Apple Inc.

Apple CoreCrypto Module v9.0 for Intel FIPS 140-2 Non-Proprietary Security Policy

March, 2019

Prepared for:
Apple Inc.
One Apple Park Way
Cupertino, CA 95014
www.apple.com

Prepared by: atsec information security Corp. 9130 Jollyville Road, Suite 260 Austin, TX 78759 www.atsec.com

Table of Contents

1	INT	RODUCTION	4
	1.1	Purpose	4
	1.2	DOCUMENT ORGANIZATION / COPYRIGHT	4
	1.3	EXTERNAL RESOURCES / REFERENCES	4
	1.3	3.1 Additional References	4
	1.4	ACRONYMS	6
2	CRY	YPTOGRAPHIC MODULE SPECIFICATION	7
	2.1	Module Description	7
	2.1	1 Module Validation Level	7
	2.1	2 Module components	7
	2.1	3 Tested Platforms	8
	2.2	MODES OF OPERATION	8
	2.2	2.1 Approved Security Functions:	9
	2.2	2.2 Non-Approved Security Functions:	13
	2.3	Cryptographic Module Boundary	
	2.4	Module Usage Considerations	15
3	CRY	YPTOGRAPHIC MODULE PORTS AND INTERFACES	16
4		LES, SERVICES AND AUTHENTICATION	
	4.1	ROLES	
	4.2	SERVICES	
	4.3	OPERATOR AUTHENTICATION	20
5	PHY	YSICAL SECURITY	21
6	ОРІ	ERATIONAL ENVIRONMENT	22
	6.1	Applicability	
	6.2	POLICY	22
7	CRY	YPTOGRAPHIC KEY MANAGEMENT	23
	7.1	RANDOM NUMBER GENERATION	
	7.2	KEY / CSP GENERATION	
	7.3	KEY / CSP ESTABLISHMENT	
	7.4	KEY / CSP ENTRY AND OUTPUT	
	7.5 7.6	KEY / CSP STORAGE	
8		ECTROMAGNETIC INTERFERENCE/ELECTROMAGNETIC COMPATIBILITY (EMI/EMC)	
9		F-TESTS	
J	9.1	POWER-UP TESTS	
	9.1		
	9.1		
	9.1		
	9.2	CONDITIONAL TESTS	
	9.2		
	9.2		
	9.2	•	
	9.2		
10		DESIGN ASSURANCE	
1(
	10.1 10.2	CONFIGURATION MANAGEMENT	28 28

10.3 DEVELOPMENT	28
10.4 GUIDANCE	
10.4.1 Cryptographic Officer Guidance	
10.4.2 User Guidance	28
11 MITIGATION OF OTHER ATTACKS	29
List of Tables	
Table 1: Module Validation Level	7
Table 2: Tested Platforms	8
Table 3: Approved, Allowed and Vendor Affirmed Security Functions	13
Table 4: Non-Approved or Non-Compliant Security Functions	14
Table 5: Roles	17
Table 6: Approved and Allowed Services in Approved Mode	18
Table 7: Non-Approved Services in Non-Approved Mode	20
Table 8: Cryptographic Algorithm Tests	26
List of Figures	
Figure 1: Logical Block Diagram	15

1 Introduction

1.1 Purpose

This document is a non-proprietary Security Policy for the Apple CoreCrypto Module v9.0 for Intel. It describes the module and the FIPS 140-2 cryptographic services it provides. This document also defines the FIPS 140-2 security rules for operating the module.

This document was prepared in fulfillment of the FIPS 140-2 requirements for cryptographic modules and is intended for security officers, developers, system administrators, and end-users.

FIPS 140-2 details the requirements of the Governments of the U.S. and Canada for cryptographic modules, aimed at the objective of protecting sensitive but unclassified information.

For more information on the FIPS 140-2 standard and validation program please refer to the NIST website at https://csrc.nist.gov/Projects/Cryptographic-Module-Validation-Program.

Throughout the document "Apple CoreCrypto Module v9.0 for Intel", "cryptographic module", "CoreCrypto" or "the module" are used interchangeably to refer to the Apple CoreCrypto Module v9.0 for Intel. macOS 10.14 Mojave is the fifteenth release of macOS (previously OS X). Throughout the document it is generically referred to as macOS Mojave or macOS.

1.2 Document Organization / Copyright

This non-proprietary Security Policy document may be reproduced and distributed only in its original entirety without any revision, ©2019 Apple Inc.

1.3 External Resources / References

The Apple website (http://www.apple.com) contains information on the full line of products from Apple Inc. For a detailed overview of the operating system macOS and its security properties refer to [MACOS] and [SEC]. For details on macOS releases with their corresponding validated modules and Crypto Officer Role Guides refer to the Apple Knowledge Base Article HT201159 - "Product security certifications, validations, and guidance for macOS" (https://support.apple.com/en-us/HT201159)

The Cryptographic Module Validation Program website (http://csrc.nist.gov/groups/STM/cmvp/index.html) contains links to the FIPS 140-2 certificate and Apple Inc. contact information.

