Non-Proprietary FIPS 140-2 Security Policy

Google Inc. Delta Cryptographic Module

Hardware version: Delta [Configuration 0]; [Configuration 1]; [Configuration 2] with components ARM Cortex-M7 CPU, RR16FFGL_111UHD32768X39M16B8W0R1E1L1P0D0L16, RR16FFGL_111HS16384X8M16B8W1R1E1L0P0D0A0U20 and RR16FFGL_111HS32768X8M16B8W1R1E1L0P0D0A0U20

Firmware version: Delta-gqfips-1.2

Date: 03/05/2019

Prepared By:

Introduction

Federal Information Processing Standards Publication 140-2 — Security Requirements for Cryptographic Modules specifies requirements for cryptographic modules to be deployed in a Sensitive but Unclassified environment. The National Institute of Standards and Technology (NIST) and Communications Security Establishment Canada (CSE) Cryptographic Module Validation Program (CMVP) run the FIPS 140 program. NVLAP accredits independent testing labs to perform FIPS 140 testing; the CMVP validates modules meeting FIPS 140 validation. Validated is the term given to a module that is documented and tested against the FIPS 140 criteria.

More information is available on the CMVP website at: http://csrc.nist.gov/groups/STM/cmvp/index.html

About this Document

This non-proprietary Cryptographic Module Security Policy for Delta Cryptographic Module from Google Inc. provides an overview of the product and a high-level description of how it meets the overall Level 1 security requirements of FIPS 140-2.

Delta may also be referred to as the "module" in this document.

Disclaimer

The contents of this document are subject to revision without notice due to continued progress in methodology, design, and manufacturing. Google Inc. shall have no liability for any error or damages of any kind resulting from the use of this document.

Notices

This document may be freely reproduced and distributed in its entirety without modification.

Table of Contents

ntroduction	2
Disclaimer	2
Notices	2
1. Introduction	5
1.1 Scope	5
1.2 Overview	5
2. Security Level	5
3. Cryptographic Module Specification	6
3.1 Cryptographic Boundary	6
4. Cryptographic Module Ports and Interfaces	7
5. Roles, Services and Authentication	7
5.1 Roles	7
5.2 Services	7
5.3 Authentication	8
5. Physical Security	8
7. Operational Environment	8
3. Cryptographic Algorithms and Key Management	9
8.1 Cryptographic Algorithms	9
8.1.1 Allowed Algorithms	9
8.1.2 Non-Approved Algorithms1	0
8.2 Cryptographic Key Management	0
8.3 Key Generation and Entropy1	1
8.4 Zeroization	2
9. Self-tests	2
9.1 Power-On Self-Tests	2
9.2 Conditional Self-Tests	3
10. Guidance and Secure Operation1	4
10.1 Usage of AES GCM in the module1	4
11. Glossary1	.5

List of Tables

Table 1 - Security Level	5
Table 2 - Physical Port and Logical Interface Mapping	7
Table 3 - Approved Services and Role allocation	8
Table 4 - Non-Approved Services and Role allocation	8
Table 5 - Crypto Engine Hardware Implementation Algorithms	9
Table 6 - Hotplug Firmware Implementation Algorithms	9
Table 7 - Offload Engine Hardware Implementation Algorithms	9
Table 8 - Embedded Titan Chip Algorithms	9
Table 9 - Allowed Algorithms	9
Table 10 - Non-Approved Algorithms	10
Table 11 - Approved Keys and CSPs Table	10
Table 12 - Public Keys	11
Table 13 - Approved Service to Key/CSP Mapping	11
Table 14 - Power-up Self-tests	13
Table 15 - Conditional Self-tests	13
Table 16 - Glossary of Terms	15
List of Figures	
Figure 1 - Delta Block Diagram	6

1. Introduction

1.1 Scope

This document describes the cryptographic module security policy for the Google Inc. Delta Cryptographic Module (Hardware version: Delta [Configuration 0]; [Configuration 1]; [Configuration 2]) cryptographic module with firmware Delta-gqfips-1.2 (also referred to as the "module" hereafter). It contains specification of the security rules, under which the cryptographic module operates, including the security rules derived from the requirements of the FIPS 140-2 standard.

