDF – Password-Based Key Derivation Function

²¹ SHS – Secure Hash Standard

The modules use the FIPS-Approved counter-based DRBG specified in NIST SP 800-90A to generate cryptographic keys. The resulting symmetric key or generated seed is an unmodified output from the DRBG. The modules also include the FIPS-Approved Password-Based Key Derivation Function option 2 (PBKDF2) specified in NIST SP 800-132 as a key establishment technique. Passwords for authorized operators shall be at least eight characters in length to ensure a sufficient strength for the PBKDF-derived keys. Keys derived from the PBKDF function shall only be used for storage applications.

The Gen9 Smart Devices also employ the following non-Approved algorithm(s):

 Non-Deterministic Random Number Generator (NDRNG) which uses free-running oscillators, linear feedback shift registers, and a hash/mixing function to generate entropy for the counter-based DRBG.

2.3 Module Interfaces

The modules' physical ports can be categorized into the following logical interfaces defined by FIPS 140-2:

- Data Input Interface
- Data Output Interface
- Control Input Interface
- Status Output Interface

Table 4 lists the modules' physical interfaces and maps them to the FIPS-required logical interfaces.

Device Physical Port/Interface Quantity FIPS 140-2 Logical Interface PCle Connector 1 Data Input, Data Output, Control Input, Status Output SAS port(s) 1 x 4 internal Data Input, Data Output P240nr Multistate LED Status Output Serial port 1 Status Output PCle Connector Data Input, Data Output, Control Input, Status Output 1 SAS port(s) 1 x 4 external Data Input, Data Output P440

Table 4 - FIPS 140-2 Logical Interface Mappings

Device	Physical Port/Interface	Quantity	FIPS 140-2 Logical Interface
	SAS port(s)	2 x 8 internal	Data Input, Data Output
	Multistate LED	1	Status Output
	Serial port	1	Status Output
	PCle Connector	1	Data Input, Data Output, Control Input, Status Output
11240	SAS port(s)	1 x 4 internal	Data Input, Data Output
H240nr	Multistate LED	1	Status Output
	Serial port	1	Status Output

2.4 Roles, Services, and Authentication

This section describes the authorized operator roles supported by the module, the services available to authorized operators, and module's supported authentication mechanisms.

2.4.1 Authorized Roles

There are two roles that operators may assume: Crypto Officer (CO) and User. Operator roles are assumed explicitly by means of a username and password. The module does not support multiple concurrent operators.

2.4.2 Module Services

Operator services are listed and described in Table 5. Please note that the keys and Critical Security Parameters (CSPs) listed in the table indicate the type of access required using the following notation:

- R Read: The CSP is read.
- **W Write**: The CSP is established, generated, modified, or zeroized.
- X Execute: The CSP is used within an Approved or Allowed security function or authentication mechanism.

Table 5 – Mapping of Operator Services to Inputs, Outputs, CSPs, and Type of Access

Service ²²	Ope	rator	Description	Innut	Outros.	CSD and Time of Access
Service	со	User	Description	Input	Output	CSP and Type of Access
Initialize module	х		Configure the module for operation	Command and password	Command response and status output	CO password – W, X
Set/reset Local Master Key	х		Set or reset Local Master Key	Command and password	Command response and status output	Local Master Key – W Local Master Key name – R, X CO password – X

²² While the "Perform data transformations", "Show status" and "Perform self-test" services are allocated to the Crypto Officer and User roles, module operators are <u>not</u> required to assume an authorized role to perform these services, as these services do not affect the security of the module (refer to FIPS Implementation Guidance 5.2 for details).

2 . 22	Operator					
Service ²²	со	User	Description	Input	Output	CSP and Type of Access
Enable encryption	х		Turn encryption on for the controller as part of initialization	Command and password	Command response and status output	DEK ²³ – R, X CO password – X
Enable User role	x		Create User and assign a password	Command and password	Command response and status output	User password – W CO password – X
Set key management mode	x		Select key management mode on GUI	Command and password	Command response and status output	Local Master Key – R, W, X CO password – X
Rekey volume key	х		Rekey DEK	Command and parameters	Command response	DEK – R, W CO password – X
Set password	x	х	Change operator password	Command	Command response and status output	CO password – W User password – W
Lock firmware	х	х	Lock firmware so that it cannot be flashed	Command	Command response	CO password – X User password – X
Disallow plaintext logical drive creation	х		Inhibit the creation of plaintext logical drives	Command	Command response and status output	CO password – X
Set volatile encryption key storage mode	х		Set the encryption key for the specified logical drive to be volatile or stored on disk	Command	Command response and status output	None
Perform Instant Secure Erase	x	x	Performs a secure erase operation on an encrypted logical volume	Command and parameters	Command response and status output	None
Perform data transformations	x	x	Modify the distribution or contents of one or more logical drives, including:	Command	Command response and status output	DEK – R, X