1.3.1 Additional References

- FIPS 140-2 Federal Information Processing Standards Publication, "FIPS PUB 140-2 Security Requirements for Cryptographic Modules," May 2001
- FIPS 140-2 NIST, "Implementation Guidance for FIPS PUB 140-2 and the Cryptographic Module Validation Program," November, 2018
- FIPS 180-4 Federal Information Processing Standards Publication 180-4, March 2012, Secure Hash Standard (SHS)
- FIPS 186-4 Federal Information Processing Standards Publication 186-4, July 2013, Digital Signature Standard (DSS)
- FIPS 197 Federal Information Processing Standards Publication 197, November 26, 2001 Advanced Encryption Standard (AES)
- FIPS 198 Federal Information Processing Standards Publication 198, July, 2008 The Keyed-Hash Message Authentication Code (HMAC)

- SP800-38 A NIST Special Publication 800-38A, "Recommendation for Block Cipher Modes of Operation", December 2001
- SP800-38 C NIST Special Publication 800-38C, "Recommendation for Block Cipher Modes of Operation: The CCM Mode for Authentication and Confidentiality", May 2004
- SP800-38 D NIST Special Publication 800-38D, "Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC", November 2007
- SP800-38 E NIST Special Publication 800-38E, "Recommendation for Block Cipher Modes of Operation: The XTS-AES Mode for Confidentiality on Storage Devices", January 2010
- SP800-38 F NIST Special Publication 800-38E, "Recommendation for Block Cipher Modes of Operation: Methods for Key Wrapping", December 2012
- SP800-57P1NIST Special Publication 800-57, "Recommendation for Key Management Part 1: General (Revised)," July 2012
- SP 800-90A NIST Special Publication 800-90, "Recommendation for Random Number Generation Using Deterministic Random Bit Generators (Revised)," January 2012
- SP800-132 NIST Special Publication 800-132, "Recommendation for Password-Based Key Derivation", December 2010
- MACOS macOS Technical Overview

 $\frac{\text{https://developer.apple.com/library/mac/\#documentation/MacOSX/Conceptual/OS}}{X_Technology_Overview/About/About.html}$

SEC Security Overview

https://developer.apple.com/security/

UG User Guide

Location: https://support.apple.com/en-us/HT201159

1.4 Acronyms

Acronyms found in this document are defined as follows:

AES Advanced Encryption Standard

BS Block Size

CAVP Cryptographic Algorithm Validation Program

CBC Cipher Block Chaining mode of operation

CFB Cipher Feedback mode of operation

CMVP Cryptographic Module Validation Program

CSP Critical Security Parameter
CTR Counter mode of operation
DES Data Encryption Standard

DH Diffie-Hellman

DRBG Deterministic Random Bit Generator

ECB Electronic Codebook mode of operation

ECC Elliptic Curve Cryptography
EC Diffie-Hellman Diffie-Hellman based on ECC

ECDSA DSA based on ECC

EMC Electromagnetic Compatibility
EMI Electromagnetic Interference

FIPS Federal Information Processing Standard

GCM Galois/Counter Mode

HMAC Hash-Based Message Authentication Code

KAT Known Answer Test

KDF Key Derivation Function

KPI Kernel Programming Interface

KS Key Size (Length)

MAC Message Authentication Code

NIST National Institute of Standards and Technology

OFB Output Feedback (mode of operation)

OS Operating System

PBKDF Password-based Key Derivation Function

PCT Pair-wise Consistency Test RNG Random Number Generator

SHS Secure Hash Standard

Triple-DES Triple Data Encryption Standard

TLS Transport Layer Security

2 Cryptographic Module Specification

2.1 Module Description

The Apple CoreCrypto Module v9.0 for Intel is a software cryptographic module running on a multi-chip standalone general-purpose computing platform.

The cryptographic services provided by the module are:

- data encryption / decryption
- generation of hash values
- key wrapping
- message authentication

- random number generation
- key generation
- signature generation / verification
- key derivation

2.1.1 Module Validation Level

The module is intended to meet requirements of FIPS 140-2 security level 1 overall. The following table shows the security level for each of the eleven requirement areas of the validation.

FIPS 140-2 Security Requirement Area	Security Level
Cryptographic Module Specification	1
Cryptographic Module Ports and Interfaces	1
Roles, Services and Authentication	1
Finite State Model	1
Physical Security	N/A
Operational Environment	1
Cryptographic Key Management	1
EMI/EMC	1
Self-Tests	1
Design Assurance	1
Mitigation of Other Attacks	1

Table 1: Module Validation Level

2.1.2 Module components

In the following sections the components of the Apple CoreCrypto Module v9.0 for Intel are listed in detail. There are no components excluded from the validation testing.

2.1.2.1 Software components

CoreCrypto has an API layer that provides consistent interfaces to the supported algorithms. These implementations include proprietary optimizations of algorithms that are fitted into the CoreCrypto framework.

2.1.2.2 Hardware components

AES-NI hardware acceleration is included within the cryptographic module boundary.

2.1.3 Tested Platforms

The module has been tested on the following platforms with and without AES-NI:

Manufacturer	Model	Operating System
Apple Inc.	Mac mini with Intel i5 CPU	macOS Mojave ¹ 10.14
Apple Inc.	MacBook Pro with Intel i7 CPU	macOS Mojave 10.14
Apple Inc.	MacBook Pro with Intel i9 CPU	macOS Mojave 10.14
Apple Inc.	Mac Pro with Intel Xeon CPU	macOS Mojave 10.14
Apple Inc.	MacBook with Intel Core M CPU	macOS Mojave 10.14

Table 2: Tested Platforms

2.2 Modes of operation

The Apple CoreCrypto Module v9.0 for Intel has an Approved and non-Approved mode of operation. The Approved mode of operation is configured by default and cannot be changed. If the device starts up successfully the CoreCrypto framework has passed all self-tests and is operating in the Approved mode. Any calls to the non-Approved security functions listed in Table 4 will cause the module to assume the non-Approved mode of operation.

