

Self-Defending Key Management Service™

FIPS 140-2 Level 1 Non-Proprietary Security Policy

Date: Version: Document Number: 10/29/2018 2.0.596 and 2.0.NOAESNI-182 1.2

Table of Contents

1.	Module Overview					
	1.1	Cryptog	raphic Boundary	5		
		1.1.1	Hardware Block Diagram	6		
		1.1.2	Software Block Diagram	7		
2.	Mod	es of Ope	erations	8		
	2.1	FIPS App	proved Mode	8		
		2.1.1	Approved Cryptographic Functions	9		
		2.1.2	Not Approved but Allowed Algorithms			
	2.2	Non-Ap	proved Mode			
3.	Ports	and Inte	erfaces	15		
4.	Role	s, Service	s and Authentication	16		
	4.1	Authenticated Services				
	4.2	Unauthe	enticated Services			
	4.3	SDKMS	Clusters			
	4.4	Authent	ication	22		
5.	Self-tests					
	5.1	Power-L	Jp Self Tests			
	5.2	Conditic	onal Self Tests			
6.	Phys	sical Security				
7.	Mitig	gation of Other Attacks Policy				
8.	Secu	urity Rules				
9.	Арре	endix A: CSPs				
10.	Арре	Appendix B: Public Keys				
11.	Арре	Appendix C: Acronyms				
12.	Арре	Appendix D: References				

Revision History

Author(s)	Version	Date	Updates
Fortanix, Inc.	1.0	June 1, 2018	Initial Release
Fortanix, Inc.	1.1	October 3, 2018	Updates
Fortanix, Inc.	1.2	October 29, 2018	Updates

Runtime Encryption

1. Module Overview

Fortanix Self-Defending Key Management ServiceTM (SDKMS) is the world's first cloud service secured with Intel® SGX*. With SDKMS, you can securely generate, store, and use cryptographic keys and certificates, as well as secrets, such as passwords, API keys, tokens, or any blob of data. Your business-critical applications and containers can integrate with SDKMS using legacy cryptographic interfaces or using its native RESTful interface. SDKMS provides key management and cryptographic operations functionality via secure network interface. It provides access control to users and applications to enforce authorized access to keys.

FIPS 140-2 conformance testing was performed at Security Level 1. The following configuration was tested by the lab.

Platform	Module Name	Software	Operating	Processor	Optimization
		Version	System		
General	Self-Defending	2.0.596	Ubuntu	Intel®	AES-NI
purpose x86	Key Management		16.04	Xeon®	
based server	Service TM			CPU E3-	
(Supermicro				1230 V5	
SYS-				@3.40GHz	
5019S-MR)					
General	Self-Defending	2.0.NOAESNI-	Ubuntu	Intel®	None
purpose x86	Key Management	182	16.04	Xeon®	
based server	Service TM			CPU E3-	
(Supermicro				1230 V5	
SYS-				@3.40GHz	
5019S-MR)					

Table 1 - Configurations tested

* NOTE: Intel® SGX includes cryptographic functionality that is not included within the logical cryptographic boundary, and as such all data items that are "obfuscated" by Intel® SGX are treated as plaintext from the perspective of the cryptographic module.

^{**} NOTE: The CMVP allows porting of this cryptographic module from the operational environment specified on the validation certificate to an operational environment which was not included as part of the validation testing as long as the porting rules of FIPS 140-2 Implementation Guidance G.5 are followed. As per FIPS 140-2 Implementation Guidance G.5, no claim can be made as to the correct operation of the module or the security strengths of the generated keys when ported to an operational environment which is not listed above in Table 1.

FIPS Security Area	Security Level
Cryptographic Module Specification	1
Cryptographic Module Ports and Interfaces	1
Roles, Services and Authentication	3
Finite State Model	1
Physical Security	N/A
Operational Environment	1
Cryptographic Key Management	1
EMI/EMC	1
Self-tests	1
Design Assurance	1
Mitigation of Other Attacks	N/A

Table 2- Security Level Specification Table

1.1 Cryptographic Boundary

The cryptographic module is a software-only module. The physical cryptographic boundary is the general-purpose computer on which the module is installed and runs. The physical embodiment of the module is a multiple-chip standalone cryptographic module. As a software module, the logical cryptographic boundary is the software module that compromises the various software components of the module.

1.1.1 Hardware Block Diagram

1.1.2 Software Block Diagram

2. Modes of Operations

The module supports two modes of operation: FIPS Approved mode and non-Approved mode.

2.1 FIPS Approved Mode

The Crypto Officer shall follow these steps to initialize the module and verify the module is running in the FIPS Approved Mode:

- 1. Power on the module
- 2. Install the module Debian package by running the following command
 - a. For AES-NI version:

sudo dpkg -i sdkms_2.0.596 -1_amd64.deb or for Non AES-NI version: sudo dpkg -i sdkms_2.0.NOAESNI-182 -1_amd64.deb

- b. After the package is installed, it will prompt you to complete the configuration. Using these prompts complete the configuration of the module.
- 3. Invoke the version API provided by the "Get status" service
- 4. Verify that the output is correct, with the following format and value of "fips_mode" attribute set to true:
 - a. For AES-NI Version
 {"version":"2.0.596","api_version":"v1-20170718","
 server_mode":"Sgx","fips_mode":true}
 - b. For Non AES-NI Version {"version":"2.0.NOAESNI-182","api_version":"v1-20170718"," server_mode":"Sgx","fips_mode":true}

The module is now initialized and in the FIPS Approved Mode. Operators of the module must adhere to the Approved and Allowed Cryptographic Functions defined in this section, and to the Security Rules set forth in this Security Policy. Any deviation is an explicit violation of this Security Policy and implicitly toggles the module to the Non-Approved Mode regardless of the "fips_mode" attribute returned by the version API. Please see section Non-Approved Mode for more information.

2.1.1 Approved Cryptographic Functions

CAVP	Algorithm	Standard	Model/	Key Lengths,	Use
Cert #			Method	Curves or Moduli	
5328,	AES	FIPS 197,	ECB, CBC, CTR,	128, 192, 256	Data Encryption/
5329,		SP 800-38D,	CFB 128, GCM,		Decryption
5379,		SP 800-38C	ССМ		
5380					
1818,	CVL	SP 800-135	KDF		Key Establishment
1822					
2072,	DRBG	SP 800-90Ar1	CTR_DRBG With		Deterministic Random
2073			Derivation		Bit Generation
			Function		
1418,	ECDSA	FIPS 186-4		P-192, P-224, P-256,	Key Pair Generation,
1419				P-384, P-521 ¹	Digital Signature
					Generation and
					Verification
3526,	HMAC	FIPS 198-1	HMAC-SHA-1	112, 128, 192, 256	Message
3527			HMAC-SHA-256,		Authentication
			HMAC-SHA-384,		
			HMAC-SHA-512		
191, 195	KDF	SP 800-108	KDF		Key Derivation
5328	KTS	SP 800-38F	AES CBC	AES (128, 256)	Key establishment
and			with	with	methodology provides
3526			HMAC-SHA-1		between 128 and 256

¹ In FIPS Approved mode, P-192 and SHA-1 are not allowed for ECDSA Signature Generation. The minimum hash sizes supported by the module are SHA-256 for P-224, SHA-256 for P-256, SHA-384 for P-384, and SHA-512 for P-521.