²³ DEK – Data Encryption Key (also referred to as the "Volume Encryption Key" in HPE documentation)

Comptee 22	Оре	rator	Bernsteiler	Lund	Outurn	CCD I T C A
Service ²²	со	User	Description	Input	Output	CSP and Type of Access
Convert plaintext volume to encrypted volume	х	x	Perform plaintext-to- encrypted volume conversion	Command and parameters	Command response and status output	CTR_DRBG entropy input – R, X CTR_DRBG seed – R, X DEK – R, X
Reset CO password	х		Allow CO to reset password by answering a preset security question	Command	Command response and status output	CO password – R, W
Clear encryption	х	х	Zeroize all CSPs	Command	Command response and status output	All CSPs – W
Show status	х	х	Show status through LEDs and the Encryption Manager GUI page	None	Status output	None
Perform self-tests	х	х	Run all power-up self- tests	Reboot controller	Status output	None

The module also offers services that do not require the assumption of an authorized role. These services are listed and described in Table 6. Note that these services do not affect the security of the module, nor do they modify, disclose, or substitute any keys or CSPs.

Table 6 – Unallocated Services

Service	Description	Input	Output
Show Master Key reset date	Provide the date of when the Master key was last reset	Command	Status output
Show Drive or Volume Key "last rekey" date	Provide the date when the Drive or Volume Key was last rekeyed	Command	Status output
Check encryption status	Indicate the module's encryption status	Command	Status output
Reboot the controller	Reboot the controller	Reboot controller	Status output

2.4.3 Authentication Mechanisms

The modules support role-based authentication. Module operators must input a password when requesting the services listed in Table 5. Each command is passed to the module with the associated operator password. The module verifies the password to ensure the operator is authorized to perform the requested command. Table 7 lists the strength of the authentication mechanism used by the modules.

Table 7 - Authentication Mechanism

Authentication Type	Strength
Username/Password	The minimum length of the password is 8 characters, with 94 different case-sensitive alphanumeric characters and symbols possible for usage. The module imposes character type and case restrictions so that the password must have a number, upper case letter, lower case letter, and special character. The remaining 4 characters could be any of the 94 choices.
	The chance of a random attempt falsely succeeding is
	= 1 : (10*26*26*32*94 ⁴), or 1 : 16,889,161,502,720;
	which is less than 1:1,000,000 as required by FIPS 140-2.
	In addition, the module imposes a restriction on the number of passwords that can be entered into the module. After ten failures, there is a 15-minute delay before another attempt can be made. So, in effect and at most, 10 passwords can be tried per 15 minutes. The probability that a random attempt will succeed or a false acceptance will occur in one minute is
	= 1 : (16,889,161,502,720 possible passwords / 10 passwords per minute)
	= 1 : 16.8891 x 10 ¹¹
	which is less than 1:100,000 as required by FIPS 140-2.

2.5 Physical Security

The Gen9 Smart Devices are multiple-chip embedded cryptographic modules. Each module consists of production-grade components that include standard passivation techniques.

2.6 Operational Environment

The modules employ a non-modifiable operating environment. Only the modules' firmware (version 6.06) is executed by the module's PMC processor. The modules do not provide a general-purpose operating system to module operators.

2.7 Cryptographic Key Management

The controllers offer two key management modes: local or remote. In local mode, the modules generate and store all of its keys. For Approved mode operation, the modules shall be configured to operate in local key management mode. Please refer to section 3.1 below for the required configuration steps.

Table 8 below describes the keys and CSPs supported by the modules.

