
Copyright Thycotic Software LLC, 2019 Version 1.9
Public Material – May be reproduced only in its original entirety (without revision)

Page 1 of 19

Thycotic Software LLC

Thycotic HSM Module v1.2.5

Non-Proprietary FIPS 140-2 Cryptographic Module Security Policy

Version 1.9 – 21/3/2019

Non-Proprietary

Copyright Thycotic Software LLC, 2019 Version 1.9
Public Material – May be reproduced only in its original entirety (without revision)

Page 2 of 19

Change History

Date Version Updated By Change

31 Oct 2017 1.0 John Allers First release

16 Jul 2018 1.1 Ari Johnson -Edits to Sections 1.5, 2.4.3, 2.4.6, 6.2
-Edits to Tables 2, 5, 6, 7
-Added “Non-Proprietary” wording to
Cover Page

17 Jul 2018 1.2 Ari Johnson -Edit to Table 5
-Edit to sections 3.1, 6.1

2 Aug 2018 1.3 Ari Johnson -Reformatting Edits
-Fixed document version mismatch &
History table
-Spelling edits
-Edits to Sections 1.5, 2.1, 2.3, 3, 3.1,
3.2, 5, 6.1, 6.2, 9 including tables

6 Aug 2018 1.4 Ari Johnson -Added Table 7 – Non-Approved
Services, section 3.3

7 Aug 2018 1.5 Ari Johnson -Created sections 2.4.3.1 - 2.4.3.3
-Added details to section 2.4.3.2
regarding password/passphrase length
guidelines and reasoning

20 Aug 2018 1.6 Ari Johnson -General edits in formatting, grammar,
and technical wording adjustments

5 Feb 2019 1.7 John Allers -Removed hyperlinks to CAVP
Certificates in Table 3
-Edits to Tables 5, 6 and 8

12 Feb 2019

1.8 Tucker Hall -Edits to Footnote 4 and 5
-Update to copyright notification

21 Mar 2019 1.9 John Allers -Added Allowed Algorithms Table
(Table 5)

Copyright Thycotic Software LLC, 2019 Version 1.9
Public Material – May be reproduced only in its original entirety (without revision)

Page 3 of 19

Table of Contents
1. Introduction .. 5

1.1. List of Cryptographic Module Binary Executables ... 5

1.2. Brief Module Description ... 5

1.3. Cryptographic Boundaries .. 5

1.3.1. Logical Boundary ... 5

1.3.2. Physical Boundary ... 6

1.4. Ports and Interfaces ... 7

1.5. Modes of Operation ... 7

2. Cryptographic Functionality and Configuration ... 8

2.1. Approved Cryptographic Algorithms ... 8

2.2. Non-Approved Algorithms ... 9

2.3. Keys and Critical Security Parameters .. 10

2.4. Key Management ... 11

2.4.1. Key Material .. 11

2.4.2. Key Generation ... 11

2.4.3. Key Establishment .. 11

2.4.3.1 KeyTransition .. 12

2.4.3.2 Pbkdf2Cng ... 12

2.4.3.3 TlsPrfKdf .. 12

2.4.4. Key Entry and Output ... 12

2.4.5. Key Storage ... 13

2.4.6. Key Zeroization ... 13

3. Roles, Authentication and Services .. 13

3.1. Assumption of Roles ... 13

3.2. Services ... 15

3.3. Non-Approved Services.. 16

4. Physical Security Policy ... 17

5. Self-tests.. 17

Copyright Thycotic Software LLC, 2019 Version 1.9
Public Material – May be reproduced only in its original entirety (without revision)

Page 4 of 19

6. Guidance and Secure Operation ... 17

6.1. Crypto-Officer Guidance .. 17

6.2. User Guidance .. 18

7. Mitigation of Other Attacks .. 18

8. Security Levels ... 18

9. Acronyms .. 18

Copyright Thycotic Software LLC, 2019 Version 1.9
Public Material – May be reproduced only in its original entirety (without revision)

Page 5 of 19

1. Introduction

This non-proprietary guide defines the Security Policy for Thycotic Software’s Thycotic HSM

Module. This module is a cryptographic library for the .NET Framework which serves as a wrapper

around the Microsoft CNG (Cryptography, Next Generation) API. The module exposes the

Microsoft CNG API through a .NET API for use by other applications that require a managed .NET

interface.