CAVP	Algorithm	Standard	Model/	Key Lengths,	Use
Cert #			Method	Curves or Moduli	
			or	HMAC-SHA-1	bits of encryption
			HMAC-SHA-256	(160)	strength
				or	
				HMAC-SHA-256	
				(256)	
5329	KTS	SP 800-38F	AES CBC	AES (128, 256)	Key establishment
with			with	with	methodology provides
3527			HMAC-SHA-1	HMAC-SHA-1	between 128 and 256
			or	(160)	bits of encryption
			HMAC-SHA-256	or	strength
				HMAC-SHA-256	
				(256)	
5379	KTS	SP 800-38F	GCM	128, 192, 256	Key establishment
					methodology provides
					between 128 and 256
					bits of encryption
					strength
5380	KTS	SP 800-38F	GCM	128, 192, 256	Key establishment
					methodology provides
					between 128 and 256
					bits of encryption
					strength

CAVP	Algorithm	Standard	Model/	Key Lengths,	Use
Cert #			Method	Curves or Moduli	
2876,	RSA	FIPS 186-4,	PKCS1 v1.5;	1024^2 , 2048, 3072,	Digital Signature
2877			GenKey9.31; PSS	4096 ³	Generation and
					Verification
			SHA-1, SHA-256,		
			SHA-384, SHA-		
			512		
4280,	SHS	FIPS 180-4	SHA-1,		Message Digest
4281			SHA-256,		
			SHA-384		
			SHA-512		

Table 3 - Table of Approved Algorithms

For additional information on transitions associated with the use of cryptography refer to NIST Special Publication SP 800-131Ar1. This document can be located on the CMVP website at: (http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar1.pdf). The data in the tables will inform Users of the risks associated with using a particular algorithm and a given key length.

sizes testable via CAVS, while the cryptographic module supports any RSA modulus size between 2048 and 8192.

² In FIPS Approved mode, 1024-bit keys and SHA-1 are not allowed for RSA Signature

Generation.

³ As per FIPS 140-2 Implementation Guidance A.14 CAVP validation has been performed on key

2.1.2 Not Approved but Allowed Algorithms

Algorithm	Caveat	Use
HMAC-MD5	Used as per SP 800-135 Rev1 Section 4.2.1	Only used in TLS V1.0/1.1 KDF
NDRNG	Only used to seed the CTR_DRBG With derivation function.	Seeding for the Approved DRBG
PBKDF	No Security Claimed	Used for obfuscation of passwords, considered as plaintext
RSA Key Wrapping	RSA (key wrapping; key establishment methodology provides 112 bits of encryption strength)	Key Wrapping

Table 4 - Table of Non-Approved but Allowed Algorithms

2.2 Non-Approved Mode

The module supports a Non-Approved Mode of operation. This mode of operation exists when the operator does not abide by the rules set forth in this Security Policy and invokes Non-

Approved cryptographic algorithms or Non-Approved services described in this section.

(Operator must abide by Security Rules in section Security Rules)

The use of any such algorithm, and service, is an explicit violation of this Security Policy and is explicitly disallowed by this Security Policy.

The algorithms marked "non-compliant" are not compliant because they are invoked in the Non-Approved mode of operation, by a Non-Approved mode service.

Non-Approved Algorithms	Usage/ Description
AES GCM (non-compliant)	• Encryption/Decryption with IV input from outside of the module
AES ECB (non-compliant),	• Derive Key service using the resulting
AES CBC (non-compliant),	ciphertext as keying material
AES CTR (non-compliant),	
AES CFB 128 (non-compliant),	
AES CCM (non-compliant)	
ECC CDH Primitive (non-compliant)	Agree Key service to calculate a
CVL (Certs. #1840 and #1841)	shared secret
ECDSA (non-compliant)	• Sign/Verify using hash input created
	outside of the module
	• Sign using P-192 curve
KSA (non-compliant)	1024-bit RSA key SAML Authentication
	Encryption/Decryption of data (SP
	800-56B only allows for Key
	Encapsulation)
	• Sign/Verify using hash input created outside of the module
	• Sign/Verify using 1024-bit RSA key
	• Sign/Verify using 0x3 public key
	exponent

Table 5 Algorithms in Non-Approved Mode

Service	Module Role	Usage/Description	Algorithm Used
Agree Key	Application	• Calculate a shared secret	ECC CDH Primitive (non- compliant) CVL (Certs. #1840 and #1841)
Authentication	System Administrator, System Operator, Account Administrator, Account Member, Account Auditor, Group Administrator, Group Auditor	• 1024-bit RSA key SAML Authentication	RSA (non-compliant)
Derive key	Application	• Use the resulting ciphertext as keying material	AES ECB (non-compliant), AES CBC (non-compliant), AES CTR (non-compliant), AES CFB 128 (non- compliant), AES CCM (non-compliant)
Encrypt/ Decrypt	Application	• Encryption/Decryption with IV input from outside of the module	AES GCM (non-compliant)
	Application	• Encryption/Decryption of data (SP 800-56B only allows for Key Encapsulation)	RSA (non-compliant)
Sign/Verify	Application	 Sign/Verify using hash input created outside of the module Sign/Verify using 1024-bit RSA key Sign/Verify using 0x3 public key exponent 	RSA (non-compliant)
	Application	 Sign/Verify using hash input created outside of the module P-192 EC Curve 	ECDSA (non-compliant)

Table 6 Services available in Non-Approved Mode

3. Ports and Interfaces

The module runs on a general-purpose computer with physical ports. The tested configurations include the following physical ports:

- 4 SATA3 (6Gbps) ports
- 2 RJ45 Gigabit Ethernet LAN ports
- 1 RJ45 Dedicated IPMI LAN port
- 4 USB 3.0 ports
- 2 USB 2.0 ports
- 1 VGA port
- 2 COM ports
- 2 SuperDOM (Disk on Module) ports with built-in power

The module does not include a maintenance interface.

The logical interface is various application programming interfaces (API). The logical interfaces of the module expose services that applications can call. The applications interacting with the module input control and data to the module through the input fields of the API and receive output data and/or status information via the output parameters of the API. API documentation describes in detail the successful operation output and error in case of a failed operation. Each of the FIPS 140-2 logical interfaces relates to the module's application programming interface as follows:

Logical Interface	Description
Data Input	Input / Request payload of API
Data Output	Output / Response payload of API
Control Input	API call
Status Output	API returning status information and return status codes provided by API

Table 7- Specification of Cryptographic Module Logical Interfaces

4. Roles, Services and Authentication

The module supports identity-based authentication for all roles. The module supports a Crypto Officer and User Role.

- The Crypto Officer installs and administers the module.
- The User uses the cryptographic services provided by the module. This role is assumed both by an actual user of the system and an external system that requires cryptographic services.

The module supports a variety of roles that are mapped to the two FIPS roles. Following table enumerates the mapping between module roles and FIPS roles:

Module Role	FIPS Role
System Administrator	Crypto Officer
System Operator	Crypto Officer
Account Administrator	Crypto Officer, User
Account Member	Crypto Officer, User
Account Auditor	Crypto Officer
Group Administrator	Crypto Officer, User
Group Auditor	Crypto Officer
Application	User
Node	Crypto Officer

Table 8 – Mapping of Module Roles to FIPS roles

4.1 Authenticated Services

The module provides the following services:

Service	Module Roles	Cryptographic Keys, CSPs and Public Keys	Types of Access to Cryptographic Keys and CSPs R – Read or Execute W – Write or Create Z – Zeroize
Authentication	System	User password	R
	Administrator	API key	R
	System Operator	RSA Public key of external Application	R
	Account	User 2FA device public key	R
	Account Member	Bearer token	R
	Account Auditor	SAML – Idp public key	R
	Group	Public key of an outside entity/server	R
	Administrator	(Another SDKMS node)	
	Group Auditor		
	Application		
Croate/Generate key	Node	Database Wrapping key	\M/
Create/Generate Key	Account	DRBG Entrony Input String	W
	Administrator	DRBG Seed	R W/
	Group	DRBG internal state	W/
	Administrator		
	Application	Symmetric key	W
		HMAC key	W
		RSA private key for Digital Signatures	W
		RSA private key for Key Encapsulation	W
		Operations	\A/
		ECDSA public kov	VV \\/
		RSA public key for Key Encanculation	W/
		Operations	
		RSA public key for Digital Signatures	W
Encrypt/Decrypt	Application	Symmetric key	R
		Cipher State Wrapping key	R, W
		SP 800-108 KDF internal state	R
		Account key	R
		Database Wrapping key	R
Sign/Verify	Application	Database Wrapping key	R
		RSA private key for Digital Signatures	R
		RSA public key for Digital Signatures	R