The module transitions back into FIPS mode immediately when invoking one of the approved ciphers as all keys and Critical Security Parameters (CSP) handled by the module are ephemeral and there are no keys and CSPs shared between any functions. A re-invocation of the self-tests or integrity tests is not required.

Even when using this FIPS 140-2 non-approved mode, the module configuration ensures that the self-tests are always performed during initialization time of the module.

The module contains multiple implementations of the same cipher as listed below. If multiple implementations of the same cipher are present, the module automatically selects which cipher is used based on internal heuristics. This includes the hardware-assisted AES implementation (AES-NI).

The Approved security functions are listed in Table 3. Column four (Algorithm Certificate) lists the validation numbers obtained from NIST for successful validation testing of the implementation of the cryptographic algorithms on the platforms as shown in Table 2 under CAVP.

Refer to http://csrc.nist.gov/groups/STM/cavp/index.html for the current standards, test requirements, and special abbreviations used in the following table.

¹ macOS 10.14 Mojave is the fifteenth release of macOS (previously OS X). Throughout the document it is generically referred to as macOS Mojave or simply macOS.

2.2.1 Approved Security Functions:

Cryptographic	Algorithm	Options	Algorithm Certificate
Function			
Generation;	[SP 800-90] DRBG	Generic Software (C) Implementation Modes:	2393, 2394, 2395, 2396, 2397
Symmetric key		CTR_DRBG	
generation		AES-128, AES-256	
		Derivation Function Enabled	
		HMAC_DRBG	
		SHA-1, SHA-224,	
		SHA-384, SHA-512	
		Without Prediction Resistance	
		Generic Software (C) Implementation using Assembler Implementation of ECB	2364, 2365, 2366, 2367, 2368
		Modes:	
		CTR_DRBG	
		AES-128, AES-256	
		Derivation Function Enabled	
		VNG Implementation using Assembler Implementation of ECB	2398, 2399, 2400, 2401, 2402
		Modes:	
		CTR_DRBG	
		AES-128, AES-256	
		Derivation Function Enabled	
		Generic Software (C) Implementation with AES-NI	2369, 2370, 2371, 2372, 2373
		Modes:	
		CTR_DRBG	
		AES-128, AES-256	
		Derivation Function Enabled	
		Generic Software (C) Implementation with AVX	2383, 2384, 2385, 2386, 2387
		HMAC_DRBG	
		SHA-1, SHA-224,	
		SHA-384, SHA-512	
		Without Prediction Resistance	
		Generic Software (C) Implementation with AVX2	2374, 2375, 2376, 2377, 2378
		HMAC_DRBG	
		SHA-1, SHA-224,	
		SHA-384, SHA-512	
		Without Prediction Resistance	
		Generic Software (C) Implementation with SSE3	2379, 2380, 2381, 2382, 2388
		HMAC_DRBG	
		SHA-1, SHA-224,	
		SHA-384, SHA-512	
		Without Prediction Resistance	

Cryptographic	Algorithm	Options	Algorithm Certificate
Function		•	
Symmetric Encryption and	[FIPS 197] AES	Generic Software (C) Implementation (Based on LibTomCrypt):	5800, 5801, 5802, 5803, 5804
Decryption	SP 800-38 A	Modes:	
	SP 800-38 C	CBC ECB	
	SP 800-38 D	CCM GCM	
	SP 800-38 E	CFB128 KW	
	SP 800-38 F	CFB8 OFB	
	0. 000 00.	CTR XTS ¹	
		Generic Software (C) Implementation (Based on Gladman):	5789, 5790, 5791, 5792, 5793
		Modes:	
		CBC	
		Generic Software (C) Implementation using Assembler Implementation of ECB:	5769, 5770, 5771, 5772, 5773
		CBC ECB	
		CCM GCM	
		CFB128 KW	
		CFB8 OFB	
		CTR XTS ¹	
		Optimized Assembler Implementation:	5784, 5785, 5786, 5787, 5788
		CBC XTS ¹	
		ECB	
		Optimized Assembler Implementation using AES-NI:	5774, 5775, 5776, 5777, 5778
		Modes:	
		CBC XTS ¹	
		ECB	
		Generic Software (C) Implementation with AES-NI PAA:	5779, 5780, 5781, 5782, 5783
		Modes:	
		CBC ECB	
		CCM GCM	
		CFB128 KW	
		CFB8 OFB	
		CTR XTS ¹	
		VNG Implementation using (C) Implementation of ECB:	5805, 5806, 5807, 5808, 5809
		ECB	
		CCM	
		CTR	

_

¹ XTS approved with 128-bit and 256-bit key size only; The XTS mode is only approved for hardware storage applications.