Table 8 – List of Cryptographic Keys, Cryptographic Key Components, and CSPs

CSP	CSP Type	Generation / Input	Output	Storage	Zeroization	Use
DEK	256-bit AES-XTS key	Generated internally	Never exits the module	Stored in plaintext in volatile DIMM module	Reboot Logical drive deleted	Used for encryption and decryption of logical drives
Crypto Officer password	8 – 16 character password	Entered electronically	Never exits the module	Stored in encrypted form in NVRAM Stored in plaintext in volatile DIMM module	Return to factory reset Reboot	Used for authenticating Crypto Officer role operators
User password	8 – 16 character password	Entered electronically	Never exits the module	Stored in encrypted form in NVRAM Stored in plaintext in volatile DIMM module	Return to factory reset Reboot	Used for authenticating User role operators
CTR_DRBG seed	384-bit random value	Generated internally	Never exits the module	Stored temporarily in volatile DIMM module in plaintext	Automatically upon completion of CTR_DRBG seed operation	Used to seed the CTR_DRBG
CTR_DRBG entropy input	256-bit random value	Generated internally	Never exits the module	Stored temporarily in volatile DIMM module in plaintext	Automatically upon completion of CTR_DRBG seed operation	Used in the process of generating a random number
Local Master Key	256-bit AES key	Derived as per SP 800- 132 using PBKDF (with HMAC SHA-256)	Never exits the module	Stored in plaintext in NVRAM	Return to factory reset	Used for encryption and decryption of DEKs
Local Master Key name	10 – 64 character string	Generated externally and entered electronically	Never exits the module	Stored in plaintext in NVRAM	Return to factory reset	Used as input to PBKDF for generating the Local Master Key

2.8 **EMI / EMC**

The Gen9 Smart Devices were tested and found conformant to the EMI/EMC requirements specified by 47 Code of Federal Regulations, Part 15, Subpart B, Unintentional Radiators, Digital Devices, Class A (business use).

2.9 Self-Tests

Cryptographic self-tests are performed by each module when first powered up as well as when a random number is generated. The following sections list the self-tests performed by the modules, their expected error status, and error resolutions.

2.9.1 Power-Up Self-Tests

The modules perform the following self-tests at power-up:

- Firmware integrity check a 32-bit Cyclic Redundancy Check (CRC)
- Known Answer Tests (KATs)
 - AES-ECB encrypt KAT
 - AES-ECB decrypt KAT
 - AES-XTS encrypt KAT
 - AES-XTS decrypt KAT
 - o SHA-256 KAT
 - HMAC SHA-256 KAT
 - CTR DRBG KAT

If any of these self-test fail, encrypted drives are taken offline, and the modules enter a critical error state. An error message of the failure is logged.

2.9.2 Conditional Self-Tests

The modules perform the following conditional self-tests:

- Continuous RNG for NDRNG
- Continuous RNG for CTR DRBG

If any of the RNG conditional self-tests fail, the modules enter a critical error and all cryptographic operations are halted. An error message of each failure is logged.

2.9.3 Critical Functions Self-Tests

The DRBG Instantiate, Generate, and Reseed Tests, which are described in SP 800-90A, are performed by the modules at start-up and at any time the DRBG is instantiated. A failure of any of these tests will result in a critical error for the DRBG, requiring that the modules be replaced. When the DRBG is in error, no new keys can be generated.

The modules also conditionally perform a duplicate key test to ensure that its parsed AES-XTS keys are distinct. Failure of this test will result in a transition to a transitory, recoverable error state. In this state, no cryptographic

processing can take place and data output is prohibited. Clearing this error state consists of the controllers generating a new XTS key for comparison. When the new key is generated, the modules will re-run the duplicate key test using the new key until successful.

2.10 Mitigation of Other Attacks

This section is not applicable. The modules do not claim to mitigate any attacks beyond the FIPS 140-2 Level 1 requirements for this validation.

3. Secure Operation

The Gen9 Smart Devices meet Level 1 requirements for FIPS 140-2. The sections below describe how to place and keep the modules in FIPS-Approved mode of operation.

3.1 Installation and Setup

The H240nr, P240nr, P440ar, and P542D are pre-installed in the target server, while the P440 and P840 controllers must be installed in a supported server. The *HPE Smart Array Controllers User Guide for HPE ProLiant Gen9 Servers* include the steps to install the Gen9 Smart Devices in a supported server.

The modules are delivered in a non-operational factory state. The CO is responsible for installation (as applicable), initialization, and security-relevant configuration and management activities for each module. Since the modules must be configured for encrypted use only, the CO should first determine that no plaintext volumes are present at the time of initialization. If no plaintext volumes are present, the CO may begin performing the initialization steps described below. If plaintext volumes are present, the CO shall convert all plaintext volumes to encrypted volumes prior to performing those steps.