Service	Module Roles	Cryptographic Keys, CSPs and Public Keys	Types of Access to Cryptographic Keys and CSPs R – Read or Execute W – Write or Create Z – Zeroize
		ECDSA private key	R
		ECDSA public key	R
		ECDSA random number "k"	R, W
Wrap/Unwrap	Application	Database Wrapping key	R
		Symmetric key	R
		RSA private key for Key Encapsulation	R
		Operations	
		RSA public key for Key Encapsulation	R
	Angligation	Operations	D
HIVIAC	Application		R
Digest	Application		R N/A
Digest	Application	N/A Database W/ranning key	N/A D
import key	Account		R
	Administrator		VV
	Group	HMAC Key	W
	Administrator	RSA private key for Digital Signatures	VV
	Application	Operations	w
		RSA public key for Key Encapsulation Operations	W
		ECDSA private key	W
		ECDSA public key	W
		RSA public key for Digital Signatures	W
Export Key	Account	Database Wrapping key (This key is not exported)	R
	Administrator	Symmetric key –	R
	Group	if it was created or imported with	
	Administrator	export permission	
	Application	HMAC key –	R
		if it was created or imported with	
		export permission	D
		KSA private key for Digital Signatures –	ĸ
		export permission	
		RSA public key for Digital Signatures -	R
		if it was created or imported with	
		export permission	

Service	Module Roles	Cryptographic Keys, CSPs and Public Keys	Types of Access to Cryptographic Keys and CSPs R – Read or Execute W – Write or Create Z – Zeroize
		RSA private key for Key Encapsulation Operations – if it was created or imported with export permission	R
		RSA public key for Key Encapsulation Operations – if it was created or imported with export permission	R
		ECDSA private key – if it was created or imported with export permission	R
		ECDSA public key – if it was created or imported with export permission	R
Cluster Management ⁴	System Administrator Node	Cluster Master key	R, W
		Cluster RSA private key for TLS	R, W
		Cluster RSA public key for TLS	R, W
		Node RSA private key for SDKMS	R, W
		Node RSA public key for SDKMS	R, W
		Public key of an outside entity/server (CA)	R, W
		Public key of an outside entity/server (Another SDKMS node)	R, W
System configuration	System	Cluster Master key	R
and management	Administrator	System key	R, W
	System Operator	Account Wrapping key	R, W
	(Read only)	Account key	R, W
	Account	Database Wrapping key	R. W

⁴ Please see "SDKMS Clusters" section for more information.

Service	Module Roles	Cryptographic Keys, CSPs and Public Keys	Types of Access to Cryptographic Keys and CSPs R – Read or Execute W – Write or Create Z – Zeroize
	Administrator Account Member	SP 800-108 KDF internal state	R, W
	Account Auditor	User 2FA device public key	R, W
	(Read only)	SAML- ldp public key	R, W
Group Administrator Group Auditor (Read only) Application	RSA Public key of external Application	R, W	
TLS⁵	System	Cluster RSA private key for TLS	R
	Administrator	Cluster RSA public key for TLS	R
	System Operator	SP 800-135 TLS KDF internal state	R, W
	Account	TLS integrity key (HMAC)	R,W
	Administrator	TLS encryption key (AES)	R,W
	Account Auditor	TLS pre-master secret	R,W
	Group	TLS master secret	R,W
	Administrator Group Auditor	Public key of an outside entity/server (CA)	R
	Application Node	RSA Public key of external Application	R

Table 9 - Services Authorized for Roles, Access Rights within Services

⁵ All API calls into the module are done over TLS V1.0/1.1 or TLS V1.2. No parts of these protocols, other than the KDFs, have been tested by the CAVP and CMVP.

4.2 Unauthenticated Services

	Services	
Get status		
Run self-tests		
Signup		
Zeroization ⁶		

 Table 10 - Unauthenticated Services

4.3 SDKMS Clusters

A Cluster is a group of SDKMS nodes. When a new SDKMS node is provisioned in the cluster, it will generate a key pair consisting of the Node RSA public key for SDKMS and Node RSA private key for SDKMS as well as a CSR. Once the node's certificate has been signed by the System Administrator using a CA, a credential for authenticating the new node in the cluster is created. The System Administrator then installs the signed node certificate and CA certificate in the node. Using its node certificate, the new node initiates a mutually authenticated TLS connection with an existing node in the cluster. Both nodes verify that the other party's node certificate is signed by the same CA, and the existing node sends the Cluster Master key over the TLS channel to the new node.

⁶ The Crypto Officer of the module shall be physically present and in control of the module and the platform it is hosted in.

4.4 Authentication

The module supports the following authentication mechanisms.

Module Role	Authentication	Authentication Data
	Туре	
System Administrator	Identity Based	User password
System Operator		
Account Administrator		
Account Member		
Account Auditor		
Group Administrator		
Group Auditor		
Application	Identity Based	API key
Application	Identity Based	RSA Public key of external Application
System Administrator	Identity Based	User 2FA device public key
System Operator		
Account Administrator		
Account Member		
Account Auditor		
Group Administrator		
Group Auditor		
System Administrator	Identity Based	Bearer token
System Operator		
Account Administrator		
Account Member		
Account Auditor		
Group Administrator		
Group Auditor		
Application		

Module Role	Authentication	Authentication Data
	Туре	
System Administrator	Identity Based	SAML – Idp public key
System Operator		
Account Administrator		
Account Member		
Account Auditor		
Group Administrator		
Group Auditor		
Node	Identity Based	Public key of an outside entity/server (Another
		SDKMS node)

Table 11- Roles and required Identification and Authentication

Our password authentication policy is as described for the Memorized Secret Authenticators in NIST SP 800-63B (8 characters or longer). The module supports concurrent operators and the module levies a restriction on session expiry time where if inactive, the Application's role session will expire in 10 minutes by default. Similarly, for all other Module roles there is a session expiry time of 24 hours. Session expiry time can be customized.

Authentication Mechanism	Strength of Mechanism
User password	Minimum password length is 8 characters. For a user who
	just meets the minimum password length, each of the eight
	characters will have at least 95 possible characters ⁷ (ASCII
	printable characters with character code 32 -126) if we
	consider just the printable characters, although module
	supports UTF-8 characters for password and the number of
	possible characters with UTF-8 is much higher. Total
	number of password permutations with eight characters is
	95^8 = 6,634,204,312,890,625. Therefore, the probability
	of guessing a password is significantly less than one in
	1,000,000.
	Module only allows at the most 10 authentication attempts
	in a second. Therefore, a user could try at most 600
	passwords in a minute. Given the total number of possible
	permutations (as shown above), the probability a random
	attempt in one-minute period to be correct will be
	600/6,634,204,312,890,625. Therefore, the probability of
	guessing a password in a one-minute period is significantly
	less than one in 100,000.
SAML – Idp public key	The strength of this mechanism is based on the public
	key size that is used for signature verification.
	Minimum key size is RSA 2048, which provides at least
	security strength of 112 bits. Therefore, the

⁷ Lower case and upper-case letters \rightarrow 52 characters, Digits (0 to 9) \rightarrow 10 characters, Special characters ~ `! @# \$ % ^ & * () _ - + = { } [] \ |; : ' " < > , . ? / \rightarrow 32 characters, Space \rightarrow 1 character