Cryptographic	Algorithm	Options	Algorithm Certificate
Function	30		
1 411011011		VNG Implementation using Assembler	5810, 5811, 5812, 5813, 5814
		Implementation of ECB:	0010, 0011, 0012, 0010, 0011
		CCM GCM	
		CTR	
		ECB	
	[SP 800-67]	Triple-DES	2856, 2857, 2858, 2859, 2860
	Triple-DES	(Keying Option: 1; All Keys Independent)	
		Modes:	
		CBC CTR	
		CFB64 ECB	
		CFB8 OFB	
Digital Signature	[FIPS186-4]	Key Generation (ANSI X9.31),	3073, 3074, 3075, 3076, 3077
and Asymmetric	RSA	Signature Generation (PKCS#1 v1.5)	
Key Generation	PKCS #1.5	Key Sizes (Modulo):	
		2048	
		3072	
		Signature Verification (PKCS#1 v1.5)	
		Key Sizes (Modulo):	
		1024	
		2048	
		3072	
	[FIPS 186-4]	Key Pair Generation (PKG):	1553, 1554, 1555, 1556, 1557
	ECDSA	P-224, P-256, P-384, P-521	
	ANSI X9.62	Public Key Validation (PKV):	
		P-224, P-256, P-384, P-521	
		Signature Generation:	
		P-224, P-256, P-384, P-521	
		Signature Verification:	
		P-224, P-256, P-384, P-521	
		ECDSA Signature Generation	CVL: 2105, 2106, 2107, 2108, 2109
		Component: P-224, P-256, P-384, P-521	2105, 2106, 2107, 2108, 2109
		F-224, F-230, F-304, F-321	
	[FIPS 186-4]	Key Generation	1468, 1469, 1470, 1471, 1472
	DSA ² used for	Key Sizes:	
	Diffie-Hellman key generation only	L=2048, N=256	
Message Digest	_	Generic Software (C) Implementation	4610, 4611, 4612, 4613, 4614
	SHS	SHA-1 SHA-384	
		SHA-224 SHA-512	
		SHA-256	

_

 $^{^2}$ The DSA key pair generation is not available as an explicit service. It is used to create Diffie-Hellman Keys in the SP800-56A Key Establishment.

Cryptographic	Algorithm	Options	Algorithm Certificate
Function			
		Generic Software (C) Implementation with SSE3:	4597, 4598, 4599, 4600, 4606
		SHA-1 SHA-384	
		SHA-224 SHA-512	
		SHA-256	
		Generic Software (C) Implementation	4601, 4602, 4603, 4604, 4605
		with AVX:	, , , , , , , , , , , , , , , , , , , ,
		SHA-1 SHA-384	
		SHA-224 SHA-512	
		SHA-256	
		Generic Software (C) Implementation with AVX2:	4592, 4593, 4594, 4595, 4596
		SHA-1 SHA-384	
		SHA-224 SHA-512	
		SHA-256	
Keyed Hash	[FIPS 198]	Generic Software (C) Implementation	3835, 3836, 3837, 3838, 3839
•	HMAC	HMAC-SHA-1 HMAC-SHA-38	4
		HMAC-SHA-224 HMAC-SHA-51	2
		HMAC-SHA-256	
		Generic Software (C) Implementation with SSE3	3822, 3823, 3824, 3825, 3831
		HMAC-SHA-1 HMAC-SHA-38	4
		HMAC-SHA-224 HMAC-SHA-51	2
		HMAC-SHA-256	
		Generic Software (C) Implementation with AVX:	3826, 3827, 3828, 3829, 3830
		HMAC-SHA-1 HMAC-SHA-38	4
		HMAC-SHA-224 HMAC-SHA-51	2
		HMAC-SHA-256	
		Generic Software (C) Implementation with AVX2:	3817, 3818, 3819, 3820, 3821
		HMAC-SHA-1 HMAC-SHA-38	4
		HMAC-SHA-224 HMAC-SHA-51	2
		HMAC-SHA-256	
Key Agreement and	[SP800-56A]	Public key size 2048-bits or larger an	
Establishment	DLC Primitive	Private key size 224-bits or 256-bits	2092, 2093, 2095, 2096, 2097
	Diffie-Hellman	NICT Common D OFC D 204	
	[SP800-56A] DLC Primitive	NIST Curves: P-256, P-384	
	EC Diffie-Hellman		
Kou Doriustia		December December 1	a Vandar Affirma ad
Key Derivation	[SP 800-132] PBKDF	Password Based Key Derivation usin HMAC with SHA-1 or SHA-2	g Vendor Affirmed
RSA	[SP 800-56B]	KTS-OAEP	Vendor Affirmed
Key Wrapping			

	[FIPS 186-4]	PKCS#1 v1.5 Modulus size: 2048-bits or 3072-bits	Non-Approved, but allowed ⁴
Key Agreement	ANSI X9.63 SP 800-56A EC Diffie-Hellman	ECC curves P-256, P-384	Non-Approved, but allowed ⁵
	[ANSI X9.42] [SP 800-56A] Diffie-Hellman	Key sizes: 2048 bits 3072 bits	Non-Approved, but allowed ⁶
MD5	Message Digest	Digest Size: 128-bit	Non-Approved, but Allowed ⁷
NDRNG	Random Number Generation	N/A	Non-Approved, but Allowed ⁸

Table 3: Approved, Allowed and Vendor Affirmed Security Functions

Note: PBKDFv2 is implemented to support all options specified in Section 5.4 of SP800-132. The password consists of at least 6 alphanumeric characters from the ninety-six (96) printable and human-readable characters. The probability that a random attempt at guessing the password will succeed or a false acceptance will occur is equal to 1/96^6. The derived keys may only be used in storage applications. Additional guidance to appropriate usage is specified in section 7.3.

2.2.2 Non-Approved Security Functions:

Cryptographic Function	Usage / Description	Caveat
RSA	ANSI X9.31	Non-Approved
Signature Generation /	Signature Generation	
	Key Pair Generation	
Signature Verification /	Key Size < 2048	
Asymmetric Key	Signature Verification	
Generation	PKCS#1 v1.5	
	Signature Generation	
	Key Size < 2048	
	Signature Verification	
	Key Size < 1024	
RSA Key	PCKS#1 v1.5	Non-Approved
Wrapping	Key Size < 2048	
Diffie-Hellman	Key agreement scheme using key sizes < 2048-bits	Non-Approved
Ed25519	Key Agreement	Non-Approved
	Sig(gen)	
	Sig(ver)	
ANSI X9.63 KDF	Hash based Key Derivation Function	Non-Approved
RFC6637	Key Derivation Function	Non-Approved

⁴ RSA key wrapping is used for key establishment. Methodology provides 112 or 128 bits of encryption strength.