1.2 Overview

The Delta Cryptographic Module is a Network Interface Card (NIC) connected to a host device over PCIe, which is designed to support Ethernet and IP networking. The Delta module contains cryptographic hardware and firmware support, which allows data packets to be encrypted and decrypted using AES-GCM-128 at "line rate", while supporting a very large number of simultaneous Security Associations.

2. Security Level

The following table lists the level of validation for each area in FIPS 140-2:

FIPS 140-2 Section Title	Validation Level
Cryptographic Module Specification	1
Cryptographic Module Ports and Interfaces	1
Roles, Services, and Authentication	1
Finite State Model	1
Physical Security	1
Operational Environment	N/A
Cryptographic Key Management	1
Electromagnetic Interference / Electromagnetic Compatibility	1
Self-Tests	1
Design Assurance	1
Mitigation of Other Attacks	N/A
Overall Level	1

Table 1 - Security Level

3. Cryptographic Module Specification

3.1 Cryptographic Boundary

Delta is a hardware module with a multiple-chip embedded embodiment. The cryptographic boundary of the module includes the Network Interface Card (NIC) and the embedded Google, Inc. Titan Chip cryptographic module (FIPS 140-2 Cert. #3382) which is utilized to perform several cryptographic functions.

The Delta Cryptographic Module is a Network Interface Card (NIC) housed on a host device. The module boundary contains two independent CPUs (CPU 0 and CPU 1) and components shown within the dotted line shown in Figure 1 below. CPU 0 is associated with Host 0, while CPU 1 is associated with Host 1. The module can operate in the following validated configurations:

- Configuration 0 Host 0 has provided a valid Hotplug firmware image to CPU 0. All associated self-tests have passed for CPU 0 and it executes while CPU 1 waits for a Hotplug firmware image.
- Configuration 1 Host 1 has provided a valid Hotplug firmware image to CPU 1. All associated self-tests have passed for CPU 1 and it executes while CPU 0 waits for a Hotplug firmware image.
- Configuration 2 Both Host 0 and Host 1 have provided Hotplug firmware images to their respective CPUs. All associated self-tests have passed and both CPUs execute. The cryptographic boundary of the module and the relationship among the various internal components of the module are depicted in Figure 1 below.

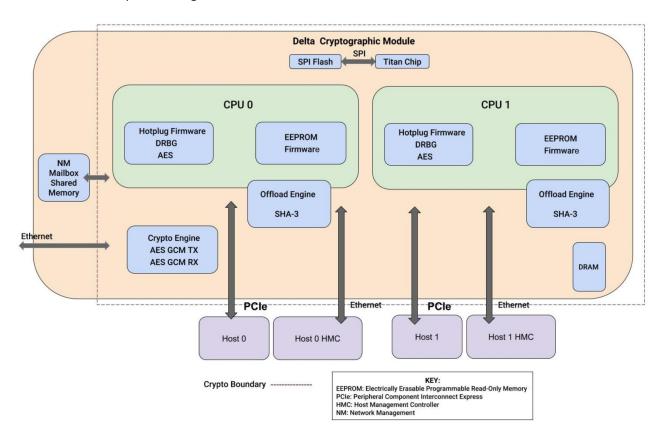


Figure 1 - Delta Block Diagram

The Delta Cryptographic Module will forward packets from the Hosts via PCIe links to the main Ethernet links, and from the main Ethernet link to the Hosts via the PCIe links. It will also forward packets from the HMC Ethernet link to the main Ethernet link, and packets that match rules configured by the HMCs from the main Ethernet link to the HMC links.