Authentication Mechanism	Strength of Mechanism
	probability of success with random data is 1/(2^112),
	which is significantly less than one in 1,000,000.
	Module only allows at the most 10 authentication
	attempts in a second. Therefore, a user could try at
	most 600 attempts in a minute. Given the total
	number of possible permutations (as shown above),
	the probability a random attempt in one minute
	period to be correct will be
	600/(2^112). Therefore, the probability of guessing a
	password in a one minute period is significantly less
	than one in 100,000.
API key	An application authenticates using an API key which
	contains app secret. App secret is a 64 bytes random data,
	which means 512 bits Therefore, total number of
	permutations for app secret will be 2^512. Therefore, the
	probability of guessing an application's secret is
	significantly less than one in 1,000,000.
	Module only allows at the most 10 authentication attempts
	in a second. Therefore, a user could try at most 600
	attempts in a minute. Given the total number of possible
	permutations (as shown above), the probability a random
	attempt in one-minute period to be correct will be
	$600/(2^{512})$. Therefore, the probability of guessing an app
	secrete in a one minute period is significantly less
	than one in 100,000.
User 2FA device public key	The module allows users to use a second factor
	authentication mechanism in addition to username and
	password. The strength of this combination mechanism

Authentication Mechanism	Strength of Mechanism
	relies upon the strength of the User password mechanism
	(described earlier) combined with the strength of two factor
	authentication. This mechanism adds more strength to the
	password mechanism which already far exceeds the FIPS
	requirements. U2F signature verification uses U2F device's
	public key which is an EC P-256 key. Security strength of
	this key is 128 bits. So the probability of a random success
	will be 1 in 2^128. Probability of this combined scheme =
	(Probability of guessing username and password) *
	(Probability from signature verification scheme),
	which is $1/(95^8) * 1/(2^{128})$. Therefore, the probability
	of guessing a password is significantly less than one in
	1,000,000.
	Module only allows at the most 10 authentication attempts
	in a second. Therefore, a user could try at most 600
	attempts in a minute. Given the total number of possible
	permutations (as shown above), the probability a random
	attempt in one-minute period to be correct will be
	$600/(95^8 * 2^{128})$. Therefore, the probability of guessing
	a password in a one-minute period is significantly less
	than one in 100,000. Therefore, this mechanism of
	additional 2FA also far exceeds the FIPS requirements.
RSA Public key of external Application	The strength of this mechanism is based on the size of the
	private key space. The module relies upon minimum RSA
	2048-bit keys. This provides an encryption strength of 112
	bits, so the probability of a random success will be 1 in
	2^112, which is significantly less than one in 1,000,000.
	Using this mechanism, one can make very few attempts in
	one-minute period. Each attempt will require the module to
	check the signature on the certificate using FIPS approved

Authentication Mechanism	Strength of Mechanism
	signature algorithm and establishing TLS session with this
	certificate. On an average only one attempt can
	be made in a second. Therefore, at the most 60 attempts
	can be made in a one minute period. Therefore, the
	probability of guessing a 2048-bit private key and
	succeeding in a one minute period is $60/(2^{112})$ which is
	significantly less than one in 100,000.
Bearer token	The bearer token is a base64 encoded random 64 bytes data
	which is generated using approved DRBG in SDKMS. This
	64 bytes gives a total of 512 bits of data. Therefore, total
	number of permutations is 2^512. Therefore, the
	probability of guessing the token is $1/(2^{512})$, which is
	significantly less than one in 1,000,000.
	Each authentication attempt takes approximately 12ms or
	more. Therefore, a user could try at most 5,000 attempts in
	a minute. Given the total number of possible permutations
	(as shown above), the probability a random attempt in one-
	minute period to be correct will be
	$5000/(2^{512})$. Therefore, the probability of guessing a
	password in a one-minute period is significantly less than
	one in 100,000.
Public key of an outside entity/server (Another	The strength of this mechanism is based on the size of the
SDKMS node)	private key space. The module relies upon RSA 2048-bit
	node keys. This provides an encryption strength of 112 bits,
	so the probability of a random success will be 1 in 2^112,
	which is significantly less than one in 1,000,000.
	Each attempt will require the module to check the signature
	on the certificate using FIPS approved signature algorithm
	and establishing TLS session with this certificate. Each
	attempt takes 100ms or more. Therefore, at the most 600

Authentication Mechanism	Strength of Mechanism
	attempts can be made in a one minute period. Therefore,
	the probability of guessing a 2048-bit private key and
	succeeding in a one minute period is $600/(2^{112})$ which is
	significantly less than one in 100,000.

5. Self-tests

The module performs the following power-up and conditional self-tests. Upon successful execution of **all** power-up self-test, module provides the following status:

"Software Integrity test succeeded" "Power-up self-tests succeeded"

Upon failure of a power-up or conditional self-test, the module halts its operation and enters the error state. The following tables describe self-tests implemented by the module along with status messages.

Algorithm	Test	Status
AES	KAT (encryption)	Success: "Power-up self-tests succeeded"
128-bit key size in ECB, CBC,		Error: "AES salf tost failed"
CFB128, and CTR Modes		Enor. Als self lest fulled
192-bit key size ECB, CBC, and		
CFB128 Modes		
256-bit key size ECB, CBC, and		
CFB128 Modes		
AES	KAT (decryption)	Success: "Power-up self-tests succeeded"
128-bit key size in ECB, CBC,		Error: "AES calf tost failed"
CFB128, and CTR Modes		Enor. Als seglest julled

5.1 Power-Up Self Tests

Algorithm	Test	Status
192-bit key size ECB, CBC, and		
CFB128 Modes		
256-bit key size ECB, CBC, and		
CFB128 Modes		
AES GCM	KAT (encryption)	Success: "Power-up self-tests succeeded"
128-bit, 192-bit, and 256-bit key		Error: "GCM self test failed"
size		
AES GCM	KAT (decryption)	Success: "Power-up self-tests succeeded"
128-bit, 192-bit, and 256-bit key		Error: "GCM self test failed"
size		
AES CCM	KAT (encryption)	Success: "Power-up self-tests succeeded"
128-bit key size		From: "CCM self test failed"
AES CCM	KAT (decryption)	Success: "Power-up self-tests succeeded"
128-bit key size		Error: "CCM self test failed"
ECC CDH Primitive "Z"	КАТ	Success: "Power-up self-tests succeeded"
P-224 Curve		Error: "KAS ECC Primitive Z test failed"
SHA-1	КАТ	Success: "Power-up self-tests succeeded"
		Error: "SHA1 self test failed"
SHA-256	КАТ	Success: "Power-up self-tests succeeded"
		Error: "SHA256 self test failed"
SHA-512	КАТ	Success: "Power-up self-tests succeeded"
		Error: "SHA512 self test failed"

Algorithm	Test	Status
HMAC-SHA-1	КАТ	Success: "Power-up self-tests succeeded"
128-bit key size		Error: "HMAC SHA1 self test failed"
HMAC-SHA-256	КАТ	Success: "Power-up self-tests succeeded"
128-bit key size		Error: "HMAC SHA256 self test failed"
HMAC-SHA-512	КАТ	Success: "Power-up self-tests succeeded"
2048 bit koy size		Success. Tower up set tests succeded
2046-bit key size		Error: "HMAC SHA512 self test failed"
SP 800-90A DRBG	КАТ	Success: "Power-up self-tests succeeded"
		Error: "CTR DRBG self test failed"
RSA	Signature	Success: "Power-up self-tests succeeded"
2048-bit key size, SHA-256	generation/verification	Error: "PSA colf tost failed"
(PKCS1 v1.5)	KAT	EITOL ASA sel lest fallea
ECDSA	Signature	Success: "Power-up self-tests succeeded"
P-224 curve	generation/verification	Error "ECDSA colf tost foiled"
	pairwise consistency	EITOL ECDSA self lest falled
	test	
SP 800-135 TLS V1.0/1.1 KDF	КАТ	Success: "Power-up self-tests succeeded"
		Error: "TLS 1.0 KDF self test failed"
SP 800-135 TLS V1.2 KDF	KAT	Success: "Power-up self-tests succeeded"
		Error: "TLS 1.2 KDF self test failed"
SP 800-108 KDF	КАТ	Success: "Power-up self-tests succeeded"
256-bit key size		Error: "KDF108 self test failed"
HMAC-SHA-256	Software integrity test	Success: "Software Integrity test
256-bit key size		succeeded"
		Error: "Software integrity check failed"
Critical Functions Tests	N/A	N/A

