
This document can be freely distributed in its entirety without modification 1

FIPS 140-2 Level 1 Non-Proprietary Security Policy

Date: 10/29/2018
Version: 2.0.596 and 2.0.NOAESNI-182
Document Number: 1.2

Self-Defending Key Management
Service™

 Runtime Encryption

This document can be freely distributed in its entirety without modification 2

Table of Contents
1. Module Overview ... 4

1.1 Cryptographic Boundary .. 5

1.1.1 Hardware Block Diagram ... 6

1.1.2 Software Block Diagram .. 7

2. Modes of Operations .. 8

2.1 FIPS Approved Mode .. 8

2.1.1 Approved Cryptographic Functions .. 9

2.1.2 Not Approved but Allowed Algorithms .. 12

2.2 Non-Approved Mode ... 13

3. Ports and Interfaces ... 15

4. Roles, Services and Authentication .. 16

4.1 Authenticated Services .. 17

4.2 Unauthenticated Services ... 21

4.3 SDKMS Clusters .. 21

4.4 Authentication ... 22

5. Self-tests ... 28

5.1 Power-Up Self Tests .. 28

5.2 Conditional Self Tests ... 31

6. Physical Security .. 32

7. Mitigation of Other Attacks Policy ... 32

8. Security Rules ... 33

9. Appendix A: CSPs .. 35

10. Appendix B: Public Keys ... 46

11. Appendix C: Acronyms .. 49

12. Appendix D: References .. 51

 Runtime Encryption

This document can be freely distributed in its entirety without modification 3

Revision History

Author(s) Version Date Updates

Fortanix, Inc. 1.0 June 1, 2018 Initial Release

Fortanix, Inc. 1.1 October 3, 2018 Updates

Fortanix, Inc. 1.2 October 29, 2018 Updates

 Runtime Encryption

This document can be freely distributed in its entirety without modification 4

1. Module Overview
Fortanix Self-Defending Key Management Service™ (SDKMS) is the world’s first cloud service

secured with Intel® SGX*. With SDKMS, you can securely generate, store, and use

cryptographic keys and certificates, as well as secrets, such as passwords, API keys, tokens, or

any blob of data. Your business-critical applications and containers can integrate with SDKMS

using legacy cryptographic interfaces or using its native RESTful interface. SDKMS provides

key management and cryptographic operations functionality via secure network interface. It

provides access control to users and applications to enforce authorized access to keys.

FIPS 140-2 conformance testing was performed at Security Level 1. The following configuration

was tested by the lab.

Platform Module Name Software

Version

Operating

System

Processor Optimization

General

purpose x86

based server

(Supermicro

SYS-

5019S-MR)

Self-Defending

Key Management

Service™

2.0.596 Ubuntu

16.04

Intel®

Xeon®

CPU E3-

1230 V5

@3.40GHz

AES-NI

General

purpose x86

based server

(Supermicro

SYS-

5019S-MR)

Self-Defending

Key Management

Service™

2.0.NOAESNI-

182

Ubuntu

16.04

Intel®

Xeon®

CPU E3-

1230 V5

@3.40GHz

None

Table 1 - Configurations tested

* NOTE: Intel® SGX includes cryptographic functionality that is not included within the logical

cryptographic boundary, and as such all data items that are “obfuscated” by Intel® SGX are

treated as plaintext from the perspective of the cryptographic module.

 Runtime Encryption

This document can be freely distributed in its entirety without modification 5

** NOTE: The CMVP allows porting of this cryptographic module from the operational
environment specified on the validation certificate to an operational environment which was not
included as part of the validation testing as long as the porting rules of FIPS 140-2
Implementation Guidance G.5 are followed. As per FIPS 140-2 Implementation Guidance G.5,
no claim can be made as to the correct operation of the module or the security strengths of the
generated keys when ported to an operational environment which is not listed above in Table 1.

FIPS Security Area Security Level

Cryptographic Module Specification 1

Cryptographic Module Ports and Interfaces 1

Roles, Services and Authentication 3

Finite State Model 1

Physical Security N/A

Operational Environment 1

Cryptographic Key Management 1

EMI/EMC 1

Self-tests 1

Design Assurance 1

Mitigation of Other Attacks N/A

Table 2- Security Level Specification Table

1.1 Cryptographic Boundary

The cryptographic module is a software-only module. The physical cryptographic boundary is the

general-purpose computer on which the module is installed and runs. The physical embodiment of the

module is a multiple-chip standalone cryptographic module. As a software module, the logical

cryptographic boundary is the software module that compromises the various software components of the

module.

 Runtime Encryption

This document can be freely distributed in its entirety without modification 6

1.1.1 Hardware Block Diagram

 Runtime Encryption

This document can be freely distributed in its entirety without modification 7

1.1.2 Software Block Diagram

 Runtime Encryption

This document can be freely distributed in its entirety without modification 8

2. Modes of Operations

The module supports two modes of operation: FIPS Approved mode and non-Approved mode.

2.1 FIPS Approved Mode

The Crypto Officer shall follow these steps to initialize the module and verify the module is running in

the FIPS Approved Mode:

1. Power on the module

2. Install the module Debian package by running the following command

a. For AES-NI version:

sudo dpkg -i sdkms_2.0.596 -1_amd64.deb

or for Non AES-NI version:

sudo dpkg -i sdkms_2.0.NOAESNI-182 -1_amd64.deb

b. After the package is installed, it will prompt you to complete the configuration. Using

these prompts complete the configuration of the module.

3. Invoke the version API provided by the “Get status” service

4. Verify that the output is correct, with the following format and value of “fips_mode” attribute

set to true:

a. For AES-NI Version

{"version":"2.0.596","api_version":"v1-20170718","

server_mode":"Sgx","fips_mode":true}

b. For Non AES-NI Version

{"version":"2.0.NOAESNI-182","api_version":"v1-20170718","

server_mode":"Sgx","fips_mode":true}

The module is now initialized and in the FIPS Approved Mode. Operators of the module must adhere to

the Approved and Allowed Cryptographic Functions defined in this section, and to the Security Rules set

forth in this Security Policy. Any deviation is an explicit violation of this Security Policy and implicitly

toggles the module to the Non-Approved Mode regardless of the “fips_mode” attribute returned by the

version API. Please see section Non-Approved Mode for more information.

 Runtime Encryption

This document can be freely distributed in its entirety without modification 9

2.1.1 Approved Cryptographic Functions

CAVP

Cert #

Algorithm Standard Model/

Method

Key Lengths,

Curves or Moduli

Use

5328,

5329,

5379,

5380

AES FIPS 197,

SP 800-38D,

SP 800‐38C

ECB, CBC, CTR,

CFB 128, GCM,

CCM

128, 192, 256

Data Encryption/

Decryption

1818,

1822

CVL SP 800-135 KDF Key Establishment

2072,

2073

DRBG SP 800-90Ar1 CTR_DRBG With

Derivation

Function

 Deterministic Random

Bit Generation

1418,

1419

ECDSA FIPS 186-4 P-192, P-224, P-256,

P-384, P-5211

Key Pair Generation,

Digital Signature

Generation and

Verification

3526,

3527

HMAC FIPS 198-1 HMAC-SHA-1

HMAC-SHA-256,

HMAC-SHA-384,

HMAC-SHA-512

112, 128, 192, 256 Message

Authentication

191, 195 KDF SP 800-108 KDF Key Derivation

5328

and

3526

KTS SP 800-38F AES CBC

with

HMAC-SHA-1

AES (128, 256)

with

Key establishment

methodology provides

between 128 and 256

1 In FIPS Approved mode, P-192 and SHA-1 are not allowed for ECDSA Signature Generation.

The minimum hash sizes supported by the module are SHA-256 for P-224, SHA-256 for P-256,

SHA-384 for P-384, and SHA-512 for P-521.