4. Cryptographic Module Ports and Interfaces

The module provides the following number of physical and logical interfaces to the device, and the physical interfaces provided by the module are mapped to the FIPS 140-2 defined logical interfaces: data input, data output, control input, status output, and power. The logical interfaces and their mapping are described in the following table:

Physical Port	FIPS 140-2 Logical Interface Mapping	Description
Ethernet	Data Input and Output Interface	TX/RX connection
	Status Output Interface	
	Control Input Interface	
PCIe (x2)	Data Input and Output Interface	Direct Connections to Host 0 and
	Status Output Interface	Host 1
	Control Input Interface	
Slow Ethernet Link	Data Input and Output Interface,	Direct connections to the Host
(2x)	Status Output Interface	Management Controllers (HMC) of
	Control Input Interface	Host 0 and Host 1
Network	Data Input and Output Interface	EMIF
Management		
Mailbox Shared		
Memory Interface		
Power	Power	Provides power to the module

Table 2 - Physical Port and Logical Interface Mapping

5. Roles, Services and Authentication

5.1 Roles

The module does not provide any identification or authentication for any user that is accessing the device. Since the device does not provide any identification or authentication services, the level of access granted to any functionality of the module is implicitly determined by the service calling the module; the device itself makes no determination about the role itself.

5.2 Services

The module provides the following Approved services which utilize algorithms listed in Table 5, 6, 7 and 8:

Service	User	Crypto Officer
Initialization	✓	✓
On-Demand Self-test	✓	✓
Zeroization	✓	✓

Service	User	Crypto Officer
Host 0 and/or Host 1 via PCIe interfa	ace to module	
Perform Titan Service (Host can request RPC commands via the module PCIe)	~	~
Perform Firmware Update		✓
Load Firmware		✓
Instruct Module to Send Plaintext Packet	~	~
Instruct Module to Send Encrypted Packet	✓	✓
Instruct Module to Rotate Master Key		✓
Write a value to video IP register	~	~
Read a value from video IP register	✓	✓
Request Status Information	✓	✓
Set Configuration data		~
Host Management Controller via ethernet	interface to mo	dule
Instruct Module to Send Packet	✓	✓
Request Status Information	✓	✓
Set Configuration data		✓
Network Management via Mailbox API ir	nterface to modu	ule
Perform Titan Service (NM can request RPC commands via the module mailbox API)	~	~
Perform Firmware Update		~
Request Status Information	✓	✓
Run Hardware Diagnostics	✓	✓

Table 3 - Approved Services and Role allocation

The module provides the following non-Approved services which utilize algorithms listed in Table 10:

Service
Derive RX Session ID and RX Session Key (using non-conformant KBKDF)
Receive Encrypted Packet via the TX/RX Ethernet interface (using non-conformant
KBKDF)

Table 4 - Non-Approved Services and Role allocation

5.3 Authentication

There is no operator authentication; assumption of role is implicit by the used service(s).

6. Physical Security

The module is a multi-chip embedded cryptographic module made with production grade components and standard passivation.

7. Operational Environment

The module does not provide a general-purpose operating system.

8. Cryptographic Algorithms and Key Management

8.1 Cryptographic Algorithms

The module implements the following approved algorithms in the firmware and hardware:

	Crypto Engine (Hardware Algorithm Implementation)					
CAVP Cert #	Algorithm	Sizes	Standard	Mode/Method	Use	
5656	AES	128-bits	SP 800-38A FIPS 197 SP 800-38D	ECB ¹ , GCM	Encryption, Decryption, Authentication	
5656	KTS	128-bits	IG D.9	GCM	Authenticated Key Wrapping	

Table 5 - Crypto Engine Hardware Implementation Algorithms

	Hotplug Cryptographic Module Firmware					
CAVP Cert #	Algorithm	Sizes	Standard	Mode/Method	Use	
5659	AES	128-bits	SP 800-38A FIPS 197	ECB	Encryption, Decryption	
Vendor Affirmed	CKG	N/A	SP 800-133		Key Generation	
2285	DRBG	128-bits	SP 800-90Arev1	AES CTR_DRBG	Random Bit Generation	