Document Version: 5.2 Last update: 2018-12-19-08

⁵ EC Diffie-Hellman is used for key establishment. Methodology provides 128 bits or 256 bits of encryption strength.

⁶ Diffie-Hellman is used for key establishment; Methodology provides 112 or 128 bits of encryption strength.

⁷ MD5 is used as part of the TLS key establishment scheme only.

⁸ NDRNG is provided by the underlying operational environment.

Cryptographic Function	Usage / Description	Caveat
DES	Encryption / Decryption Key Size 56-bits	Non-Approved
CAST5	Encryption / Decryption Key Sizes 40 to 128 bits in 8-bit increments	Non-Approved
RC4	Encryption / Decryption Key Sizes 8 to 4096-bits	Non-Approved
RC2	Encryption / Decryption Key Sizes 8 to 1024-bits	Non-Approved
MD2	Message Digest Digest size 128-bit	Non-Approved
MD4	Message Digest Digest size 128-bit	Non-Approved
RIPEMD	Message Digest Digest size 128, 160, 256, 320 -bits	Non-Approved
ECDSA	PKG: Curve P-192 PKV: Curve P-192 Signature Generation: Curve P-192	Non-Approved
ECDSA	Key Pair Generation for compact point representation of points	Non-Approved
Integrated Encryption Scheme on elliptic curves	Encryption / Decryption	Non-Approved
Blowfish	Encryption / Decryption	Non-Approved
OMAC (One-Key CBC MAC)	MAC generation	Non-Approved
Triple-DES	Encryption / Decryption Two Key Implementation	Non-Approved
	Optimized Assembler Implementation Encryption / Decryption Mode: CTR	Non-Compliant
AES-CMAC	AES-128 MAC generation	Non-Compliant
SP800-108 KBKDF	Key Based Key Derivation Function Modes: CTR and Feedback	Non-Compliant
SP800-56C	Key Derivation Function	Non-Compliant

Table 4: Non-Approved or Non-Compliant Security Functions

The encryption strengths included in Table 4 for the key establishment methods are determined in accordance with FIPS 140-2 Implementation Guidance [IG] section 7.5 and NIST Special Publication 800-57 (Part1) [SP800-57P1].

Note: A Non-Approved function in Table 4 is that the function implements a non-Approved algorithm, while a Non-Compliant function is that the function implements an Approved algorithm but the implementation is not validated by the CAVP.

2.3 Cryptographic Module Boundary

The physical boundary of the module is the physical boundary of the macOS device that contains the module. Consequently, the embodiment of the module is a multi-chip standalone cryptographic module.

The logical module boundary is depicted in the logical block diagram given in Figure 1.

macOS

Application

Security
Framework

CoreCrypto

Crypto Functions

FIPS
Self Tests

Logical Boundary

Figure 1: Logical Block Diagram

2.4 Module Usage Considerations

A user of the module must consider the following requirements and restrictions when using the module:

- AES-GCM IV is constructed in accordance with SP800-38D in compliance with IG A.5 scenario 1. The GCM IV generation follows RFC 5288 and shall only be used for the TLS protocol version 1.2. Users should consult SP 800-38D, especially section 8, for all of the details and requirements of using AES-GCM mode. In case the module's power is lost and then restored, the key used for the AES GCM encryption/decryption shall be re-distributed.
- AES-XTS mode is only approved for hardware storage applications. The length of the XTS-AES data unit does not exceed 2²⁰ blocks
- When using AES, the caller must obtain a reference to the cipher implementation via the functions of ccaes_[cbc|ecb|...]_[encrypt|decrypt]_mode.
- When using SHA, the caller must obtain a reference to the cipher implementation via the functions ccsha[1|224|256|384|512]_di.
- In order to meet the IG A.13 requirement, the same Triple-DES key shall not be used to encrypt more than 2¹⁶ 64-bit blocks of data.

3 Cryptographic Module Ports and Interfaces

The underlying logical interfaces of the module are the C language Application Programming Interfaces (APIs). In detail these interfaces are the following:

- Data input and data output are provided in the variables passed in the API and callable service invocations, generally through caller-supplied buffers. Hereafter, APIs and callable services will be referred to as "API."
- Control inputs which control the mode of the module are provided through dedicated parameters, as well as mach-o header holding the HMAC check file.
- Status output is provided in return codes and through messages. Documentation for each API lists possible return codes. A complete list of all return codes returned by the C language APIs within the module is provided in the header files and the API documentation. Messages are documented also in the API documentation.

The module is optimized for library use within the macOS user space and does not contain any terminating assertions or exceptions. It is implemented as an macOS dynamically loadable library. The dynamically loadable library is loaded into the macOS application and its cryptographic functions are made available. Any internal error detected by the module is reflected back to the caller with an appropriate return code. The calling macOS application must examine the return code and act accordingly. There is one notable exception: (i) ECDSA and RSA do not return a key if the pair-wise consistency test fails.

The function executing FIPS 140-2 module self-tests does not return an error code but causes the system to crash if any self-test fails – see Section 9.

The module communicates any error status synchronously through the use of its documented return codes, thus indicating the module's status. It is the responsibility of the caller to handle exceptional conditions in a FIPS 140-2 appropriate manner.

Caller-induced or internal errors do not reveal any sensitive material to callers.