 Runtime Encryption

This document can be freely distributed in its entirety without modification 10

CAVP

Cert #

Algorithm Standard Model/

Method

Key Lengths,

Curves or Moduli

Use

or

HMAC-SHA-256

HMAC-SHA-1

(160)

or

HMAC-SHA-256

(256)

bits of encryption

strength

5329

with

3527

KTS SP 800-38F AES CBC

with

HMAC-SHA-1

or

HMAC-SHA-256

AES (128, 256)

with

HMAC-SHA-1

(160)

or

HMAC-SHA-256

(256)

Key establishment

methodology provides

between 128 and 256

bits of encryption

strength

5379 KTS SP 800-38F GCM 128, 192, 256 Key establishment

methodology provides

between 128 and 256

bits of encryption

strength

5380 KTS SP 800-38F GCM 128, 192, 256 Key establishment

methodology provides

between 128 and 256

bits of encryption

strength

 Runtime Encryption

This document can be freely distributed in its entirety without modification 11

CAVP

Cert #

Algorithm Standard Model/

Method

Key Lengths,

Curves or Moduli

Use

2876,

2877

RSA FIPS 186-4,

PKCS1 v1.5;

GenKey9.31; PSS

SHA-1, SHA-256,

SHA-384, SHA-

512

10242, 2048, 3072,

40963

Digital Signature

Generation and

Verification

4280,

4281

SHS FIPS 180-4 SHA-1,

SHA-256,

SHA-384

SHA-512

 Message Digest

Table 3 - Table of Approved Algorithms

For additional information on transitions associated with the use of cryptography refer to NIST
Special Publication SP 800-131Ar1. This document can be located on the CMVP website at:
(http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar1.pdf).
The data in the tables will inform Users of the risks associated with using a particular algorithm
and a given key length.

2 In FIPS Approved mode, 1024-bit keys and SHA-1 are not allowed for RSA Signature

Generation.
3 As per FIPS 140-2 Implementation Guidance A.14 CAVP validation has been performed on key

sizes testable via CAVS, while the cryptographic module supports any RSA modulus size

between 2048 and 8192.

 Runtime Encryption

This document can be freely distributed in its entirety without modification 12

2.1.2 Not Approved but Allowed Algorithms

Algorithm

Caveat Use

HMAC-MD5 Used as per SP 800-135 Rev1 Section
4.2.1

Only used in TLS V1.0/1.1 KDF

NDRNG Only used to seed the CTR_DRBG With

derivation function.

Seeding for the Approved DRBG

PBKDF No Security Claimed Used for obfuscation of

passwords, considered as plaintext

RSA Key Wrapping RSA (key wrapping; key establishment

methodology provides 112 bits of encryption

strength)

Key Wrapping

Table 4 - Table of Non-Approved but Allowed Algorithms

 Runtime Encryption

This document can be freely distributed in its entirety without modification 13

2.2 Non-Approved Mode

The module supports a Non-Approved Mode of operation. This mode of operation exists when

the operator does not abide by the rules set forth in this Security Policy and invokes Non-

Approved cryptographic algorithms or Non-Approved services described in this section.

(Operator must abide by Security Rules in section Security Rules)

The use of any such algorithm, and service, is an explicit violation of this Security Policy and is

explicitly disallowed by this Security Policy.

The algorithms marked “non-compliant” are not compliant because they are invoked in the Non-

Approved mode of operation, by a Non-Approved mode service.

Non-Approved Algorithms Usage/ Description

AES GCM (non-compliant) Encryption/Decryption with IV input
from outside of the module

AES ECB (non-compliant),

AES CBC (non-compliant),

AES CTR (non-compliant),

AES CFB 128 (non-compliant),

AES CCM (non-compliant)

 Derive Key service using the resulting
ciphertext as keying material

ECC CDH Primitive (non-compliant)

CVL (Certs. #1840 and #1841)

 Agree Key service to calculate a
shared secret

ECDSA (non-compliant)

 Sign/Verify using hash input created
outside of the module

 Sign using P-192 curve
RSA (non-compliant) 1024-bit RSA key SAML

Authentication
 Encryption/Decryption of data (SP

800-56B only allows for Key
Encapsulation)

 Sign/Verify using hash input created
outside of the module

 Sign/Verify using 1024-bit RSA key
 Sign/Verify using 0x3 public key

exponent
Table 5 Algorithms in Non-Approved Mode

 Runtime Encryption

This document can be freely distributed in its entirety without modification 14

Service

Module Role Usage/Description Algorithm Used

Agree Key Application Calculate a shared secret ECC CDH Primitive (non-

compliant)

CVL (Certs. #1840 and

#1841)

Authentication System Administrator,
System Operator,
Account
Administrator,
Account Member,
Account Auditor,
Group Administrator,
Group Auditor

 1024-bit RSA key SAML
Authentication

RSA (non-compliant)

Derive key Application Use the resulting ciphertext as
keying material

AES ECB (non-compliant),

AES CBC (non-compliant),

AES CTR (non-compliant),

AES CFB 128 (non-

compliant),

AES CCM (non-compliant)

Encrypt/ Decrypt Application Encryption/Decryption with
IV input from outside of the
module

AES GCM (non-compliant)

Application Encryption/Decryption of data
(SP 800-56B only allows for
Key Encapsulation)

RSA (non-compliant)

Sign/Verify Application Sign/Verify using hash input
created outside of the module

 Sign/Verify using 1024-bit
RSA key

 Sign/Verify using 0x3 public
key exponent

RSA (non-compliant)

Application Sign/Verify using hash input
created outside of the module

 P-192 EC Curve

ECDSA (non-compliant)

Table 6 Services available in Non-Approved Mode

 Runtime Encryption

This document can be freely distributed in its entirety without modification 15

3. Ports and Interfaces

The module runs on a general-purpose computer with physical ports. The tested configurations
include the following physical ports:

 4 SATA3 (6Gbps) ports
 2 RJ45 Gigabit Ethernet LAN ports
 1 RJ45 Dedicated IPMI LAN port
 4 USB 3.0 ports
 2 USB 2.0 ports
 1 VGA port
 2 COM ports
 2 SuperDOM (Disk on Module) ports with built-in power

 The module does not include a maintenance interface.

The logical interface is various application programming interfaces (API). The logical interfaces

of the module expose services that applications can call. The applications interacting with the

module input control and data to the module through the input fields of the API and receive

output data and/or status information via the output parameters of the API. API documentation

describes in detail the successful operation output and error in case of a failed operation. Each of

the FIPS 140-2 logical interfaces relates to the module’s application programming interface as

follows:

Logical Interface

Description

Data Input Input / Request payload of API

Data Output Output / Response payload of API

Control Input API call

Status Output API returning status information and return status codes provided

by API

Table 7- Specification of Cryptographic Module Logical Interfaces

 Runtime Encryption

This document can be freely distributed in its entirety without modification 16

4. Roles, Services and Authentication

The module supports identity-based authentication for all roles. The module supports a Crypto

Officer and User Role.

 The Crypto Officer installs and administers the module.

 The User uses the cryptographic services provided by the module. This role is assumed
both by an actual user of the system and an external system that requires cryptographic
services.

The module supports a variety of roles that are mapped to the two FIPS roles. Following table

enumerates the mapping between module roles and FIPS roles:

Module Role FIPS Role

System Administrator Crypto Officer

System Operator Crypto Officer

Account Administrator Crypto Officer, User

Account Member Crypto Officer, User

Account Auditor Crypto Officer

Group Administrator Crypto Officer, User

Group Auditor Crypto Officer

Application User

Node Crypto Officer

Table 8 – Mapping of Module Roles to FIPS roles

 Runtime Encryption

This document can be freely distributed in its entirety without modification 17

4.1 Authenticated Services

The module provides the following services:

Service Module Roles Cryptographic Keys, CSPs and Public
Keys

Types of Access to
Cryptographic Keys and
CSPs
R – Read or Execute
W – Write or Create
Z – Zeroize

Authentication System
Administrator

System Operator
Account

Administrator
Account Member
Account Auditor

Group
Administrator
Group Auditor
Application

Node

User password R

API key R

RSA Public key of external Application R

User 2FA device public key R

Bearer token R

SAML – Idp public key R

Public key of an outside entity/server
(Another SDKMS node)