The Microsoft CNG API relies on the Microsoft Windows Server 2012 R2 Cryptographic Primitives

Library (bcryptprimitives.dll and ncryptsslp.dll) (certificate #2357) cryptographic module. And the

Cryptographic Primitives Library has a functional dependency on ci.dll (Cert #2355) and cng.sys

(Cert #2356).

Operational Environment

Hardware Platform Operating System

Intel Core i7 with AES-NI running on an Intel
Maho Bay

Microsoft Windows Server 2012 R2 (x64)

Table 1 - Module Operational Environment

1.1. List of Cryptographic Module Binary Executables

THYCOTIC.HSM.DLL – Version 1.2.5 for Windows 2012 R2 Operating Environments

1.2. Brief Module Description

THYCOTIC.HSM.DLL provides cryptographic primitive services.

1.3. Cryptographic Boundaries

1.3.1. Logical Boundary

The library for the module is THYCOTIC.HSM.DLL. The Thycotic HSM Module wraps the Microsoft

CNG API. By default, and when operating in FIPS mode, it uses the Cryptographic Primitives

Library (bcryptprimitives.dll and ncryptsslp.dll) for cryptographic operations and the Microsoft

Software Key Storage Provider (KSP) for key storage.

The Microsoft Software KSP, and all other CNG KSPs, are outside the module’s logical

cryptographic boundary.

The module also allows access to any CNG KSP available to the operating system. This provides

the ability for the module to manage key storage through an alternative mechanism, such as a

HSM.

Copyright Thycotic Software LLC, 2019 Version 1.9
Public Material – May be reproduced only in its original entirety (without revision)

Page 6 of 19

Figure 1 shows the logical boundary of the module in relation to the operating system and

hardware.

Figure 1 – Thycotic HSM Block Diagram

1.3.2. Physical Boundary

The Thycotic HSM Module runs on a General Purpose Computer (GPC) and does not include any

shipped hardware components. In this case, the cryptographic boundary for the module is the

computer case itself.

Copyright Thycotic Software LLC, 2019 Version 1.9
Public Material – May be reproduced only in its original entirety (without revision)

Page 7 of 19

The module is defined as a “multi-chip standalone module” for usage under FIPS 140-2. Since the

module is software only, control of the GPC ports and I/O is outside of its scope.

1.4. Ports and Interfaces

The module does not use the external physical ports of the GPC.

Interface Module Equivalent

Data Input API input parameters – plaintext and/or ciphertext data

Data Output API output parameters and return values – plaintext and/or
ciphertext data

Control Input API method calls – method calls, or input parameters, that
specify commands and/or control data used to control the
operation of the module.

Status Output For each API method, a CngException will be thrown when an
erroneous state is encountered. The CngException includes
relevant error codes. Otherwise, a successful state is assumed.

Table 2 – Ports and Interfaces

1.5. Modes of Operation

The Thycotic HSM Module can operate in either an Approved or non-Approved mode of

operation. The cryptographic operator is responsible for implementing the following points to

put the module into FIPS mode

The Thycotic HSM Module operates in its Approved mode of operation when the following

rules are observed:

 Only approved and compliant algorithms are used during operation:

o HMAC keys must be greater than or equal to 112 bits

o Only RSA 2048 and 3072 are to be used in FIPS approved mode

 Cryptographic Primitives Library (bcryptprimitives.dll and ncryptsslp.dll) is installed in

the operating system, validated to FIPS 140-2 under Cert. #2357.

 FIPS validated version of the Cryptographic Primitives Library dependencies are

installed:

o Code Integrity (ci.dll) validated to FIPS 140-2 under Cert. #2355.

o Kernel Mode Cryptographic Primitives Library (cng.sys) validated to FIPS 140-2

under Cert. #2356. Used for entropy input when generating random values.

o BitLocker Windows OS Loader (winload) validated to FIPS 140-2 under Cert.