Cryptographic bypass capability is not supported by the module.

Document Version: 5.2 Last update: 2018-12-19-08

4 Roles, Services and Authentication

This section defines the roles, services and authentication mechanisms and methods with respect to the applicable FIPS 140-2 requirements.

4.1 Roles

The module supports a single instance of the two authorized roles: the Crypto Officer and the User. No support is provided for multiple concurrent operators or a Maintenance operator.

Role	General Responsibilities and Services (details see below)
User	Utilization of services of the module listed in section 2.1 and 4.2.
Crypto Officer (CO)	Utilization of services of the module listed in section 2.1 and 4.2.

Table 5: Roles

4.2 Services

The module provides services to authorized operators of either the User or Crypto Officer roles according to the applicable FIPS 140-2 security requirements.

Table 6 contains the cryptographic functions employed by the module in the Approved mode. For each available service it lists, the associated role, the Critical Security Parameters (CSPs) and cryptographic keys involved, and the type(s) of access to the CSPs and cryptographic keys.

CSPs contain security-related information (for example, secret and private cryptographic keys) whose disclosure or modification can compromise the main security objective of the module, namely the protection of sensitive information.

The access types are denoted as follows:

'R⁹': the item is read or referenced by the service

• 'W': the item is written or updated by the service

• 'Z': the persistent item is zeroized by the service

Service	Roles		CSPs &	Access
	USER	СО	Crypto Keys	Туре
Triple-DES Encryption / Decryption	X	X	secret key	R
AES Encryption / Decryption	Х	X	secret key	R
AES Key Wrapping	Х	Х	secret key	R
RSA Key Wrapping	х	х	RSA Private Key	R
Secure Hash Generation	Х	X	none	N/A
HMAC generation	Х	X	secret HMAC key	R
RSA signature generation and verification	Х	X	RSA key pair	R W
ECDSA signature generation and verification	Х	X	ECDSA key pair	R W

⁹ The access type of R refers to reading of the CSP. This can be thought as synonymous with execute CSP/key.

_

Service			CSPs &	Access
	USER	СО	Crypto Keys	Туре
Random number generation	X	Х	Entropy input string, Nonce, V and Key	R W Z
PBKDF Password-based key derivation	X	Х	secret key, password	R W Z
ECDSA (key pair generation)	X	Х	Asymmetric key pair	R W
RSA (key pair generation)	Х	Х	Asymmetric key pair	R W
Diffie-Hellman (key pair generation)	X	Х	Asymmetric key pair	R W
Diffie-Hellman Key agreement	Х	X	Asymmetric keys (RSA/ECDSA key) and secret session key (AES/Triple-DES key)	R W
EC Diffie-Hellman Key agreement	X	Х	Asymmetric keys (RSA/ECDSA key) and secret session key (AES/Triple-DES key)	R W
Release all resources of symmetric crypto function context	X	Х	AES/Triple-DES key	Z
Release all resources of hash context	X	X	HMAC key	Z
Release of all resources of Diffie-Hellman context for Diffie-Hellman and EC Diffie-Hellman	X	Х	Asymmetric keys (RSA/ECDSA) and secret session key (AES/Triple-DES)	Z
Release of all resources of asymmetric crypto function context	Х	Х	RSA/ECDSA keys	Z
Self-test	Х	Х	Software integrity key	R
Show Status	X	Х	None	N/A

Table 6: Approved and Allowed Services in Approved Mode

Service	Roles		
	USER	СО	Access Type
Integrated Encryption Scheme on elliptic curves Encryption / Decryption	X	Х	R
DES Encryption / Decryption	X	X	R

Service	Ro	les	
	USER	СО	Access Type
Triple-DES (Optimized Assembler Implementation) Encryption / Decryption	Х	X	R
Mode: CTR			
Triple-DES (Two-Key implementation)	X	X	R
Encryption / Decryption	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		5
CAST5 Encryption / Decryption	X	X	R
Blowfish Encryption / Decryption	X	X	R
RC4 Encryption / Decryption	X	X	R W
RC2 Encryption / Decryption	Х	Х	R W
MD2 Hash	X	X	R W
MD4 Hash	X	X	R W
RIPEMD Hash	X	X	R W
RSA Key Wrapping using Key Size < 2048	X	X	R
RSA ANSI X9.31 Signature Generation and Verification	X	X	R W
RSA PKCS#1 v1.5 Signature Generation and Verification	X	X	R
Key Sizes: 1024-4096-bits in multiple of 32 bits not listed in Table 3			W
RSA ANSI X9.31 Key Pair Generation	X	X	R
Key sizes (modulus): 1024-4096 bits in multiple of 32 bits not listed in table 3			W
Public key exponent values: 65537 or larger			
ECDSA Key Pair Generation for compact point representation of points	Х	Х	R W
ECDSA	X	X	R
PKG: curves P-192			W
PKV: curves P-192			
SIG(gen): curves P-192			
SIG(ver): curves P-192			
Diffie-Hellman Key Agreement	X	X	R
Key Sizes < 2048 bits			W
Ed25519 Key agreement, Signature Generation, Signature Verification	x	Х	R W
SP800-56C Key Derivation Function	X	X	R W
ANSI X9.63 Hash based Key Derivation Function using	X	X	R
			W

Service	Roles		
	USER	СО	Access Type
SP800-108 Key Derivation Function	X	Х	R
Modes: Feedback, Counter			W
RFC6637 Key Derivation Function	Х	Х	R W
AES-CMAC AES-128 MAC Generation	Х	Х	R W
OMAC MAC Generation	Х	Х	R W

Table 7: Non-Approved Services in Non-Approved Mode

4.3 Operator authentication

Within the constraints of FIPS 140-2 level 1, the module does not implement an authentication mechanism for operator authentication. The assumption of a role is implicit in the action taken.