R

Create/Generate key
Account

Administrator
Group

Administrator
Application

Database Wrapping key W

DRBG Entropy Input String W

DRBG Seed R, W

DRBG internal state W

Symmetric key W

HMAC key W

RSA private key for Digital Signatures W

RSA private key for Key Encapsulation
Operations

W

ECDSA private key W

ECDSA public key W

RSA public key for Key Encapsulation
Operations

W

RSA public key for Digital Signatures W

Encrypt/Decrypt Application Symmetric key R

Cipher State Wrapping key R, W

SP 800‐108 KDF internal state R

Account key R

Database Wrapping key R

Sign/Verify Application Database Wrapping key R

RSA private key for Digital Signatures R

RSA public key for Digital Signatures R

 Runtime Encryption

This document can be freely distributed in its entirety without modification 18

Service Module Roles Cryptographic Keys, CSPs and Public
Keys

Types of Access to
Cryptographic Keys and
CSPs
R – Read or Execute
W – Write or Create
Z – Zeroize

ECDSA private key R

ECDSA public key R

ECDSA random number “k" R, W

Wrap/Unwrap Application Database Wrapping key R

Symmetric key R

RSA private key for Key Encapsulation
Operations

R

RSA public key for Key Encapsulation
Operations

R

HMAC Application Database Wrapping key R

HMAC key R

Digest Application N/A N/A

Import Key
Account

Administrator
Group

Administrator
Application

Database Wrapping key R

Symmetric key W

HMAC key W

RSA private key for Digital Signatures W

RSA private key for Key Encapsulation
Operations

W

RSA public key for Key Encapsulation
Operations

W

ECDSA private key W

ECDSA public key W

RSA public key for Digital Signatures W

Export Key
Account

Administrator
Group

Administrator
Application

Database Wrapping key
(This key is not exported)

R

Symmetric key –
if it was created or imported with
export permission

R

HMAC key –
if it was created or imported with
export permission

R

RSA private key for Digital Signatures –
if it was created or imported with
export permission

R

RSA public key for Digital Signatures –
if it was created or imported with
export permission

R

 Runtime Encryption

This document can be freely distributed in its entirety without modification 19

Service Module Roles Cryptographic Keys, CSPs and Public
Keys

Types of Access to
Cryptographic Keys and
CSPs
R – Read or Execute
W – Write or Create
Z – Zeroize

RSA private key for Key Encapsulation
Operations –
if it was created or imported with
export permission

R

RSA public key for Key Encapsulation
Operations –
if it was created or imported with
export permission

R

ECDSA private key –
if it was created or imported with
export permission

R

ECDSA public key –
if it was created or imported with
export permission

R

Cluster Management4 System
Administrator

Node

Cluster Master key R, W

Cluster RSA private key for TLS R, W

Cluster RSA public key for TLS R, W

Node RSA private key for SDKMS R, W

Node RSA public key for SDKMS R, W

Public key of an outside entity/server
(CA)

R, W

Public key of an outside entity/server
(Another SDKMS node)

R, W

System configuration
and management

System
Administrator

System Operator
(Read only)
Account

Cluster Master key R

System key R, W

Account Wrapping key R, W

Account key R, W

Database Wrapping key R, W

4 Please see “SDKMS Clusters” section for more information.

 Runtime Encryption

This document can be freely distributed in its entirety without modification 20

Service Module Roles Cryptographic Keys, CSPs and Public
Keys

Types of Access to
Cryptographic Keys and
CSPs
R – Read or Execute
W – Write or Create
Z – Zeroize

Administrator
Account Member
Account Auditor

(Read only)
Group

Administrator
Group Auditor
(Read only)
Application

SP 800‐108 KDF internal state R, W

User 2FA device public key R, W

SAML‐ Idp public key R, W

RSA Public key of external Application R, W

TLS5 System
Administrator

System Operator
Account

Administrator
Account Member
Account Auditor

Group
Administrator
Group Auditor
Application

Node

Cluster RSA private key for TLS R

Cluster RSA public key for TLS R

SP 800‐135 TLS KDF internal state R, W

TLS integrity key (HMAC) R,W

TLS encryption key (AES) R,W

TLS pre‐master secret R,W

TLS master secret R,W

Public key of an outside entity/server
(CA)

R

RSA Public key of external Application R

Table 9 - Services Authorized for Roles, Access Rights within Services

5 All API calls into the module are done over TLS V1.0/1.1 or TLS V1.2. No parts of these

protocols, other than the KDFs, have been tested by the CAVP and CMVP.

 Runtime Encryption

This document can be freely distributed in its entirety without modification 21

4.2 Unauthenticated Services

Services

Get status

Run self-tests

Signup

Zeroization6

Table 10 - Unauthenticated Services

4.3 SDKMS Clusters

A Cluster is a group of SDKMS nodes. When a new SDKMS node is provisioned in the cluster,

it will generate a key pair consisting of the Node RSA public key for SDKMS and Node RSA

private key for SDKMS as well as a CSR. Once the node’s certificate has been signed by the

System Administrator using a CA, a credential for authenticating the new node in the cluster is

created. The System Administrator then installs the signed node certificate and CA certificate in

the node. Using its node certificate, the new node initiates a mutually authenticated TLS

connection with an existing node in the cluster. Both nodes verify that the other party’s node

certificate is signed by the same CA, and the existing node sends the Cluster Master key over the

TLS channel to the new node.

6 The Crypto Officer of the module shall be physically present and in control of the module and

the platform it is hosted in.

 Runtime Encryption

This document can be freely distributed in its entirety without modification 22

4.4 Authentication

The module supports the following authentication mechanisms.

Module Role

Authentication

Type

Authentication Data

System Administrator

System Operator

Account Administrator

Account Member

Account Auditor

Group Administrator

Group Auditor

Identity Based User password

Application Identity Based API key

Application Identity Based RSA Public key of external Application

System Administrator

System Operator

Account Administrator

Account Member

Account Auditor

Group Administrator

Group Auditor

Identity Based User 2FA device public key

System Administrator

System Operator

Account Administrator

Account Member

Account Auditor

Group Administrator

Group Auditor

Application

Identity Based Bearer token

 Runtime Encryption

This document can be freely distributed in its entirety without modification 23

Module Role

Authentication

Type

Authentication Data

System Administrator

System Operator

Account Administrator

Account Member

Account Auditor

Group Administrator

Group Auditor

Identity Based SAML – Idp public key

Node Identity Based Public key of an outside entity/server (Another

SDKMS node)
Table 11- Roles and required Identification and Authentication

Our password authentication policy is as described for the Memorized Secret Authenticators in

NIST SP 800-63B (8 characters or longer). The module supports concurrent operators and the

module levies a restriction on session expiry time where if inactive, the Application’s role

session will expire in 10 minutes by default. Similarly, for all other Module roles there is a

session expiry time of 24 hours. Session expiry time can be customized.

 Runtime Encryption

This document can be freely distributed in its entirety without modification 24

Authentication Mechanism

Strength of Mechanism

User password Minimum password length is 8 characters. For a user who

just meets the minimum password length, each of the eight

characters will have at least 95 possible characters7 (ASCII

printable characters with character code 32 -126) if we

consider just the printable characters, although module

supports UTF-8 characters for password and the number of

possible characters with UTF-8 is much higher. Total

number of password permutations with eight characters is

95^8 = 6,634,204,312,890,625. Therefore, the probability

of guessing a password is significantly less than one in

1,000,000.

Module only allows at the most 10 authentication attempts

in a second. Therefore, a user could try at most 600

passwords in a minute. Given the total number of possible

permutations (as shown above), the probability a random

attempt in one-minute period to be correct will be

600/6,634,204,312,890,625. Therefore, the probability of

guessing a password in a one-minute period is significantly

less than one in 100,000.

SAML – Idp public key The strength of this mechanism is based on the public

key size that is used for signature verification.

Minimum key size is RSA 2048, which provides at least

security strength of 112 bits. Therefore, the

7 Lower case and upper-case letters → 52 characters, Digits (0 to 9) → 10 characters, Special

characters ~ ` ! @# $ % ^ & * () _ - + = { } [] \ | ; : ‘ “ < > , . ? / → 32 characters, Space → 1

character

 Runtime Encryption

This document can be freely distributed in its entirety without modification 25

Authentication Mechanism

Strength of Mechanism

probability of success with random data is 1/(2^112),

which is significantly less than one in 1,000,000.

Module only allows at the most 10 authentication

attempts in a second. Therefore, a user could try at

most 600 attempts in a minute. Given the total

number of possible permutations (as shown above),

the probability a random attempt in one minute

period to be correct will be

600/(2^112). Therefore, the probability of guessing a

password in a one minute period is significantly less

than one in 100,000.