Configuration and management of the modules must be performed using the underlying server's Smart Storage Administrator (SSA) Secure Encryption GUI. The commands and buttons used in this interface translate to commands that enter the modules over the PCIe bus.

To initialize the modules for their Approved mode of operation, the CO must:

- 1. Set the CO password, key management mode, encryption mode, and disallow plaintext volumes²⁴
- 2. Enable volatile data encryption keys
- 3. Enable the User role
- 4. Verify and lock the firmware

Additional guidance for performing these tasks (including the plaintext-to-encrypted volume conversion) using the SSA GUI can be found in the HPE Secure Encryption Installation and User Guide.

3.1.1 Initial Setup

To initialize the modules, the CO must start the HPE SSA utility. Then the CO shall follow the steps below to complete the initial setup.

- Set the CO password, key management mode, and encryption mode, and disallow plaintext volumes
 - 1. Select the controller to be configured and click **Configure**.
 - 2. Under Tools, click Encryption Manager.
 - 3. Select "Perform Initial Setup". This will display the **Perform Initial Setup** screen.

²⁴ Operators have the ability to move plaintext volumes via the unallocated service "Perform data transformations". Once the modules are configured for FIPS operation, plaintext volumes shall not be allowed and shall not be moved to the controller.

- 4. Under Create Crypto Officer Password, click Show.
- 5. Enter (then re-enter) the desired password in the **New Password** fields. The CO password is required to be at least 8 characters.
- 6. Under Encryption Mode, select "Enable and Disallow Future Plaintext Volumes".
- 7. Under **Master Key**, enter the Master Key name in the field provided.
- 8. Under **Key Management Mode**, select "Local Key Management Mode".
- 9. Click **OK**.

When configured for local key management mode, the password will be used to generate the Local Master Key.

Enable volatile data encryption keys

- 1. Select the controller to be configured and click **Configure**.
- 2. Under **Controller Devices**, click **Arrays** and select a logical drive.
- 3. Under Actions, click Encryption Volatile Key.
- 4. A new window appears. Select "Enabled". To continue, click **OK**.
- **5.** A warning window appears. To continue, click **Yes**.
- 6. A summary page appears, confirming that volatile keys are enabled. continue, click Finish.

A banner will appear over the HPE SSA main menu, indicating that volatile keys are enabled for the selected controller and will remain while volatile keys are enabled. The CO shall ensure that volatile data encryption keys are enabled on all logical drives.

• Enable the User role

- 1. Select the controller to be configured and click **Configure**.
- 2. Under Tools, click Encryption Manager.
- 3. Select "Set/Change User Password". This will display the **Set/Change User Password** screen.
- 4. Under **New Password**, click **Show**.
- 5. Enter (then re-enter) the desired password in the **New Password** fields. User password is required to be at least 8 characters.
- 6. Click **OK**.

Verify and lock firmware

The modules require the proper firmware version be installed. To check if a module is currently running the correct version, the CO must go to the GUI's **More Info** page.

If the version is not 6.06, the firmware must be updated to the 6.06 version. To perform a firmware update, the updated firmware must be imported and applied to the controller. The controller will verify the firmware signature and then perform the update.

Once the firmware version is set to 6.06, the CO must lock the firmware. The firmware can be locked using the GUI's **Encryption Manager** page by clicking the 'Lock Firmware' link. Locking the firmware prevents any further updates to the firmware and ensures that the module is operating with the validated firmware.

When all of the above steps are successfully completed, the modules will be configured in their Approved mode of operation.

3.2 Crypto Officer Guidance

The Crypto Officer is responsible for ensuring that the modules are operating in their FIPS-Approved mode of operation.

3.2.1 Management

When configured according to the Crypto Officer guidance in this Security Policy, the modules only run in their Approved mode of operation. Detailed instructions to manage and troubleshoot the modules are provided in the HPE Secure Encryption Installation and User Guide.

3.2.2 Monitoring Status

The Crypto Officer should monitor the modules' status regularly for Approved mode of operation. When configured according to the Crypto Officer's guidance, the modules only operate in the Approved mode.

To monitor encryption status, each controller has an encryption LED that will be on to show that encryption is enabled and that all attached logical drives are encrypted. In addition, the SSA GUI will indicate a controller's encryption status on the **Encryption Manager** page in the section marked **Settings**. When properly configured, the controller's encryption status will be shown as "Enabled". All attached logical drives shall have a lock icon next to them, indicating that they are encrypted drives. The CO shall ensure that only encrypted drives are attached.