Table 6 - Hotplug Firmware Implementation Algorithms

Offload Engine (Hardware Algorithm Implementation)					
CAVP Cert #	Algorithm	Sizes	Standard	Mode/Method	Use
58	SHA-3	224	FIPS 180-4	SHA3-224	Hashing

Table 7 - Offload Engine Hardware Implementation Algorithms

	Titan Chip Embedded Module ² (Cryptographic Module Algorithm Implementation)					
CAVP Cert #	Algorithm	Sizes	Standard	Mode/Method	Use	
4536	SHS	256	FIPS 180-4	SHA-256	Hashing, Keyed-Hash, Signature	
	(hardware)				Verification	
4537	SHS	256	FIPS 180-4	SHA-256	Hashing, Keyed-Hash, Signature	
	(firmware)				Verification	
3045	RSA	2048-bit	FIPS 186-4	Signature Verification	Signature Verification	
1529	ECDSA	P-256	FIPS 186-4	Signature Verification	Signature Verification	

Table 8 - Embedded Titan Chip Algorithms

8.1.1 Allowed Algorithms

The module implements the following allowed cryptographic algorithms:

Algorithm	Use
NDRNG	Residing in the embedded Titan Chip module

Table 9 - Allowed Algorithms

¹ Crypto Engine only utilizes AES GCM. AES ECB was CAVP tested to demonstrate the forward cipher function.

² Not all algorithms/modes tested on the CAVP validation certificates for the Titan Chip are implemented in the module

8.1.2 Non-Approved Algorithms

The module implements the following algorithms which are considered non-Approved:

Algorithm	Use
KBKDF (non-conformant)	Used to derive a Session Key for the RX Decrypt functionality

Table 10 - Non-Approved Algorithms

TX (AES GCM encryption) and RX (AES GCM decryption/authentication) were tested as part of the validation. However, the RX session keys are derived using a non-approved key derivation function.

8.2 Cryptographic Key Management

The module supports the following CSPs listed below in Table 11:

Keys and CSPs	Description	Algorithm and Key Size	Generation	Input / Output Method	Storage	Zeroiation
DRBG Seed	SP 800-90A DRBG entropy input	128-bit value	512-bits externally loaded via SPI from Titan Chip, additional entropy provided from host	Input via direct interface. Never Exits the module	On-chip Volatile Memory	Power cycle
DRBG V	SP 800-90A DRBG internal state	DRBG internal state value	Externally generated via SPI from Titan Chip TRNG, additional entropy provided from host	Input via direct interface. Never Exits the module	On-chip Volatile Memory	Power cycle
DRBG Key	SP 800-90A DRBG internal state	DRBG Key	Externally loaded via SPI from Titan Chip TRNG, additional entropy provided from host	Input via direct interface. Never Exits the module	On-chip Volatile Memory	Power cycle
Master Key	Used to generate per- SPI keys	128-bit, AES-ECB	Generated via SP 800-90A DRBG	Not Input or Output	On-chip Volatile Memory	Power cycle; Before load of new firmware
TX Session Key	Used to encrypt traffic	128-bit, AES GCM	Externally loaded via PCle interface from Host Appliance.	Input via direct interface. Never Exits the module	On-die volatile memory register	Power cycle; Overwritten when Host sends new key

Table 11 - Approved Keys and CSPs Table

The following public keys are utilized by the module:

Public Keys	Description	Algorithm and Key Size	Generation	Input / Output Method	Storage
Delta EEPROM Firmware Verification key	Used by Titan to verify Delta NIC EEPROM firmware images before loading	2048-bit RSA public key	Generated externally; loaded at the factory	Not Input or Output;	Stored in SPI Flash
Delta Hotplug Firmware Verification key 1	Used by Titan to verify Delta NIC hotplug firmware images before loading	2048-bit RSA public key	Generated externally; loaded at the factory	Not Input or Output;	Stored in SPI Flash
Delta Hotplug Firmware Verification key 2 ³	Used to verify Delta NIC hotplug firmware images before loading	2048-bit RSA public key	Generated externally; loaded at the factory	Not Input or Output;	Stored in Flash

Table 12 - Public Keys

The module implements the following access control policy on keys and CSPs in the module shown in the following table. The Access Policy is noted by R=Read, W=Write and X=Execute.