API key An application authenticates using an API key which

contains app secret. App secret is a 64 bytes random data,

which means 512 bits Therefore, total number of

permutations for app secret will be 2^512. Therefore, the

probability of guessing an application’s secret is

significantly less than one in 1,000,000.

Module only allows at the most 10 authentication attempts

in a second. Therefore, a user could try at most 600

attempts in a minute. Given the total number of possible

permutations (as shown above), the probability a random

attempt in one-minute period to be correct will be

600/(2^512). Therefore, the probability of guessing an app

secrete in a one minute period is significantly less

than one in 100,000.

User 2FA device public key The module allows users to use a second factor

authentication mechanism in addition to username and

password. The strength of this combination mechanism

 Runtime Encryption

This document can be freely distributed in its entirety without modification 26

Authentication Mechanism

Strength of Mechanism

relies upon the strength of the User password mechanism

(described earlier) combined with the strength of two factor

authentication. This mechanism adds more strength to the

password mechanism which already far exceeds the FIPS

requirements. U2F signature verification uses U2F device’s

public key which is an EC P-256 key. Security strength of

this key is 128 bits. So the probability of a random success

will be 1 in 2^128. Probability of this combined scheme =

(Probability of guessing username and password) *

(Probability from signature verification scheme),

which is 1/(95^8) * 1/(2^128). Therefore, the probability

of guessing a password is significantly less than one in

1,000,000.

Module only allows at the most 10 authentication attempts

in a second. Therefore, a user could try at most 600

attempts in a minute. Given the total number of possible

permutations (as shown above), the probability a random

attempt in one-minute period to be correct will be

600/(95^8 * 2^128). Therefore, the probability of guessing

a password in a one-minute period is significantly less

than one in 100,000. Therefore, this mechanism of

additional 2FA also far exceeds the FIPS requirements.

RSA Public key of external Application The strength of this mechanism is based on the size of the

private key space. The module relies upon minimum RSA

2048-bit keys. This provides an encryption strength of 112

bits, so the probability of a random success will be 1 in

2^112, which is significantly less than one in 1,000,000.

Using this mechanism, one can make very few attempts in

one-minute period. Each attempt will require the module to

check the signature on the certificate using FIPS approved

 Runtime Encryption

This document can be freely distributed in its entirety without modification 27

Authentication Mechanism

Strength of Mechanism

signature algorithm and establishing TLS session with this

certificate. On an average only one attempt can

be made in a second. Therefore, at the most 60 attempts

can be made in a one minute period. Therefore, the

probability of guessing a 2048-bit private key and

succeeding in a one minute period is 60/(2^112) which is

significantly less than one in 100,000.

Bearer token The bearer token is a base64 encoded random 64 bytes data

which is generated using approved DRBG in SDKMS. This

64 bytes gives a total of 512 bits of data. Therefore, total

number of permutations is 2^512. Therefore, the

probability of guessing the token is 1/(2^512), which is

significantly less than one in 1,000,000.

Each authentication attempt takes approximately 12ms or

more. Therefore, a user could try at most 5,000 attempts in

a minute. Given the total number of possible permutations

(as shown above), the probability a random attempt in one-

minute period to be correct will be

5000/(2^512). Therefore, the probability of guessing a

password in a one-minute period is significantly less than

one in 100,000.

Public key of an outside entity/server (Another

SDKMS node)

The strength of this mechanism is based on the size of the

private key space. The module relies upon RSA 2048-bit

node keys. This provides an encryption strength of 112 bits,

so the probability of a random success will be 1 in 2^112,

which is significantly less than one in 1,000,000.

Each attempt will require the module to check the signature

on the certificate using FIPS approved signature algorithm

and establishing TLS session with this certificate. Each

attempt takes 100ms or more. Therefore, at the most 600

 Runtime Encryption

This document can be freely distributed in its entirety without modification 28

Authentication Mechanism

Strength of Mechanism

attempts can be made in a one minute period. Therefore,

the probability of guessing a 2048-bit private key and

succeeding in a one minute period is 600/(2^112) which is

significantly less than one in 100,000.

Table 12 - Strength of Authentication Mechanisms

5. Self-tests

The module performs the following power-up and conditional self-tests. Upon successful

execution of all power-up self-test, module provides the following status:

“Software Integrity test succeeded”
“Power-up self-tests succeeded”

Upon failure of a power-up or conditional self-test, the module halts its operation and enters

the error state. The following tables describe self-tests implemented by the module along

with status messages.

5.1 Power-Up Self Tests

Algorithm Test Status

AES

128-bit key size in ECB, CBC,

CFB128, and CTR Modes

192-bit key size ECB, CBC, and

CFB128 Modes

256-bit key size ECB, CBC, and

CFB128 Modes

KAT (encryption) Success: “Power-up self-tests succeeded”

Error: “AES self test failed”

AES

128-bit key size in ECB, CBC,

CFB128, and CTR Modes

KAT (decryption) Success: “Power-up self-tests succeeded”

Error: “AES self test failed”

 Runtime Encryption

This document can be freely distributed in its entirety without modification 29

Algorithm Test Status

192-bit key size ECB, CBC, and

CFB128 Modes

256-bit key size ECB, CBC, and

CFB128 Modes

AES GCM

128-bit, 192-bit, and 256-bit key

size

KAT (encryption) Success: “Power-up self-tests succeeded”

Error: “GCM self test failed”

AES GCM

128-bit, 192-bit, and 256-bit key

size

KAT (decryption) Success: “Power-up self-tests succeeded”

Error: “GCM self test failed”

AES CCM

128-bit key size

KAT (encryption) Success: “Power-up self-tests succeeded”

Error: “CCM self test failed”

AES CCM

128-bit key size

KAT (decryption) Success: “Power-up self-tests succeeded”

Error: “CCM self test failed”

ECC CDH Primitive “Z”

P-224 Curve

KAT Success: “Power-up self-tests succeeded”

Error: “KAS ECC Primitive Z test failed”

SHA-1 KAT Success: “Power-up self-tests succeeded”

Error: “SHA1 self test failed”

SHA-256 KAT Success: “Power-up self-tests succeeded”

Error: “SHA256 self test failed”

SHA-512 KAT Success: “Power-up self-tests succeeded”

Error: “SHA512 self test failed”

 Runtime Encryption

This document can be freely distributed in its entirety without modification 30

Algorithm Test Status

HMAC-SHA-1

128-bit key size

KAT Success: “Power-up self-tests succeeded”

Error: “HMAC SHA1 self test failed”

HMAC-SHA-256

128-bit key size

KAT Success: “Power-up self-tests succeeded”

Error: “HMAC SHA256 self test failed”

HMAC-SHA-512

2048-bit key size

KAT Success: “Power-up self-tests succeeded”

Error: “HMAC SHA512 self test failed”

SP 800-90A DRBG KAT Success: “Power-up self-tests succeeded”

Error: “CTR DRBG self test failed”

RSA

2048-bit key size, SHA-256

(PKCS1 v1.5)

Signature

generation/verification

KAT

Success: “Power-up self-tests succeeded”

Error: “RSA self test failed”

ECDSA

P-224 curve

Signature

generation/verification

pairwise consistency

test

Success: “Power-up self-tests succeeded”

Error: “ECDSA self test failed”

SP 800-135 TLS V1.0/1.1 KDF KAT Success: “Power-up self-tests succeeded”

Error: “TLS 1.0 KDF self test failed”

SP 800-135 TLS V1.2 KDF KAT Success: “Power-up self-tests succeeded”

Error: “TLS 1.2 KDF self test failed”

SP 800-108 KDF

256-bit key size

KAT Success: “Power-up self-tests succeeded”

Error: “KDF108 self test failed”

HMAC-SHA-256

256-bit key size

Software integrity test Success: “Software Integrity test
succeeded”

Error: “Software integrity check failed”

Critical Functions Tests N/A N/A

Table 13 – Power-Up Self-tests

 Runtime Encryption

This document can be freely distributed in its entirety without modification 31

5.2 Conditional Self Tests

Algorithm Test

Status

Continuous RNG test

performed on output of

NDRNG (RDSEED)

Continuous Random Number

Generator (RNG) Test

Error: “FIPS conditional test failure: Error

in cryptographic operation – RNG failed”

Continuous RNG test

performed on output of

software-based Approved

SP 800-90A CTR_DRBG

Continuous Random Number

Generator (RNG) Test

Error: “FIPS conditional test failure: Error

in cryptographic operation – RNG failed”

RSA

2048-bit to 8192-bit key

size

SHA-256

Pairwise Consistency Test

(Sign and Verify)

Error: “FIPS conditional test failure:

Pairwise consistency test failed. Sign /

Verify test failed.”