Detailed instructions to monitor and troubleshoot the controllers are provided in the *HPE Secure Encryption Installation and User Guide*.

3.2.3 Zeroization

In order to zeroize all keys and CSPs, the modules must be returned to the factory mode. To zeroize the module, the module operator must start the HPE SSA GUI and select the controller to be cleared. Then, the operator shall follow the steps below to complete the zeroization process:

- 1. Under Actions, click Clear Configuration.
- 2. A new window appears, confirming the request to clear the controller's configuration. To continue, click **Clear**.
- 3. A new window appears, displaying controller settings and configuration. To continue, click **Finish**.
- 4. Click Configure.
- 5. Under Tools, click Encryption Manager.
- 6. Log into the **Encryption Manager**.
- 7. Under Utilities, click Clear Encryption Configuration.

Clearing all encryption settings clears all secrets, keys, CSPs, and passwords from the controller. The controller will need to be re-initialized to return to operation.

User Guidance 3.3

The User can reset his or her password and shall be responsible for ensuring that the new password meets the criteria listed in Section 3.1. A User can also perform zeroization as discussed in 3.2.3 and view the controller's encryption status using the methods discussed in 3.2.2.

3.4 **Additional Usage Policies**

This section notes additional policies below that must be followed by module operators:

- HPE SSA exists in three interface formats: the HPE SSA GUI²⁵, the HPE SSA CLI²⁶, and the HPE SSA Scripting Interface. The Crypto Officer shall configure, monitor, and manage the modules through the SSA GUI only.
- The SSA CLI and the SSA Scripting Interface shall not be used in an Approved mode of operation. Any operation of the module using these interfaces is outside the scope of this Security Policy.
- The Crypto Officer shall not set the controller password or disable encryption.
- The Crypto Officer shall not disable volatile data encryption keys.
- The CO password shall be at least 8 characters in length.
- Plaintext volumes shall not be allowed and shall not be moved to the controller.
- Only local key management mode shall be used.

3.5 Non-Approved Mode

When configured and operated according to the guidance and usage policies in this document, the modules do not support a non-Approved mode of operation.

²⁵ GUI – Graphical User Interface

²⁶ CLI – Command Line Interface

4. Acronyms

Table 9 provides definitions for the acronyms used in this document.

Table 9 – Acronyms

Acronym	Definition				
AES	Advanced Encryption Standard				
СКБ	Cryptographic Key Generation				
CLI	Command Line Interface				
CMVP	Cryptographic Module Validation Program				
со	Crypto Officer				
CSE	Communications Security Establishment				
CSP	Critical Security Parameter				
DEK	Data Encryption Key				
DIMM	Dual in-line Memory				
DRBG	Deterministic Random Bit Generator				
ЕСВ	Electronic Code Book				
ЕМС	Electromagnetic Compatibility				
EMI	Electromagnetic Interference				
FIPS	Federal Information Processing Standard				
GUI	Graphical User Interface				
НМАС	(keyed-) Hash Message Authentication Code				
I/O	Input/Output				
IG	Implementation Guidance				
KAT	Known Answer Test				
LED	Light Emitting Diode				
Mbps	Megabits per Second				
NDRNG	Non-Deterministic Random Number Generator				
NIST	National Institute of Standards and Technology				
NVRAM	Non-Volatile Random Access Memory				
os	Operating System				
PBKDF	Password Based Key Derivation Function				
PCI	Peripheral Component Interconnect				
PCIe	PCI Express				
RAID	Redundant Array of Independent Disks				

Acronym	Definition	
RNG	Random Number Generator	
ROC	RAID-on-Chip	
RTOS	Real-Time Operating System	
SAS	Serial Attached SCSI	
SCSI	Small Computer System Interface	
SHA	Secure Hash Algorithm	
SP	Special Publication	
SSA	Smart Storage Administrator	
XEX	XOR-Encrypt-XOR	
XOR	Exclusive Or	
хтѕ	XEX-Based Tweaked-Codebook Mode with Ciphertext Stealing	

Prepared by: Corsec Security, Inc.

13921 Park Center Road, Suite 460 Herndon, VA 20171 United States of America

> Phone: +1 703 267 6050 Email: <u>info@corsec.com</u> <u>http://www.corsec.com/</u>