Table 13 – Power-Up Self-tests

5.2 Conditional Self Tests

Algorithm	Test	Status
Continuous RNG test	Continuous Random Number	Error: "FIPS conditional test failure: Error
performed on output of	Generator (RNG) Test	in cryptographic operation – RNG failed"
NDRNG (RDSEED)		
Continuous RNG test	Continuous Random Number	Error: "FIPS conditional test failure: Error
performed on output of	Generator (RNG) Test	in cryptographic operation – RNG failed"
software-based Approved		
SP 800-90A CTR_DRBG		
RSA	Pairwise Consistency Test	Error: "FIPS conditional test failure:
2048-bit to 8192-bit key	(Sign and Verify)	Pairwise consistency test failed. Sign /
size		Verify test failed."
SHA-256		
RSA	Pairwise Consistency Test	Error: "FIPS conditional test failure:
2048-bit to 8192-bit key	(Encrypt and Decrypt)	Pairwise consistency test failed.
size		Encryption / Decryption test failed."
ECDSA	Pairwise Consistency Test	Error: "FIPS conditional test failure:
P-224, P-256, P-384, P-	(Sign and Verify)	Pairwise consistency test failed. Sign /
521		Verify test failed."
SHA-256		
Bypass Test	N/A	N/A
Software Load Test	N/A	N/A
Manual Key Entry Test	N/A	N/A

Table 14- Conditional Self-tests

6. Physical Security

The module is a software-only module, so the physical security requirements of FIPS 140-2 Area 5 do not apply.

Physical Security	Recommended Frequency of	Inspection/Test Guidance
Mechanisms	Inspection/Test	Details
N/A	N/A	N/A

Table 15- Inspection/Testing of Physical Security Mechanisms

7. Mitigation of Other Attacks Policy

The cryptographic module is not designed to mitigate any other attacks beyond the specific scope of FIPS 140-2.

Other Attacks	Mitigation Mechanism	Specific Limitations
N/A	N/A	N/A

 Table 16- Table of Mitigation of Other Attacks

8. Security Rules

- 1. The module enforces logical separation between all data inputs, data outputs, control inputs, and status outputs via the cryptographic module API.
- 2. The cryptographic module inhibits all data output during self-tests and error states. The data output interface is logically disconnected from the processes performing self-tests and zeroization.
- 3. The cryptographic module runs on a general-purpose computing platform that conforms to the EMI/EMC requirements specified by 47 Code of Federal Regulations, Part 15, Subpart B, Unintentional Radiators, Digital Devices, Class B (i.e. for Home use) which vacuously satisfies Class A.
- 4. Power-up self-tests do not require any operator intervention (i.e. the cryptographic module includes a default entry point as per FIPS 140-2 Implementation Guidance 9.10).
- 5. Power-up self-tests may be initiated on demand by power-cycling the module.
- 6. The cryptographic module does not support a maintenance interface or maintenance role.
- 7. The cryptographic module does not support manual key entry.
- 8. The cryptographic module does not support a bypass capability.
- 9. The cryptographic module does not support a Software Load Test.
- 10. The general-purpose computing platform includes a power port.
- 11. The cryptographic module supports both a FIPS-Approved mode of operation and Non-Approved mode of operation.
- 12. Results of previous authentications are cleared when the module is powered off. The operator is required to re-authenticate into the module.
- 13. The operator can Power cycle the module in order to exit the error states and resume normal operation. Otherwise, reinstall the module onto the general-purpose computing platform.
- 14. The module protects public keys and CSPs from unauthorized disclosure, unauthorized modification, and unauthorized substitution.
- 15. The module does not output intermediate key values.
- 16. When performing zeroization, the Crypto Officer of the module shall be physically present and in control of the module and the platform it is hosted in. The Crypto Officer is **required** to reformat and overwrite the platform's hard drive completely and **must** reboot the platform upon completion.
- 17. The module is an application implemented in client/server architecture, whereby the module is implemented in a server environment. Therefore, as per FIPS 140-2 IG Section 6.1, the server application is the single-user of the cryptographic module.
- 18. It is the authorized operator's responsibility to ensure that a key is used for one given purpose.
- 19. As per SP 800-56B, RSA encryption shall only be used for key wrapping.
- 20. The module complies with FIPS 140-2 IG A.5 requirements for AES-GCM:
 - a. For TLS V1.2 Protocol, the module constructs the IV (internally) as allowed per Technique #1 in FIPS 140-2 IG A.5 for Industry Protocols. The IV total length is 96-bits, where the fixed IV length is 32-bits and nonce_explicit part of the IV is

64-bits. The GCM key and IV are session specific; if the module loses power the implementation is required to re-initialize a TLS V1.2 session, creating a new IV altogether.

- b. For the Encrypt/Decrypt service, a 96-bit IV is constructed from the output of the CTR_DRBG, allowed as per Technique #2 in FIPS 140-2 IG A.5 for IVs generated "internally at its entirety randomly". In case the module's power is lost and then restored, a new key for use with the AES GCM encryption/decryption will be generated from the output of the CTR_DRBG.
- 21. The operator is prohibited from entering AES-GCM IVs in FIPS-Approved mode.
- 22. Requests to use the 0x3 public key exponent for RSA are not allowed. The operator shall only use the 0x10001 public key exponent which is offered by default in the FIPS Approved Mode.
- 23. The operator shall use Tag Lengths greater than or equal to 64-bits for AES-GCM and AES-CCM.
- 24. In accordance with FIPS 140-2 IG D.12, the cryptographic module performs Cryptographic Key Generation (CKG) as per SP 800-133 (Vendor Affirmed). The resulting generated symmetric key and/or generated seed for asymmetric key generation, are from the unmodified output of the SP 800-90A DRBG.
- 25. The operator of the module shall abide by the requirements of FIPS 198-1 and SP 800-57 when executing the HMAC service:
 - a. 112-bit HMAC key minimum for HMAC-SHA-1
 - b. 128-bit HMAC key minimum for HMAC-SHA-256
 - c. 192-bit HMAC key minimum for HMAC-SHA-384
 - d. 256-bit HMAC key minimum for HMAC-SHA-512
- 26. Each call to the entropy source (RDSEED), which is within the physical boundary and outside the logical boundary, provides 8 bytes (64 bits) of entropy. Therefore, the minimum bits of entropy requested per each GET function call is 64 bits.
- 27. Module WebUI displays a dot (.) for each character of password entered to obscure feedback of the authentication data to an operator during entry of the authentication data.

9. Appendix A: CSPs

- 1. Cluster Master key
 - Description: 256-bit Key Derivation key (SP 800-108 KDF) used to derive the System key and Account Wrapping key
 - Generation: SP 800-90A CTR_DRBG; As per SP 800-133 Section 7.1, key generation is performed as per the "Direct Generation" of Symmetric Keys which is an Approved key generation method
 - Establishment: N/A
 - Entry: N/A
 - Output: Automatic, encrypted over TLS session (with TLS encryption key (AES)) for the "Cluster Management" service
 - Storage: Plaintext in RAM, plaintext in persistent storage
 - Key-to-Entity: This key belongs to the cluster
 - Zeroization: Procedural
- 2. System key
 - Description: 256-bit AES GCM key used to wrap all user and session information that is stored in persistent storage
 - Generation: Derived from Cluster Master key using NIST SP 800-108 KDF in Feedback Mode (§5.2); As per SP 800-133 Section 7.4, key derivation is performed by an Approved KDF which is an Approved key derivation method
 - Establishment: N/A
 - Entry: N/A
 - Output: N/A
 - Storage: Plaintext in RAM
 - Key-to-Entity: This key belongs to the cluster
 - Zeroization: Procedural
- 3. Account Wrapping key
 - Description: 256-bit AES GCM key used to wrap Account key when it is stored in persistent storage
 - Generation: Derived from Cluster Master key using NIST SP 800-108 KDF in Feedback Mode (§5.2); As per SP 800-133 Section 7.4, key derivation is performed by an Approved KDF which is an Approved key derivation method
 - Establishment: N/A
 - Entry: N/A
 - Output: N/A