Module Service	CSP Access	Rights (R/W/X)
Initialization	N/A	N/A
On-Demand Self-test	N/A	N/A
Zeroization	All keys	R/W
Perform Titan Service (Host can request	N/A	N/A
RPC commands via the module PCIe)		
Perform Firmware Update	Delta EEPROM Firmware Verification key;	N/A
	Delta Hotplug Firmware Verification key 1	
Load Firmware	Delta Hotplug Firmware Verification key 1	R/W/X
Instruct Module to Send Plaintext Packet	N/A	N/A
Instruct Module to Send Encrypted Packet	TX Session Key	R/X
Instruct Module to Rotate Master Key	DRBG CSPs; Master Key	R/W/X
Write a value to video IP register	N/A	N/A
Read a value from video IP register	N/A	N/A
Request Status Information	N/A	N/A
Set Configuration data	N/A	N/A

Table 13 - Approved Service to Key/CSP Mapping

8.3 Key Generation and Entropy

The module is a hardware module with an entropy-generating NDRNG inside the module's cryptographic boundary consistent with Scenario 1 (a) described in FIPS 140-2 IG 7.14. The module performs a CRNGT on the entropy input it receives. A total of 512-bits of entropy is requested by each

³ This key is used as a back-up to Delta hotplug Firmware Verification Key 1

CPU. From this 256-bit is used as direct input into the module's Approved DRBG. 256 bits is twice as much as the largest key generated by the module.

In accordance with FIPS 140-2 IG D.12, the cryptographic module performs Cryptographic Key Generation (CKG) as per SP 800-133 (vendor affirmed). The resulting generated symmetric keys are the unmodified output from the SP 800-90A DRBG.

8.4 Zeroization

All secret keys are zeroized either at session termination or by power-cycling the module.

The output data path is provided by the data interfaces and is logically disconnected from processes performing key generation or zeroization. No key information will be output through the data output interface when the module zeroizes keys.

9. Self-tests

FIPS 140-2 requires the module to perform self-tests to ensure the module integrity and the correctness of the cryptographic functionality at start-up. Some functions require conditional tests during normal operation of the module.

If any of the tests fail, the module will return an error code and transition to an error state where no functions can be executed. An operator can attempt to reset the state by cycling the power. However, the failure of a self-test may require the module to be replaced.

9.1 Power-On Self-Tests

Power-on self-tests are run upon the initialization of the module and do not require operator intervention to run. If any of the tests fail, the module will not initialize. The module will enter an error state and no services can be accessed by the operator.

The module implements the following power-on self-tests in the Delta Cryptographic Module:

Type	Test Description
Integrity Test (Delta)	 EEPROM image RSA 2048-bit (SHA-256) Signature Verification performed by the Titan Chip Cryptographic Module (FIPS 140-2 Cert. #3382) Hotplug image SHA-256-bit EDC performed by the Titan Chip Cryptographic Module (FIPS 140-2 Cert. #3382) Hotplug image 224-bit SHA-3 EDC
Integrity Test (Titan)	SHA-256 EDC over the bootloader image and executable firmware image
Known Answer Tests (Delta)	 Hardware AES KAT (Encryption and Decryption. Size 128) Hardware AES GCM KAT (Encryption and Decryption. Size 128) Hardware SHA-3 KAT (SHA3-224) Firmware SHS KAT (SHA-256) Firmware AES KAT (Encryption and Decryption. Size 128) Firmware SP 800-90A CTR_DRBG KAT
Known Answer Tests (Titan)	 ECDSA (signature verification. Curve: P-256) SHS (Firmware Implementation. SHA-256) SHS (Hardware Implementation. SHA-256) RSA (signature verification. 2048-bit)

The module performs all power-on self-tests automatically when it is initialized. All power-on self-tests must be passed before a User/Crypto Officer can perform services. The Power-on self-tests can be run on demand by rebooting the module in FIPS approved Mode of Operation.