RSA

2048-bit to 8192-bit key

size

Pairwise Consistency Test

(Encrypt and Decrypt)

Error: “FIPS conditional test failure:

Pairwise consistency test failed.

Encryption / Decryption test failed.”

ECDSA

P-224, P-256, P-384, P-

521

SHA-256

Pairwise Consistency Test

(Sign and Verify)

Error: “FIPS conditional test failure:

Pairwise consistency test failed. Sign /

Verify test failed.”

Bypass Test N/A N/A

Software Load Test N/A N/A

Manual Key Entry Test N/A N/A

Table 14- Conditional Self-tests

 Runtime Encryption

This document can be freely distributed in its entirety without modification 32

6. Physical Security

The module is a software-only module, so the physical security requirements of FIPS 140-2 Area 5

do not apply.

Physical Security

Mechanisms

Recommended Frequency of

Inspection/Test

Inspection/Test Guidance

Details

N/A N/A N/A

Table 15- Inspection/Testing of Physical Security Mechanisms

7. Mitigation of Other Attacks Policy

The cryptographic module is not designed to mitigate any other attacks beyond the specific scope

of FIPS 140-2.

Other Attacks Mitigation Mechanism Specific Limitations

N/A N/A N/A

Table 16- Table of Mitigation of Other Attacks

 Runtime Encryption

This document can be freely distributed in its entirety without modification 33

8. Security Rules

1. The module enforces logical separation between all data inputs, data outputs, control
inputs, and status outputs via the cryptographic module API.

2. The cryptographic module inhibits all data output during self-tests and error states. The data
output interface is logically disconnected from the processes performing self-tests and
zeroization.

3. The cryptographic module runs on a general-purpose computing platform that conforms
to the EMI/EMC requirements specified by 47 Code of Federal Regulations, Part 15,
Subpart B, Unintentional Radiators, Digital Devices, Class B (i.e. for Home use) which
vacuously satisfies Class A.

4. Power-up self-tests do not require any operator intervention (i.e. the cryptographic
module includes a default entry point as per FIPS 140-2 Implementation Guidance 9.10).

5. Power-up self-tests may be initiated on demand by power-cycling the module.
6. The cryptographic module does not support a maintenance interface or maintenance role.
7. The cryptographic module does not support manual key entry.
8. The cryptographic module does not support a bypass capability.
9. The cryptographic module does not support a Software Load Test.
10. The general-purpose computing platform includes a power port.
11. The cryptographic module supports both a FIPS-Approved mode of operation and Non-

Approved mode of operation.
12. Results of previous authentications are cleared when the module is powered off. The

operator is required to re-authenticate into the module.
13. The operator can Power cycle the module in order to exit the error states and resume

normal operation. Otherwise, reinstall the module onto the general-purpose computing
platform.

14. The module protects public keys and CSPs from unauthorized disclosure, unauthorized
modification, and unauthorized substitution.

15. The module does not output intermediate key values.
16. When performing zeroization, the Crypto Officer of the module shall be physically

present and in control of the module and the platform it is hosted in. The Crypto Officer
is required to reformat and overwrite the platform’s hard drive completely and must
reboot the platform upon completion.

17. The module is an application implemented in client/server architecture, whereby the
module is implemented in a server environment. Therefore, as per FIPS 140-2 IG Section
6.1, the server application is the single-user of the cryptographic module.

18. It is the authorized operator’s responsibility to ensure that a key is used for one given
purpose.

19. As per SP 800-56B, RSA encryption shall only be used for key wrapping.
20. The module complies with FIPS 140-2 IG A.5 requirements for AES-GCM:

a. For TLS V1.2 Protocol, the module constructs the IV (internally) as allowed per
Technique #1 in FIPS 140-2 IG A.5 for Industry Protocols. The IV total length is
96-bits, where the fixed IV length is 32-bits and nonce_explicit part of the IV is

 Runtime Encryption

This document can be freely distributed in its entirety without modification 34

64-bits. The GCM key and IV are session specific; if the module loses power the
implementation is required to re-initialize a TLS V1.2 session, creating a new IV
altogether.

b. For the Encrypt/Decrypt service, a 96-bit IV is constructed from the output of the
CTR_DRBG, allowed as per Technique #2 in FIPS 140-2 IG A.5 for IVs
generated “internally at its entirety randomly”. In case the module’s power is lost
and then restored, a new key for use with the AES GCM encryption/decryption
will be generated from the output of the CTR_DRBG.

21. The operator is prohibited from entering AES-GCM IVs in FIPS-Approved mode.
22. Requests to use the 0x3 public key exponent for RSA are not allowed. The operator shall

only use the 0x10001 public key exponent which is offered by default in the FIPS
Approved Mode.

23. The operator shall use Tag Lengths greater than or equal to 64-bits for AES-GCM and
AES-CCM.

24. In accordance with FIPS 140-2 IG D.12, the cryptographic module performs Cryptographic

Key Generation (CKG) as per SP 800-133 (Vendor Affirmed). The resulting generated

symmetric key and/or generated seed for asymmetric key generation, are from the

unmodified output of the SP 800-90A DRBG.

25. The operator of the module shall abide by the requirements of FIPS 198-1 and SP 800-57

when executing the HMAC service:

a. 112-bit HMAC key minimum for HMAC-SHA-1

b. 128-bit HMAC key minimum for HMAC-SHA-256

c. 192-bit HMAC key minimum for HMAC-SHA-384

d. 256-bit HMAC key minimum for HMAC-SHA-512

26. Each call to the entropy source (RDSEED), which is within the physical boundary and

outside the logical boundary, provides 8 bytes (64 bits) of entropy. Therefore, the

minimum bits of entropy requested per each GET function call is 64 bits.

27. Module WebUI displays a dot (.) for each character of password entered to obscure

feedback of the authentication data to an operator during entry of the authentication data.

 Runtime Encryption

This document can be freely distributed in its entirety without modification 35

9. Appendix A: CSPs

1. Cluster Master key

 Description: 256-bit Key Derivation key (SP 800-108 KDF) used to derive the System
key and Account Wrapping key

 Generation: SP 800-90A CTR_DRBG; As per SP 800-133 Section 7.1, key generation is
performed as per the “Direct Generation” of Symmetric Keys which is an Approved key
generation method

 Establishment: N/A

 Entry: N/A

 Output: Automatic, encrypted over TLS session (with TLS encryption key (AES)) for the
“Cluster Management” service

 Storage: Plaintext in RAM, plaintext in persistent storage

 Key-to-Entity: This key belongs to the cluster

 Zeroization: Procedural

2. System key

 Description: 256-bit AES GCM key used to wrap all user and session information that is
stored in persistent storage

 Generation: Derived from Cluster Master key using NIST SP 800-108 KDF in Feedback
Mode (§5.2); As per SP 800-133 Section 7.4, key derivation is performed by an
Approved KDF which is an Approved key derivation method

 Establishment: N/A

 Entry: N/A

 Output: N/A

 Storage: Plaintext in RAM

 Key-to-Entity: This key belongs to the cluster

 Zeroization: Procedural

3. Account Wrapping key

 Description: 256-bit AES GCM key used to wrap Account key when it is stored in
persistent storage

 Generation: Derived from Cluster Master key using NIST SP 800-108 KDF in Feedback
Mode (§5.2); As per SP 800-133 Section 7.4, key derivation is performed by an
Approved KDF which is an Approved key derivation method