The module relies upon the operating system for any operator authentication.

5 Physical Security

The FIPS 140-2 physical security requirements do not apply to the Apple CoreCrypto Module v9.0 for Intel since it is a software module.

6 Operational Environment

The following sections describe the macOS Mojave 10.14, the operational environment of the Apple CoreCrypto Module v9.0 for Intel.

6.1 Applicability

The Apple CoreCrypto Module v9.0 for Intel operates in a modifiable operational environment per FIPS 140-2 level 1 specifications. It is part of macOS Mojave 10.14, a commercially available general-purpose operating system executing on the hardware specified in section 2.1.3.

6.2 Policy

The operating system is restricted to a single operator (single-user mode; i.e. concurrent operators are explicitly excluded).

When the operating system loads the module into memory, it invokes the FIPS Self-Test functionality, which in turn runs the mandatory FIPS 140-2 tests.

7 Cryptographic Key Management

The following section defines the key management features available through the Apple CoreCrypto Module v9.0 for Intel.

7.1 Random Number Generation

A FIPS 140-2 approved deterministic random bit generator based on a block cipher as specified in NIST SP 800-90A is used. The default Approved DRBG used for random number generation is a CTR_DRBG using AES-256 with derivation function and without prediction resistance. The module also employs a HMAC-DRBG for random number generation. The deterministic random bit generators are seeded by /dev/random. The /dev/random generator is a true random number generator that obtains entropy from interrupts generated by the devices and sensors attached to the system and maintains an entropy pool. The NDRNG feeds entropy from the pool into the DRBG on demand. The NDRNG provides 256-bits of entropy.

7.2 Key / CSP Generation

The following approved key generation methods are used by the module:

• The module does not implement symmetric key generation. In accordance with FIPS 140-2 IG D.12, the cryptographic module performs Cryptographic Key Generation (CKG) for asymmetric keys as per SP800-133 (vendor affirmed), compliant with [FIPS186-4], and using DRBG compliant with [SP800-90A]. A seed (i.e. the random value) used in asymmetric key generation is obtained from [SP800-90A] DRBG. The key generation service for RSA, ECDSA and Diffie-Hellman as well as the SP 800-90A DRBG have been CAVS tested with algorithm certificates found in Table 3.

It is not possible for the module to output information during the key generating process.

7.3 Key / CSP Establishment

The module provides AES key wrapping, RSA key wrapping, Diffie-Hellman- and EC Diffie-Hellman-based key establishment services.

The module provides key establishment services in the Approved mode through the SP 800-108 PBKDFv2 algorithm. The PBKDFv2 function is provided as a service and returns the key derived from the provided password to the caller. The keys derived from SP 800-108 map to section 4.1 of SP 800-133 as indirect generation from DRBG. The caller shall observe all requirements and should consider all recommendations specified in SP800-132 with respect to the strength of the generated key, including the quality of the salt as well as the number of iterations. The implementation of the PBKDFv2 function requires the user to provide this information.

7.4 Key / CSP Entry and Output

All keys are entered from, or output to, the invoking application running on the same device. All keys entered into the module are electronically entered in plain text form. Keys are output from the module in plain text form if required by the calling application. The same holds for the CSPs.

7.5 Key / CSP Storage

The Apple CoreCrypto Module v9.0 for Intel considers all keys in memory to be ephemeral. They are received for use or generated by the module only at the command of the calling application. The same holds for CSPs.

The module protects all keys, secret or private, and CSPs through the memory protection mechanisms provided by the operating system. No process can read the memory of another process.

7.6 Key / CSP Zeroization

Keys and CSPs are zeroized when the appropriate context object is destroyed or when the system is powered down.

8 Electromagnetic Interference/Electromagnetic Compatibility (EMI/EMC)

The EMI/EMC properties of the Apple CoreCrypto Module v9.0 for Intel are not meaningful for the software library. The devices containing the software components of the module have their own overall EMI/EMC rating. The validation test environments have FCC, part 15, Class B rating.

9 Self-Tests

FIPS 140-2 requires that the module perform self-tests to ensure the integrity of the module and the correctness of the cryptographic functionality at start up. In addition, the DRBG requires continuous verification. The FIPS Self-Tests application runs all required module self-tests. This application is invoked by the macOS startup process upon device initialization.

The execution of an independent application for invoking the self-tests in the libcorecrypto.dylib makes use of features of the macOS architecture: the module, implemented in libcorecrypto.dylib, is linked by libcommoncrypto.dylib which is linked by libSystem.dylib. The libSystem.dylib is a library that must be loaded into every application for operation. The operating system ensures that there is a strict CSP separation between the instances used by each application.

All self-tests performed by the module are listed and described in this section.

9.1 Power-Up Tests

The following tests are performed each time the Apple CoreCrypto Module v9.0 for Intel starts and must be completed successfully for the module to operate in the FIPS approved mode. If any of the following tests fails the device fails to startup. To invoke the self-tests on demand, the user may reboot the system.