9.2 Conditional Self-Tests

Conditional self-tests are test that run during operation of the module. Each module performs the following conditional self-tests:

Туре	Test Description
Continuous RNG Tests on	Performed on entropy input provided by the bound Titan Chip
Entropy Input (Delta)	Module
DRBG Health Tests (Delta)	Performed on DRBG, per SP 800-90A Section 11.3. Required per IG
	C.1.
EEPROM Firmware Upgrade	RSA 2048-bit Signature Verification operation performed by the Titan
Test (Delta)	Chip Cryptographic Module (FIPS 140-2 Cert. #3382)
Bypass Check (Delta)	Conditional Bypass Check
Continuous RNG Tests (Titan)	Performed on NDRNG per IG 9.8
Firmware Load Test (Titan)	ECDSA Signature Verification operation performed prior to a firmware
	upgrade.

Table 15 - Conditional Self-tests

10. Guidance and Secure Operation

No configuration of the module or installation steps are required from the operator. When the module is powered on its power-up self-tests are executed without any operator intervention. The Delta cryptographic module is not considered to be in the Approved mode of operation until both operational firmware images have been successfully verified by the embedded Titan Chip cryptographic module.

The modules' cryptographic functions will only be available after all self-tests have passed successfully. If any of the self-tests fail the module will transition to an error state.

Use of the non-conformant algorithms listed in Table 10 will place the module in a non-approved mode of operation.

10.1 Usage of AES GCM in the module

The module utilizes a deterministically incrementing clock as a non-repetitive counter. The IV counter will automatically pause transmission over the data output interface until the IV it has a timer value greater than that of the previous IV. The module implements a 64-bit rollover (once every 213 days). Security Associations in the module are limited in lifetime to no more than about 2 days. Therefore, the vendor asserts that it is not possible for a Security Associations (and its key) to be used with the same IV more than once.

Per the requirements specified in Section 8 in NIST SP 800-38D, the probability that the authenticated encryption function ever will be invoked with the same IV and the same key on two (or more) distinct sets of input data is no greater than 2^{-32} .

The module conformations to FIPS 140-2 IG A.5 scenario #4. Per FIPS 140-2 IG A.5, in case the module's power is lost and then restored, a new key for use with the AES GCM encryption/decryption shall be established.

11. Glossary

Term	Description	
AES	Advanced Encryption Standard	
API	Application Programming Interface	
CAVP	Cryptographic Algorithm Validation Program	
CKG	Cryptographic Rey Generation	
CMVP	Cryptographic Module Validation Program	
CRNGT	Continuous Random Number Generator Test	
CSP	Critical Security Parameter	
CTR	Counter	
DRAM	Dynamic Random-Access Memory	
DRBG	Deterministic Random Bit Generator	
ECB	Electronic Codebook	
ECDSA	Elliptic Curve Digital Signature Algorithm	
EDC	Error Detection Code	
EEPROM	Electrically Erasable Programmable Read-Only Memory	
FIPS	Federal Information Processing Standards	
GCM	Galois/Counter Mode	
HMC	Host management controller	
IG	Implementation Guidance	
IV	Initialization vector	
KAT	Known answer test	
KBKDF	Key-Based Key Derivation Function	
KDF	Key-Derivation Function	
KTS	Key Transport Scheme	
NIC	Network Interface card	
NIST	National Institute of Standards and Technology	
NDRNG	Non-Deterministic Random Number Generator	
PCle	Peripheral Component Interconnect Express	
RAM	Random Access Memory	
RPC	Remote Procedure Calls	
RSA	Rivest Shamir Adleman	
RX	Receiver	
SHA	Secure Hash Algorithm	
SHS	Secure Hash Standard	
SPI	Serial Peripheral Interface	
TRNG	True Random Number Generator	
TX	Transmitter	

Table 16 - Glossary of Terms