- Storage: Plaintext in RAM
- Key-to-Entity: This key belongs to the cluster
- Zeroization: Procedural

4. Account key

- Description: 256-bit Key Derivation key (SP 800-108 KDF) used to derive the Database Wrapping key and Cipher State Wrapping key
- Generation: SP 800-90A CTR_DRBG; As per SP 800-133 Section 7.1, key generation is performed as per the "Direct Generation" of Symmetric Keys which is an Approved key generation method
- Establishment: N/A
- Entry: N/A
- Output: N/A
- Storage: Plaintext in RAM, encrypted in persistent storage with AES-GCM-256 Account Wrapping key
- Key-to-Entity: This key belongs to a specific account / tenant and is unique to every account
- Zeroization: Procedural
- 5. Database Wrapping key
 - Description: 256-bit AES GCM key used to wrap all account / tenant data and keys that belong to a specific account / tenant when it is stored in persistent storage
 - Generation: Derived from Account key using NIST SP 800-108 KDF in Feedback Mode (§5.2); As per SP 800-133 Section 7.4, key derivation is performed by an Approved KDF which is an Approved key derivation method
 - Establishment: N/A
 - Entry: N/A
 - Output: N/A
 - Storage: Plaintext in RAM
 - Key-to-Entity: This key belongs to a specific account / tenant and is unique to every account
 - Zeroization: Procedural
- 6. Cipher State Wrapping key
 - Description: 128-bit AES GCM key used to wrap all cipher state data that belongs to a specific account / tenant

- Generation: Derived from Account key using NIST SP 800-108 KDF in Feedback Mode (§5.2); As per SP 800-133 Section 7.4, key derivation is performed by an Approved KDF which is an Approved key derivation method
- Establishment: N/A
- Entry: N/A
- Output: N/A
- Storage: Plaintext in RAM
- Key-to-Entity: This key belongs to a specific account / tenant and is unique to every account
- Zeroization: Procedural
- 7. Symmetric key
 - Description: 128-bit, 192-bit, or 256-bit AES keys in the following modes:
 - o ECB
 - o CBC
 - o CTR
 - o CFB 128
 - o GCM
 - CCM Mode
 - Generation: SP 800-90A CTR_DRBG; As per SP 800-133 Section 7.1, key generation is performed as per the "Direct Generation" of Symmetric Keys which is an Approved key generation method
 - Establishment: N/A
 - Entry: Automatic, encrypted over TLS session (with TLS encryption key (AES)) during "Import Key" service
 - Output: Automatic, encrypted over TLS session (with TLS encryption key (AES)) during "Export Key" service if the key was created or imported with export permission
 - Storage: Plaintext in RAM, encrypted in persistent storage with AES-GCM-256 Database Wrapping key
 - Key-to-Entity: Only authenticated clients can request the use of the key and authorization to access the key is checked. Client making the request must have authorization to use the key
 - Zeroization: Procedural

8. HMAC key

- Description: HMAC key with the following key sizes:
 - For HMAC-SHA-1, the minimum key size is 112-bits.
 - For HMAC-SHA-256, the minimum key size is 128-bits.
 - For HMAC-SHA-384, the minimum key size is 192-bits.

- For HMAC-SHA-512, the minimum key size is 256-bits.
- Generation: SP 800-90A CTR_DRBG; As per SP 800-133 Section 7.1, key generation is performed as per the "Direct Generation" of Symmetric Keys which is an Approved key generation method
- Establishment: N/A
- Entry: Automatic, encrypted over TLS session (with TLS encryption key (AES)) during "Import Key" service
- Output: Automatic, encrypted over TLS session (with TLS encryption key (AES)) during "Export Key" service if the key was created or imported with export permission
- Storage: Plaintext in RAM, encrypted in persistent storage with AES-GCM-256 Database Wrapping key
- Key-to-Entity: Only authenticated clients can request the use of the key and authorization to access the key is checked. Client making the request must have authorization to use the key
- Zeroization: Procedural
- 9. RSA private key for Digital Signatures
 - Description: 2048-bit to 8192-bit RSA key
 - Generation: SP 800-90A CTR_DRBG; this key is used for Digital Signature Generation. As per SP 800-133 Section 6.1, key generation is performed as per FIPS 186-4 which is an Approved key generation method
 - Establishment: N/A
 - Entry: Automatic, encrypted over TLS session (with TLS encryption key (AES)) during "Import Key" service
 - Output: Automatic, encrypted over TLS session (with TLS encryption key (AES)) during "Export Key" service if the key was created or imported with export permission
 - Storage: Plaintext in RAM, encrypted in persistent storage with AES-GCM-256 Database Wrapping key
 - Key-to-Entity: Only authenticated clients can request the use of the key and authorization to access the key is checked. Client making the request must have authorization to use the key
 - Zeroization: Procedural

10. RSA private key for Key Encapsulation Operations

- Description: 2048 to 8192-bit RSA key
- Generation: SP 800-90A CTR_DRBG; this key is used for Key Un-encapsulation (decryption) operations. This is an allowed method for key transport as per FIPS 140-2 IG D.9
- Establishment: N/A

- Entry: Automatic, encrypted over TLS session (with TLS encryption key (AES)) during "Import Key" service
- Output: Automatic, Encrypted over TLS session (with TLS encryption key (AES)) during "Export Key" service if the key was created or imported with export permission
- Storage: Plaintext in RAM, encrypted in persistent storage with AES-GCM-256 Database Wrapping key
- Key-to-Entity: Only authenticated clients can request the use of the key and authorization to access the key is checked. Client making the request must have authorization to use the key
- Zeroization: Procedural

11. ECDSA private key

- Description: EC Key (P-224, P-256, P-384, P-521)
- Generation: SP 800-90A CTR_DRBG; As per SP 800-133 Section 6.1, key generation is performed as per FIPS 186-4 which is an Approved key generation method
- Establishment: N/A
- Entry: Automatic, encrypted over TLS session (with TLS encryption key (AES)) during "Import Key" service
- Output: Automatic, encrypted over TLS session (with TLS encryption key (AES)) during "Export Key" service if the key was created or imported with export permission
- Storage: Plaintext in RAM, encrypted in persistent storage with AES-GCM-256 Database Wrapping key
- Key-to-Entity: Only authenticated clients can request the use of the key and authorization to access the key is checked. Client making the request must have authorization to use the key
- Zeroization: Procedural

12. ECDSA random number "k"

- Description: A secret random number generated via SP 800-90A CTR_DRBG for use during the ECDSA signature generation process. The sizes are as follows:
 - For P-224, k is 224 bits.
 - For P-256, k is 256 bits.
 - For P-384, k is 384 bits.
 - For P-521, k is 521 bits.
- Generation: SP 800-90A CTR_DRBG; As per SP 800-133 Section 6.1, key generation is performed as per FIPS 186-4 which is an Approved key generation method
- Establishment: N/A
- Entry: N/A
- Output: N/A

- Storage: Plaintext in RAM
- Key-to-Entity: Process "Sign/Verify" service with ECDSA
- Zeroization: Procedural

13. Cluster RSA private key for TLS

- Description: 2048-bit RSA key; when the module behaves as a TLS Server this key is used for RSA Key Un-encapsulation of the TLS pre-master secret
- Generation: SP 800-90A CTR_DRBG; As per SP 800-133 Section 6.2, key generation is performed as per FIPS 186-4; this is an allowed method as per FIPS 140-2 IG D.9
- Establishment: N/A
- Entry: N/A
- Output: N/A
- Storage: Plaintext in RAM, encrypted in persistent storage with AES-GCM-256 System key
- Key-to-Entity: This key belongs to the cluster
- Zeroization: Procedural