 Establishment: N/A

 Entry: N/A

 Output: N/A

 Runtime Encryption

This document can be freely distributed in its entirety without modification 36

 Storage: Plaintext in RAM

 Key-to-Entity: This key belongs to the cluster

 Zeroization: Procedural

4. Account key

 Description: 256-bit Key Derivation key (SP 800-108 KDF) used to derive the Database
Wrapping key and Cipher State Wrapping key

 Generation: SP 800-90A CTR_DRBG; As per SP 800-133 Section 7.1, key generation is
performed as per the “Direct Generation” of Symmetric Keys which is an Approved key
generation method

 Establishment: N/A

 Entry: N/A

 Output: N/A

 Storage: Plaintext in RAM, encrypted in persistent storage with AES-GCM-256 Account
Wrapping key

 Key-to-Entity: This key belongs to a specific account / tenant and is unique to every
account

 Zeroization: Procedural

5. Database Wrapping key

 Description: 256-bit AES GCM key used to wrap all account / tenant data and keys that
belong to a specific account / tenant when it is stored in persistent storage

 Generation: Derived from Account key using NIST SP 800-108 KDF in Feedback Mode
(§5.2); As per SP 800-133 Section 7.4, key derivation is performed by an Approved KDF
which is an Approved key derivation method

 Establishment: N/A

 Entry: N/A

 Output: N/A

 Storage: Plaintext in RAM

 Key-to-Entity: This key belongs to a specific account / tenant and is unique to every
account

 Zeroization: Procedural

6. Cipher State Wrapping key

 Description: 128-bit AES GCM key used to wrap all cipher state data that belongs to a
specific account / tenant

 Runtime Encryption

This document can be freely distributed in its entirety without modification 37

 Generation: Derived from Account key using NIST SP 800-108 KDF in Feedback Mode
(§5.2); As per SP 800-133 Section 7.4, key derivation is performed by an Approved KDF
which is an Approved key derivation method

 Establishment: N/A

 Entry: N/A

 Output: N/A

 Storage: Plaintext in RAM

 Key-to-Entity: This key belongs to a specific account / tenant and is unique to every
account

 Zeroization: Procedural

7. Symmetric key

 Description: 128-bit, 192-bit, or 256-bit AES keys in the following modes:
o ECB
o CBC
o CTR
o CFB 128
o GCM
o CCM Mode

 Generation: SP 800-90A CTR_DRBG; As per SP 800-133 Section 7.1, key generation is
performed as per the “Direct Generation” of Symmetric Keys which is an Approved key
generation method

 Establishment: N/A

 Entry: Automatic, encrypted over TLS session (with TLS encryption key (AES)) during
"Import Key" service

 Output: Automatic, encrypted over TLS session (with TLS encryption key (AES)) during
"Export Key" service if the key was created or imported with export permission

 Storage: Plaintext in RAM, encrypted in persistent storage with AES-GCM-256 Database
Wrapping key

 Key-to-Entity: Only authenticated clients can request the use of the key and authorization
to access the key is checked. Client making the request must have authorization to use the
key

 Zeroization: Procedural

8. HMAC key

 Description: HMAC key with the following key sizes:
o For HMAC-SHA-1, the minimum key size is 112-bits.
o For HMAC-SHA-256, the minimum key size is 128-bits.
o For HMAC-SHA-384, the minimum key size is 192-bits.

 Runtime Encryption

This document can be freely distributed in its entirety without modification 38

o For HMAC-SHA-512, the minimum key size is 256-bits.

 Generation: SP 800-90A CTR_DRBG; As per SP 800-133 Section 7.1, key generation is
performed as per the “Direct Generation” of Symmetric Keys which is an Approved key
generation method

 Establishment: N/A

 Entry: Automatic, encrypted over TLS session (with TLS encryption key (AES)) during
"Import Key" service

 Output: Automatic, encrypted over TLS session (with TLS encryption key (AES)) during
"Export Key" service if the key was created or imported with export permission

 Storage: Plaintext in RAM, encrypted in persistent storage with AES-GCM-256 Database
Wrapping key

 Key-to-Entity: Only authenticated clients can request the use of the key and authorization
to access the key is checked. Client making the request must have authorization to use the
key

 Zeroization: Procedural

9. RSA private key for Digital Signatures

 Description: 2048-bit to 8192-bit RSA key

 Generation: SP 800-90A CTR_DRBG; this key is used for Digital Signature Generation.
As per SP 800-133 Section 6.1, key generation is performed as per FIPS 186-4 which is
an Approved key generation method

 Establishment: N/A

 Entry: Automatic, encrypted over TLS session (with TLS encryption key (AES)) during
"Import Key" service

 Output: Automatic, encrypted over TLS session (with TLS encryption key (AES)) during
"Export Key" service if the key was created or imported with export permission

 Storage: Plaintext in RAM, encrypted in persistent storage with AES-GCM-256 Database
Wrapping key

 Key-to-Entity: Only authenticated clients can request the use of the key and authorization
to access the key is checked. Client making the request must have authorization to use the
key

 Zeroization: Procedural

10. RSA private key for Key Encapsulation Operations

 Description: 2048 to 8192-bit RSA key

 Generation: SP 800-90A CTR_DRBG; this key is used for Key Un-encapsulation
(decryption) operations. This is an allowed method for key transport as per FIPS 140-2
IG D.9

 Establishment: N/A

 Runtime Encryption

This document can be freely distributed in its entirety without modification 39

 Entry: Automatic, encrypted over TLS session (with TLS encryption key (AES)) during
"Import Key" service

 Output: Automatic, Encrypted over TLS session (with TLS encryption key (AES)) during
"Export Key" service if the key was created or imported with export permission

 Storage: Plaintext in RAM, encrypted in persistent storage with AES-GCM-256 Database
Wrapping key

 Key-to-Entity: Only authenticated clients can request the use of the key and authorization
to access the key is checked. Client making the request must have authorization to use the
key

 Zeroization: Procedural

11. ECDSA private key

 Description: EC Key (P-224, P-256, P-384, P-521)

 Generation: SP 800-90A CTR_DRBG; As per SP 800-133 Section 6.1, key generation is
performed as per FIPS 186-4 which is an Approved key generation method

 Establishment: N/A

 Entry: Automatic, encrypted over TLS session (with TLS encryption key (AES)) during
"Import Key" service

 Output: Automatic, encrypted over TLS session (with TLS encryption key (AES)) during
"Export Key" service if the key was created or imported with export permission

 Storage: Plaintext in RAM, encrypted in persistent storage with AES-GCM-256 Database
Wrapping key

 Key-to-Entity: Only authenticated clients can request the use of the key and authorization
to access the key is checked. Client making the request must have authorization to use the
key

 Zeroization: Procedural

12. ECDSA random number “k”

 Description: A secret random number generated via SP 800-90A CTR_DRBG for use
during the ECDSA signature generation process. The sizes are as follows:

o For P-224, k is 224 bits.
o For P-256, k is 256 bits.
o For P-384, k is 384 bits.
o For P-521, k is 521 bits.

 Generation: SP 800-90A CTR_DRBG; As per SP 800-133 Section 6.1, key generation is
performed as per FIPS 186-4 which is an Approved key generation method

 Establishment: N/A

 Entry: N/A

 Output: N/A

 Runtime Encryption

This document can be freely distributed in its entirety without modification 40

 Storage: Plaintext in RAM

 Key-to-Entity: Process - “Sign/Verify” service with ECDSA

 Zeroization: Procedural

13. Cluster RSA private key for TLS

 Description: 2048-bit RSA key; when the module behaves as a TLS Server this key is
used for RSA Key Un-encapsulation of the TLS pre-master secret

 Generation: SP 800-90A CTR_DRBG; As per SP 800-133 Section 6.2, key generation is
performed as per FIPS 186-4; this is an allowed method as per FIPS 140-2 IG D.9

 Establishment: N/A

 Entry: N/A

 Output: N/A

 Storage: Plaintext in RAM, encrypted in persistent storage with AES-GCM-256 System
key

 Key-to-Entity: This key belongs to the cluster

 Zeroization: Procedural

14. SP 800-135 TLS KDF internal state

 Description: 128-byte internal state for SP 800-135 TLS V1.0/1.1 KDF (HMAC-
MD5/HMAC-SHA-1 PRF) or TLS V1.2 KDF (HMAC-SHA-256 PRF or HMAC-SHA-
384 PRF)