9.1.1 Cryptographic Algorithm Tests

Algorithm	Modes	Test
Triple-DES	CBC	KAT (Known Answer Test)
		Separate encryption / decryption operations are performed
AES implementations selected by the	CBC, ECB, GCM, XTS	KAT
module for the corresponding environment AES-128		Separate encryption / decryption operations are performed
DRBG (CTR_DRBG and HMAC_DRBG; tested separately)	N/A	KAT
HMAC-SHA-1, HMAC-SHA-256, HMAC- SHA-512	N/A	KAT
RSA	Signature Generation /	
	Signature Verification; Encrypt / Decrypt	Separate encryption /decryption operations are performed
ECDSA	Signature Generation, Signature Verification	pair-wise consistency test
Diffie-Hellman "Z" computation	N/A	KAT
EC Diffie-Hellman "Z" computation	N/A	KAT

Table 8: Cryptographic Algorithm Tests

9.1.2 Software / Firmware Integrity Tests

A software integrity test is performed on the runtime image of the Apple CoreCrypto Module v9.0 for Intel. The CoreCrypto's HMAC-SHA256 is used as an approved algorithm for the integrity test. If the test fails, then the device powers itself off.

9.1.3 Critical Function Tests

No other critical function test is performed on power up.

9.2 Conditional Tests

The following sections describe the conditional tests supported by the Apple CoreCrypto Module v9.0 for Intel.

9.2.1 Continuous Random Number Generator Test

The Apple CoreCrypto Module v9.0 for Intel performs a continuous random number generator test on the noise source (i.e. NDRNG), whenever it is invoked to seed the SP800-90A DRBG.

9.2.2 Pair-wise Consistency Test

The Apple CoreCrypto Module v9.0 for Intel does generate asymmetric keys and performs all required pair-wise consistency tests, the signature generation and verification tests, with the newly generated key pairs.

9.2.3 SP 800-90A Health Tests

The Apple CoreCrypto Module v9.0 for Intel performs the health tests as specified in section 11.3 of SP 800-90A.

9.2.4 Critical Function Test

No other critical function test is performed conditionally.

10 Design Assurance

10.1 Configuration Management

Apple manages and records source code and associated documentation files by using the revision control system called "Git."

The Apple module hardware data, which includes descriptions, parts data, part types, bills of materials, manufacturers, changes, history, and documentation are managed and recorded. Additionally, configuration management is provided for the module's FIPS documentation.

The following naming/numbering convention for documentation is applied.

<evaluation>_<module>_<os>_<mode>_<doc version (##.##)>

Example: FIPS_CORECRYPTO_MACOS_US_SECPOL_5.0

Document management utilities provide access control, versioning, and logging. Access to the Git repository (source tree) is granted or denied by the server administrator in accordance with company and team policy.

10.2 Delivery and Operation

The CoreCrypto is built into macOS Mojave. For additional assurance, it is digitally signed.

10.3 Development

The Apple crypto module (like any other Apple software) undergoes frequent builds utilizing a "train" philosophy. Source code is submitted to the Build and Integration group (B & I). B & I builds, integrates and does basic sanity checking on the operating systems and apps that they produce. Copies of older versions are archived offsite in underground granite vaults.

10.4 Guidance

The following guidance items are to be used for assistance in maintaining the module's validated status while in use.

10.4.1 Cryptographic Officer Guidance

The Approved mode of operation is configured in the system by default and can only be transitioned into the non-Approved mode by calling one of the non-Approved algorithms listed in Table 4. If the device starts up successfully then CoreCrypto has passed all self-tests and is operating in the Approved mode.

A Crypto Officer Role Guide is provided by Apple which offers IT System Administrators with the necessary technical information to ensure FIPS 140-2 Compliance of macOS Mojave systems. This guide walks the reader through the system's assertion of cryptographic module integrity and the steps necessary if module integrity requires remediation. A link to the Guide can be found on the Product security, validations, and guidance page found in [UG].

10.4.2 User Guidance

As above, the Approved mode of operation is configured in the system by default and can only be transitioned into the non-Approved mode by calling one of the non-Approved algorithms listed in Table 4. If the device starts up successfully then CoreCrypto has passed all self-tests and is operating in the Approved mode.

11 Mitigation of Other Attacks

The module protects against the utilization of known Triple-DES weak keys. The following keys are not permitted:

```
{0xFE,0xFE,0xFE,0xFE,0xFE,0xFE,0xFE,0xFE},
\{0x1F,0x1F,0x1F,0x1F,0x0E,0x0E,0x0E,0x0E\}
\{0xE0,0xE0,0xE0,0xE0,0xF1,0xF1,0xF1,0xF1\}
\{0x01,0xFE,0x01,0xFE,0x01,0xFE,0x01,0xFE\},
\{0xFE,0x01,0xFE,0x01,0xFE,0x01,0xFE,0x01\},
\{0x1F,0xE0,0x1F,0xE0,0x0E,0xF1,0x0E,0xF1\},
\{0xE0,0x1F,0xE0,0x1F,0xF1,0x0E,0xF1,0x0E\},
\{0x01,0xE0,0x01,0xE0,0x01,0xF1,0x01,0xF1\},
\{0xE0,0x01,0xE0,0x01,0xF1,0x01,0xF1,0x01\},
\{0x1F,0xFE,0x1F,0xFE,0x0E,0xFE,0x0E,0xFE\},
\{0xFE,0x1F,0xFE,0x1F,0xFE,0x0E,0xFE,0x0E\},
\{0x01,0x1F,0x01,0x1F,0x01,0x0E,0x01,0x0E\},
\{0x1F,0x01,0x1F,0x01,0x0E,0x01,0x0E,0x01\},
\{0xE0,0xFE,0xE0,0xFE,0xF1,0xFE,0xF1,0xFE\},
{0xFE,0xE0,0xFE,0xE0,0xFE,0xF1,0xFE,0xF1}
```