14. SP 800-135 TLS KDF internal state

- Description: 128-byte internal state for SP 800-135 TLS V1.0/1.1 KDF (HMAC-MD5/HMAC-SHA-1 PRF) or TLS V1.2 KDF (HMAC-SHA-256 PRF or HMAC-SHA-384 PRF)
- Generation: N/A
- Establishment: SP 800-135 Section 4.2.1 or 4.2.2; allowed method as per FIPS 140-2 IG D.8 Scenario 4
- Entry: N/A
- Output: N/A
- Storage: Plaintext in RAM
- Key-to-Entity: Process TLS KDF internal state
- Zeroization: Procedural

15. TLS integrity key (HMAC)

- Description: 160-bit HMAC-SHA-1 key or 256-bit HMAC-SHA-256 key
- Generation: Derived from TLS master secret using SP 800-135 KDF Section 4.2.1 or 4.2.2; allowed method as per FIPS 140-2 IG D.8 Scenario 4
- Establishment: N/A
- Entry: N/A
- Output: N/A
- Storage: Plaintext in RAM

- Key-to-Entity: Process TLS
- Zeroization: Procedural

16. TLS encryption key (AES)

- Description: AES with the following modes and key sizes:
 - o AES-128-CBC
 - o AES-128-GCM
 - o AES-128-CCM
 - o AES-128-CCM with 64-bit Tag Length
 - o AES-256-CBC
 - AES-256-GCM
 - o AES-256-CCM
 - AES-256-CCM with 64-bit Tag Length
- Generation: Derived from TLS master secret using SP 800-135 KDF Section 4.2.1 or 4.2.2; allowed method as per FIPS 140-2 IG D.8 Scenario 4
- Establishment: N/A
- Entry: N/A
- Output: N/A
- Storage: Plaintext in RAM
- Key-to-Entity: Process TLS
- Zeroization: Procedural

17. TLS pre-master secret

- Description: 48-byte pre-master secret
- Generation: SP 800-90A CTR_DRBG; generated only when the module behaves as a TLS Client. As per SP 800-133 Section 7.1, key generation is performed as per the "Direct Generation" of Symmetric Keys which is an Approved key generation method
- Establishment: N/A
- Entry: When the module behaves as a TLS Server, the module may receive this secret RSA Key Encapsulated with "Cluster RSA public key for TLS". This is allowed as per FIPS 140-2 IG D.9
- Output: When the module behaves as a TLS Client, the module may output this value RSA Key Encapsulated with "Public key of an outside entity / server (Another SDKMS node)". This is allowed as per FIPS 140-2 IG D.9
- Storage: Plaintext in RAM
- Key-to-Entity: Process TLS
- Zeroization: Procedural

18. TLS master secret

- Description: 48-byte master secret
- Generation: Derived from TLS pre-master secret using SP 800-135 KDF Section 4.2.1 or 4.2.2; allowed method as per FIPS 140-2 IG D.8 Scenario 4
- Establishment: N/A
- Entry: N/A
- Output: N/A
- Storage: Plaintext in RAM
- Key-to-Entity: Process TLS
- Zeroization: Procedural

19. DRBG Entropy Input String

- Description: 384-bit Entropy Input String output from NDRNG (RDSEED)⁸
- Generation: Internally generated by the NDRNG (RDSEED)
- Establishment: N/A
- Entry: N/A
- Output: N/A
- Storage: Plaintext in RAM
- Key-to-Entity: Process DRBG
- Zeroization: Procedural

20. DRBG Seed

- Description: 384-bit DRBG Entropy Input String XOR with personalization string and processed by derivation function
- Generation: SP 800-90A CTR_DRBG (AES-256) with Derivation Function
- Establishment: N/A
- Entry: N/A
- Output: N/A
- Storage: Plaintext in RAM
- Key-to-Entity: Process DRBG
- Zeroization: Procedural

⁸ The software module contains an approved CTR_DRBG that is seeded exclusively from one known entropy source (RDSEED) located within the operational environment inside the module's physical boundary but outside the logical boundary.

- 21. DRBG internal state
 - Description: Value of V (128-bits) and Key (256-bits) for SP 800-90A CTR_DRBG (AES-256) with Derivation Function
 - Generation: SP 800-90A CTR_DRBG (AES-256) with Derivation Function
 - Establishment: N/A
 - Entry: N/A
 - Output: N/A
 - Storage: Plaintext in RAM
 - Key-to-Entity: Process DRBG
 - Zeroization: Procedural

22. SP 800-108 KDF internal state

- Description: 256-bit internal state for SP 800-108 KDF in Feedback Mode (§5.2) with HMAC-SHA-256
- Generation: SP 800-108 KDF in Feedback Mode (§5.2); As per SP 800-133 Section 7.4, key derivation is performed by an Approved KDF which is an Approved key derivation method
- Establishment: N/A
- Entry: N/A
- Output: N/A
- Storage: Plaintext in RAM
- Key-to-Entity: Internal state
- Zeroization: Procedural

23. Node RSA private key for SDKMS

- Description: 2048-bit RSA key to support node-to-node communication with mutual authentication
- Generation: SP 800-90A CTR_DRBG; This key is used for RSA Key Un-encapsulation of the TLS pre-master secret. As per SP 800-133 Section 6.2, key generation is performed as per FIPS 186-4; this is an allowed method as per FIPS 140-2 IG D.9
- Establishment: N/A
- Entry: N/A
- Output: N/A
- Storage: Plaintext in RAM, plaintext in persistent storage
- Key-to-Entity: This key belongs to a specific node
- Zeroization: Procedural

24. User password

- Description: String of ASCII characters with a minimum of 8 bytes
- Generation: N/A Entered by user
- Establishment: N/A
- Entry: Automatic, encrypted over TLS session (with TLS encryption key (AES)) during "Authentication" service
- Output: N/A
- Storage: Plaintext in RAM, encrypted in persistent storage with AES-GCM-256 System key
- Key-to-Entity: This CSP belongs to a specific user; PBKDF2 resulting key is stored along with user object for future authentication
- Zeroization: Procedural

25. API key

- Description: 64-byte application authentication data
- Generation: SP 800-90A CTR_DRBG
- Establishment: N/A
- Entry: Automatic, encrypted over TLS session (with TLS encryption key (AES)) during "Authentication" service
- Output: Automatic, encrypted over TLS session (with TLS encryption key (AES)) for "System configuration and management" service
- Storage: Plaintext in RAM, encrypted in persistent storage with AES-GCM-256 Database Wrapping key
- Key-to-Entity: This belongs to a specific application
- Zeroization: Procedural

26. Bearer token

- Description: 64-byte authentication data
- Generation: SP 800-90A CTR_DRBG
- Establishment: N/A
- Entry: Automatic, encrypted over TLS session (with TLS encryption key (AES)) during "Authentication" service and invocation of all subsequent authenticated services thereof
- Output: Automatic, encrypted over TLS session (with TLS encryption key (AES)) for "Authentication" service
- Storage: Plaintext in RAM, encrypted in persistent storage with AES-GCM-256 System key
- Key-to-Entity: This belongs to a specific authenticated session