 Generation: N/A

 Establishment: SP 800-135 Section 4.2.1 or 4.2.2; allowed method as per FIPS 140-2 IG
D.8 Scenario 4

 Entry: N/A

 Output: N/A

 Storage: Plaintext in RAM

 Key-to-Entity: Process – TLS KDF internal state

 Zeroization: Procedural

15. TLS integrity key (HMAC)

 Description: 160-bit HMAC-SHA-1 key or 256-bit HMAC-SHA-256 key

 Generation: Derived from TLS master secret using SP 800-135 KDF Section 4.2.1 or
4.2.2; allowed method as per FIPS 140-2 IG D.8 Scenario 4

 Establishment: N/A

 Entry: N/A

 Output: N/A

 Storage: Plaintext in RAM

 Runtime Encryption

This document can be freely distributed in its entirety without modification 41

 Key-to-Entity: Process – TLS

 Zeroization: Procedural

16. TLS encryption key (AES)

 Description: AES with the following modes and key sizes:
o AES-128-CBC
o AES-128-GCM
o AES-128-CCM
o AES-128-CCM with 64-bit Tag Length
o AES-256-CBC
o AES-256-GCM
o AES-256-CCM
o AES-256-CCM with 64-bit Tag Length

 Generation: Derived from TLS master secret using SP 800-135 KDF Section 4.2.1 or
4.2.2; allowed method as per FIPS 140-2 IG D.8 Scenario 4

 Establishment: N/A

 Entry: N/A

 Output: N/A

 Storage: Plaintext in RAM

 Key-to-Entity: Process – TLS

 Zeroization: Procedural

17. TLS pre-master secret

 Description: 48-byte pre-master secret

 Generation: SP 800-90A CTR_DRBG; generated only when the module behaves as a
TLS Client. As per SP 800-133 Section 7.1, key generation is performed as per the
“Direct Generation” of Symmetric Keys which is an Approved key generation method

 Establishment: N/A

 Entry: When the module behaves as a TLS Server, the module may receive this secret
RSA Key Encapsulated with "Cluster RSA public key for TLS". This is allowed as per
FIPS 140-2 IG D.9

 Output: When the module behaves as a TLS Client, the module may output this value
RSA Key Encapsulated with "Public key of an outside entity / server (Another SDKMS
node)". This is allowed as per FIPS 140-2 IG D.9

 Storage: Plaintext in RAM

 Key-to-Entity: Process – TLS

 Zeroization: Procedural

 Runtime Encryption

This document can be freely distributed in its entirety without modification 42

18. TLS master secret

 Description: 48-byte master secret

 Generation: Derived from TLS pre-master secret using SP 800-135 KDF Section 4.2.1 or
4.2.2; allowed method as per FIPS 140-2 IG D.8 Scenario 4

 Establishment: N/A

 Entry: N/A

 Output: N/A

 Storage: Plaintext in RAM

 Key-to-Entity: Process – TLS

 Zeroization: Procedural

19. DRBG Entropy Input String

 Description: 384-bit Entropy Input String output from NDRNG (RDSEED)8

 Generation: Internally generated by the NDRNG (RDSEED)

 Establishment: N/A

 Entry: N/A

 Output: N/A

 Storage: Plaintext in RAM

 Key-to-Entity: Process - DRBG

 Zeroization: Procedural

20. DRBG Seed

 Description: 384-bit DRBG Entropy Input String XOR with personalization string and
processed by derivation function

 Generation: SP 800-90A CTR_DRBG (AES-256) with Derivation Function

 Establishment: N/A

 Entry: N/A

 Output: N/A

 Storage: Plaintext in RAM

 Key-to-Entity: Process - DRBG

 Zeroization: Procedural

8 The software module contains an approved CTR_DRBG that is seeded exclusively from one

known entropy source (RDSEED) located within the operational environment inside the module’s

physical boundary but outside the logical boundary.

 Runtime Encryption

This document can be freely distributed in its entirety without modification 43

21. DRBG internal state

 Description: Value of V (128-bits) and Key (256-bits) for SP 800-90A CTR_DRBG
(AES-256) with Derivation Function

 Generation: SP 800-90A CTR_DRBG (AES-256) with Derivation Function

 Establishment: N/A

 Entry: N/A

 Output: N/A

 Storage: Plaintext in RAM

 Key-to-Entity: Process - DRBG

 Zeroization: Procedural

22. SP 800-108 KDF internal state

 Description: 256-bit internal state for SP 800-108 KDF in Feedback Mode (§5.2) with
HMAC-SHA-256

 Generation: SP 800-108 KDF in Feedback Mode (§5.2); As per SP 800-133 Section 7.4,
key derivation is performed by an Approved KDF which is an Approved key derivation
method

 Establishment: N/A

 Entry: N/A

 Output: N/A

 Storage: Plaintext in RAM

 Key-to-Entity: Internal state

 Zeroization: Procedural

23. Node RSA private key for SDKMS

 Description: 2048-bit RSA key to support node-to-node communication with mutual
authentication

 Generation: SP 800-90A CTR_DRBG; This key is used for RSA Key Un-encapsulation
of the TLS pre-master secret. As per SP 800-133 Section 6.2, key generation is
performed as per FIPS 186-4; this is an allowed method as per FIPS 140-2 IG D.9

 Establishment: N/A

 Entry: N/A

 Output: N/A

 Storage: Plaintext in RAM, plaintext in persistent storage

 Key-to-Entity: This key belongs to a specific node

 Zeroization: Procedural

 Runtime Encryption

This document can be freely distributed in its entirety without modification 44

24. User password

 Description: String of ASCII characters with a minimum of 8 bytes

 Generation: N/A - Entered by user

 Establishment: N/A

 Entry: Automatic, encrypted over TLS session (with TLS encryption key (AES)) during
"Authentication" service

 Output: N/A

 Storage: Plaintext in RAM, encrypted in persistent storage with AES-GCM-256 System
key

 Key-to-Entity: This CSP belongs to a specific user; PBKDF2 resulting key is stored
along with user object for future authentication

 Zeroization: Procedural

25. API key

 Description: 64-byte application authentication data

 Generation: SP 800-90A CTR_DRBG

 Establishment: N/A

 Entry: Automatic, encrypted over TLS session (with TLS encryption key (AES)) during
"Authentication" service

 Output: Automatic, encrypted over TLS session (with TLS encryption key (AES)) for
"System configuration and management" service

 Storage: Plaintext in RAM, encrypted in persistent storage with AES-GCM-256 Database
Wrapping key

 Key-to-Entity: This belongs to a specific application

 Zeroization: Procedural

26. Bearer token

 Description: 64-byte authentication data

 Generation: SP 800-90A CTR_DRBG

 Establishment: N/A

 Entry: Automatic, encrypted over TLS session (with TLS encryption key (AES)) during
"Authentication" service and invocation of all subsequent authenticated services thereof

 Output: Automatic, encrypted over TLS session (with TLS encryption key (AES)) for
"Authentication" service

 Storage: Plaintext in RAM, encrypted in persistent storage with AES-GCM-256 System
key

 Key-to-Entity: This belongs to a specific authenticated session

 Runtime Encryption

This document can be freely distributed in its entirety without modification 45

 Zeroization: Procedural

 Runtime Encryption

This document can be freely distributed in its entirety without modification 46

10. Appendix B: Public Keys

1. RSA public key for Digital Signatures

 Description: 2048-bit to 8192-bit RSA key

 Generation: SP 800-90A CTR_DRBG; this key is used for Digital Signature Verification.
As per SP 800-133 Section 6.1, key generation is performed as per FIPS 186-4 which is
an Approved key generation method

 Establishment: N/A

 Entry: Automatic, encrypted over TLS session (with TLS encryption key (AES)) during
"Import Key" service

 Output: Automatic, encrypted over TLS session (with TLS encryption key (AES)) during
"Export Key" service if the key was created or imported with export permission

 Storage: Plaintext in RAM, encrypted in persistent storage with AES-GCM-256 Database
Wrapping key

 Key-to-Entity: Only authenticated clients can request the use of the key and authorization
to access the key is checked. Client making the request must have authorization to use the
key

 Zeroization: N/A

2. RSA public key for Key Encapsulation Operations

 Description: 2048-bit to 8192-bit RSA key

 Generation: SP 800-90A CTR_DRBG; this key is used for Key Encapsulation operations.
This is an allowed method for key transport as per FIPS 140-2 IG D.9

 Establishment: N/A

 Entry: Automatic, encrypted over TLS session (with TLS encryption key (AES)) during
"Import Key" service

 Output: Automatic, encrypted over TLS session (with TLS encryption key (AES)) during
"Export Key" service if the key was created or imported with export permission

 Storage: Plaintext in RAM, encrypted in persistent storage with AES-GCM-256 Database
Wrapping key

 Key-to-Entity: Only authenticated clients can request the use of the key and authorization
to access the key is checked. Client making the request must have authorization to use the
key

 Zeroization: N/A

 Runtime Encryption

This document can be freely distributed in its entirety without modification 47

3. ECDSA public key

 Description: EC key (P-224, P-256, P-384, P-521)

 Generation: SP 800-90A CTR_DRBG; As per SP 800-133 Section 6.1, key generation is
performed as per FIPS 186-4 which is an Approved key generation method

 Establishment: N/A

 Entry: Automatic, encrypted over TLS session (with TLS encryption key (AES)) during
"Import Key" service

 Output: Automatic, encrypted over TLS session (with TLS encryption key (AES)) during
"Export Key" service if the key was created or imported with export permission

 Storage: Plaintext in RAM, encrypted in persistent storage with AES-GCM-256 Database
Wrapping key

 Key-to-Entity: Only authenticated clients can request the use of the key and authorization
to access the key is checked. Client making the request must have authorization to use the
key

 Zeroization: N/A

4. Cluster RSA public key for TLS

 Description: 2048-bit RSA key

 Generation: SP 800-90A CTR_DRBG; when the module is a TLS Server, this key is used
for RSA Key Encapsulation of the TLS pre-master secret. As per SP 800-133 Section 6.2,
key generation is performed as per FIPS 186-4; this is an allowed method as per FIPS
140-2 IG D.9

 Establishment: N/A

 Entry: N/A

 Output: Plaintext during TLS handshake

 Storage: Plaintext in RAM, encrypted in persistent storage with AES-GCM-256 System
key

 Key-to-Entity: This key belongs to the cluster

 Zeroization: N/A

5. Node RSA public key for SDKMS

 Description: 2048-bit RSA key to support node-to-node communication with mutual
authentication

 Generation: SP 800-90A CTR_DRBG; when the module is a TLS Server, this key is used
for RSA Key Encapsulation of the TLS pre-master secret. As per SP 800-133 Section 6.2,
key generation is performed as per FIPS 186-4; this is an allowed method as per FIPS
140-2 IG D.9

 Establishment: N/A

 Entry: N/A

 Runtime Encryption

This document can be freely distributed in its entirety without modification 48

 Output: Plaintext during TLS handshake

 Storage: Plaintext in RAM, encrypted in persistent storage with AES-GCM-256 System
key

 Key-to-Entity: This key belongs to the node

 Zeroization: N/A

6. Public key of an outside entity/server (Another SDKMS node)

 Description: 2048-bit RSA Key

 Generation: N/A - Generated outside of the module

 Establishment: N/A

 Entry: Plaintext during TLS handshake

 Output: N/A

 Storage: Plaintext in RAM

 Key-to-Entity: This key belongs to an outside entity / server (Another SDKMS node)

 Zeroization: N/A

7. Public key of an outside entity/server (CA)

 Description: 2048-bit to 8192-bit RSA Key

 Generation: N/A - Generated outside of the module

 Establishment: N/A

 Entry: Plaintext during TLS handshake or during "Cluster Management" service

 Output: N/A

 Storage: Plaintext in RAM

 Key-to-Entity: This key belongs to an outside entity/server (CA)

 Zeroization: N/A

8. RSA Public key of external Application

 Description: 2048-bit to 8192-bit RSA Key used for authentication using digital
certificate

 Generation: N/A - Generated outside of the module

 Establishment: N/A

 Entry: Plaintext during "Authentication" service

 Output: N/A

 Storage: Plaintext in RAM

 Key-to-Entity: This key belongs to an outside entity, external Application

 Zeroization: N/A

9. User 2FA device public key

 Runtime Encryption

This document can be freely distributed in its entirety without modification 49

 Description: ECDSA P-256 key with SHA-256

 Generation: N/A - Generated outside of the module

 Establishment: N/A

 Entry: Automatic, encrypted over TLS session (with TLS encryption key (AES)) during
"System Configuration and management" service

 Output: N/A

 Storage: Plaintext in RAM, encrypted in persistent storage with AES-GCM-256 System
key

 Key-to-Entity: This key belongs to a specific user’s two factor device

 Zeroization: N/A

10. SAML- Idp public key

 Description: 2048-bit RSA public key with SHA-256 provided as X.509 certificate.

 Generation: N/A - Generated outside of the module

 Establishment: N/A

 Entry: Automatic, encrypted over TLS session (with TLS encryption key (AES)) during
"System Configuration and management" service

 Output: N/A

 Storage: Plaintext in RAM, encrypted in persistent storage with AES-GCM-256 System
key

 Key-to-Entity: This key belongs to a specific account’s SSO entry

 Zeroization: N/A

11. Appendix C: Acronyms

TERM DESCRIPTION
AES Advanced Encryption Standard (FIPS-197)
API Application Programming Interface
CBC Cipher Block Chaining
CTR Counter
CO Crypto Officer

DRBG Deterministic Random Bit Generator (SP 800-90Ar1)
EMI/EMC Electromagnetic Interference/Electromagnetic

Compatibility
FIPS Federal Information Processing Standards

FIPS 140-2 IG Federal Information Processing Standards 140-2
Implementation Guidance

 Runtime Encryption

This document can be freely distributed in its entirety without modification 50

GCM Galois/Counter Mode
HMAC Keyed-hash Message Authentication Code (FIPS 198-

1)
IV Initialization Vector

KAT Known Answer Test
N/A Not Applicable

NDRNG Non-deterministic random number generator
RAM Random-access Memory
RBG Random Bit Generator
RNG Random Number Generator

SDKMS Self-Defending Key Management Service™
SHA-1 Secure Hash Algorithm 1 (FIPS 180-4)
USB Universal Serial Bus
VGA Video Graphics Array

 Table 17 Specification of acronyms and their descriptions

 Runtime Encryption

This document can be freely distributed in its entirety without modification 51

12. Appendix D: References

[FIPS 140-2] National Institute of Standards and Technology, Security Requirements for

Cryptographic Modules, Federal Information Processing Standards Publication 140-2, May 25, 2001

[FIPS 186-4] National Institute of Standards and Technology, Digital Signature Standard (DSS),

Federal Information Processing Standards Publication 186-4, July 2013

[FIPS 197] National Institute of Standards and Technology, Advanced Encryption Standard (AES),

Federal Information Processing Standards Publication 197, November 26, 2001

[FIPS 198-1] National Institute of Standards and Technology, The Keyed-Hash Message

Authentication Code (HMAC), Federal Information Processing Standards Publication 198-1, July

2008

[SP 800-38A] Dworkin, Morris; Recommendation for Block Cipher Modes of Operation: Methods

and Techniques, NIST Special Publication 800-38A, December 2001

[SP 800-38F] Dworkin, Morris; Recommendation for Block Cipher Modes of Operation:

Galois/Counter Mode (GCM) and GMAC, NIST Special Publication 800-38D

[SP 800-56A] Barker, Elaine; Chen, Lily; et al.; Recommendation for Pair-Wise Key Establishment

Schemes Using Discrete Logarithm Cryptography, NIST Special Publication 800-56A Revision 2,

May 2013

[SP 800-90A] Barker, Elaine and Kelsey, John; Recommendation for Random Number Generation

Using Deterministic Random Bit Generators, NIST Special Publication 800-90A Revision 1, June

2015

[SP 800-108] Chen, Lily; Recommendation for Key Derivation Using Pseudorandom Functions

(Revised), NIST Special Publication 800-108, October 2009

[SP 800-135] Dang, Quynh; Recommendation for Existing Application-Specific Key Derivation

Functions, NIST Special Publication 800-135 Revision 1, December 2001