• Zeroization: Procedural

10. Appendix B: Public Keys

- 1. RSA public key for Digital Signatures
 - Description: 2048-bit to 8192-bit RSA key
 - Generation: SP 800-90A CTR_DRBG; this key is used for Digital Signature Verification. As per SP 800-133 Section 6.1, key generation is performed as per FIPS 186-4 which is an Approved key generation method
 - Establishment: N/A
 - Entry: Automatic, encrypted over TLS session (with TLS encryption key (AES)) during "Import Key" service
 - Output: Automatic, encrypted over TLS session (with TLS encryption key (AES)) during "Export Key" service if the key was created or imported with export permission
 - Storage: Plaintext in RAM, encrypted in persistent storage with AES-GCM-256 Database Wrapping key
 - Key-to-Entity: Only authenticated clients can request the use of the key and authorization to access the key is checked. Client making the request must have authorization to use the key
 - Zeroization: N/A
- 2. RSA public key for Key Encapsulation Operations
 - Description: 2048-bit to 8192-bit RSA key
 - Generation: SP 800-90A CTR_DRBG; this key is used for Key Encapsulation operations. This is an allowed method for key transport as per FIPS 140-2 IG D.9
 - Establishment: N/A
 - Entry: Automatic, encrypted over TLS session (with TLS encryption key (AES)) during "Import Key" service
 - Output: Automatic, encrypted over TLS session (with TLS encryption key (AES)) during "Export Key" service if the key was created or imported with export permission
 - Storage: Plaintext in RAM, encrypted in persistent storage with AES-GCM-256 Database Wrapping key
 - Key-to-Entity: Only authenticated clients can request the use of the key and authorization to access the key is checked. Client making the request must have authorization to use the key
 - Zeroization: N/A

- 3. ECDSA public key
 - Description: EC key (P-224, P-256, P-384, P-521)
 - Generation: SP 800-90A CTR_DRBG; As per SP 800-133 Section 6.1, key generation is performed as per FIPS 186-4 which is an Approved key generation method
 - Establishment: N/A
 - Entry: Automatic, encrypted over TLS session (with TLS encryption key (AES)) during "Import Key" service
 - Output: Automatic, encrypted over TLS session (with TLS encryption key (AES)) during "Export Key" service if the key was created or imported with export permission
 - Storage: Plaintext in RAM, encrypted in persistent storage with AES-GCM-256 Database Wrapping key
 - Key-to-Entity: Only authenticated clients can request the use of the key and authorization to access the key is checked. Client making the request must have authorization to use the key
 - Zeroization: N/A
- 4. Cluster RSA public key for TLS
 - Description: 2048-bit RSA key
 - Generation: SP 800-90A CTR_DRBG; when the module is a TLS Server, this key is used for RSA Key Encapsulation of the TLS pre-master secret. As per SP 800-133 Section 6.2, key generation is performed as per FIPS 186-4; this is an allowed method as per FIPS 140-2 IG D.9
 - Establishment: N/A
 - Entry: N/A
 - Output: Plaintext during TLS handshake
 - Storage: Plaintext in RAM, encrypted in persistent storage with AES-GCM-256 System key
 - Key-to-Entity: This key belongs to the cluster
 - Zeroization: N/A
- 5. Node RSA public key for SDKMS
 - Description: 2048-bit RSA key to support node-to-node communication with mutual authentication
 - Generation: SP 800-90A CTR_DRBG; when the module is a TLS Server, this key is used for RSA Key Encapsulation of the TLS pre-master secret. As per SP 800-133 Section 6.2, key generation is performed as per FIPS 186-4; this is an allowed method as per FIPS 140-2 IG D.9
 - Establishment: N/A
 - Entry: N/A

- Output: Plaintext during TLS handshake
- Storage: Plaintext in RAM, encrypted in persistent storage with AES-GCM-256 System key
- Key-to-Entity: This key belongs to the node
- Zeroization: N/A
- 6. Public key of an outside entity/server (Another SDKMS node)
 - Description: 2048-bit RSA Key
 - Generation: N/A Generated outside of the module
 - Establishment: N/A
 - Entry: Plaintext during TLS handshake
 - Output: N/A
 - Storage: Plaintext in RAM
 - Key-to-Entity: This key belongs to an outside entity / server (Another SDKMS node)
 - Zeroization: N/A
- 7. Public key of an outside entity/server (CA)
 - Description: 2048-bit to 8192-bit RSA Key
 - Generation: N/A Generated outside of the module
 - Establishment: N/A
 - Entry: Plaintext during TLS handshake or during "Cluster Management" service
 - Output: N/A
 - Storage: Plaintext in RAM
 - Key-to-Entity: This key belongs to an outside entity/server (CA)
 - Zeroization: N/A
- 8. RSA Public key of external Application
 - Description: 2048-bit to 8192-bit RSA Key used for authentication using digital certificate
 - Generation: N/A Generated outside of the module
 - Establishment: N/A
 - Entry: Plaintext during "Authentication" service
 - Output: N/A
 - Storage: Plaintext in RAM
 - Key-to-Entity: This key belongs to an outside entity, external Application
 - Zeroization: N/A
- 9. User 2FA device public key

- Description: ECDSA P-256 key with SHA-256
- Generation: N/A Generated outside of the module
- Establishment: N/A
- Entry: Automatic, encrypted over TLS session (with TLS encryption key (AES)) during "System Configuration and management" service
- Output: N/A
- Storage: Plaintext in RAM, encrypted in persistent storage with AES-GCM-256 System key
- Key-to-Entity: This key belongs to a specific user's two factor device
- Zeroization: N/A

10. SAML- Idp public key

- Description: 2048-bit RSA public key with SHA-256 provided as X.509 certificate.
- Generation: N/A Generated outside of the module
- Establishment: N/A
- Entry: Automatic, encrypted over TLS session (with TLS encryption key (AES)) during "System Configuration and management" service
- Output: N/A
- Storage: Plaintext in RAM, encrypted in persistent storage with AES-GCM-256 System key
- Key-to-Entity: This key belongs to a specific account's SSO entry
- Zeroization: N/A

11. Appendix C: Acronyms

TERM	DESCRIPTION
AES	Advanced Encryption Standard (FIPS-197)
API	Application Programming Interface
CBC	Cipher Block Chaining
CTR	Counter
СО	Crypto Officer
DRBG	Deterministic Random Bit Generator (SP 800-90Ar1)
EMI/EMC	Electromagnetic Interference/Electromagnetic
	Compatibility
FIPS	Federal Information Processing Standards
FIPS 140-2 IG	Federal Information Processing Standards 140-2
	Implementation Guidance

GCM	Galois/Counter Mode
НМАС	Keyed-hash Message Authentication Code (FIPS 198-
	1)
IV	Initialization Vector
KAT	Known Answer Test
N/A	Not Applicable
NDRNG	Non-deterministic random number generator
RAM	Random-access Memory
RBG	Random Bit Generator
RNG	Random Number Generator
SDKMS	Self-Defending Key Management Service [™]
SHA-1	Secure Hash Algorithm 1 (FIPS 180-4)
USB	Universal Serial Bus
VGA	Video Graphics Array

Table 17 Specification of acronyms and their descriptions

Runtime Encryption

12. Appendix D: References

[FIPS 140-2] National Institute of Standards and Technology, Security Requirements for Cryptographic Modules, Federal Information Processing Standards Publication 140-2, May 25, 2001

[FIPS 186-4] National Institute of Standards and Technology, Digital Signature Standard (DSS), Federal Information Processing Standards Publication 186-4, July 2013

[FIPS 197] National Institute of Standards and Technology, Advanced Encryption Standard (AES), Federal Information Processing Standards Publication 197, November 26, 2001

[FIPS 198-1] National Institute of Standards and Technology, The Keyed-Hash Message Authentication Code (HMAC), Federal Information Processing Standards Publication 198-1, July 2008

[SP 800-38A] Dworkin, Morris; Recommendation for Block Cipher Modes of Operation: Methods and Techniques, NIST Special Publication 800-38A, December 2001

[SP 800-38F] Dworkin, Morris; Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC, NIST Special Publication 800-38D

[SP 800-56A] Barker, Elaine; Chen, Lily; et al.; Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography, NIST Special Publication 800-56A Revision 2, May 2013

[SP 800-90A] Barker, Elaine and Kelsey, John; Recommendation for Random Number Generation Using Deterministic Random Bit Generators, NIST Special Publication 800-90A Revision 1, June 2015

[SP 800-108] Chen, Lily; Recommendation for Key Derivation Using Pseudorandom Functions (Revised), NIST Special Publication 800-108, October 2009

[SP 800-135] Dang, Quynh; Recommendation for Existing Application-Specific Key Derivation Functions, NIST Special Publication 800-135 Revision 1, December 2001