#2352.

o Boot Manager validated to FIPS 140-2 under Cert. #2351.

Copyright Thycotic Software LLC, 2019 Version 1.9
Public Material – May be reproduced only in its original entirety (without revision)

Page 8 of 19

 The Cryptographic Primitives Library and its dependencies are operating in FIPS mode,

under the following requirements:

o Windows is booted normally, meaning Debug mode is disabled and Driver

Signing enforcement is enabled under FIPS Cert #2355.

o After the operating system has been installed, it must be configured by enabling

the “System cryptography: Use FIPS compliant algorithms for encryption,

hashing, and signing” under FIPS Cert. #2351/#2357.
o FIPSProvider.IsFIPSComplianceEnabled property can be used to check the DWORD

registry value. Check that one of the following DWORD registry values is set to 1 in

the Windows Registry:
 HKLM\SYSTEM\CurrentControlSet\Control\Lsa\FIPSAlgorithmPolicy\Enabled

 HKLM\SYSTEM\CurrentControlSet\Policies\Microsoft\Cryptography\Configurati

on\SelfTestAlgorithms

If all the above requirements are met, the module operates in a FIPS Approved mode upon

initialization.

When switching between modes, all AES, RSA, and HMAC keys that were established must be

zeroized as described in in Section 2.4.6 Key Zeroization.

2. Cryptographic Functionality and Configuration

The Module implements FIPS Approved as well as Non-Approved but allowed functions. If the

Windows Operating system is set to enforce FIPS compliant algorithms, then the module will only

allow FIPS approved algorithms.

2.1. Approved Cryptographic Algorithms

CAVP Cert Algorithm Standard Description Use

28321 AES

FIPS 197,
SP 800-38A

ECB (128, 192, 256)
CBC (128, 192, 256)
CFB128 (128, 192, 256)
AES-CTR (128, 192, 256)

Data Encryption /
Decryption

1487 RSA FIPS 186‐4

2048
3072

Key-Pair Generation

2373 SHS FIPS 180‐4

SHA-1
SHA-256
SHA-384
SHA-512

Message Digest

1 CFB8, CCM, CMAC, GCM and GMAC are not used by the module.

Copyright Thycotic Software LLC, 2019 Version 1.9
Public Material – May be reproduced only in its original entirety (without revision)

Page 9 of 19

1773 HMAC FIPS 198-1 HMAC-SHA1
HMAC-SHA256
HMAC-SHA384
HMAC-SHA-512

Key length determined by
required security strength
(>= 112 bits)

Message Digest

489 DRBG SP 800-90A

CTR_DRBG (AES-256) Deterministic Random
Bit Generation

3232 CVL (TLS
KDF)

SP 800‐135 TLS 1.2 KDF Key Derivation

vendor
affirmed

PBKDF SP 800‐132 PBKDF2-HMAC-SHA1
PBKDF2-HMAC-SHA256
PBKDF2-HMAC-SHA384
PBKDF2-HMAC-SHA512

Key Derivation

Table 3 – Approved Algorithms

2.2. Non-Approved Algorithms

The module supports the following FIPS 140-2 non-Approved algorithms, which may not be used

when operating the module in a FIPS compliant manner:

Algorithm Use

RSA Encrypt/Decrypt (2048-bit or 3072-bit key) encrypt/decrypt
Table 4 - Non-Approved Cryptographic Algorithms

The module supports the following FIPS 140-2 non-Approved, but allowed algorithms:

Algorithm Use

NDRNG DRBG seed
Table 5 - Non-Approved, but Allowed Algorithms

2 No parts of this protocol, other than the KDF, have been tested by the CAVP and CMVP. IKEv1 and IKEv2 are not
used by the module.

Copyright Thycotic Software LLC, 2019 Version 1.9
Public Material – May be reproduced only in its original entirety (without revision)

Page 10 of 19

2.3. Keys and Critical Security Parameters

Keys/CSPs Description Stored Zeroization

Symmetric
encryption/decryptio
n keys

Keys used for AES
encryption/decryption. Key sizes
are 128, 192 and 256 bits.

RAM Occurs when
Dispose() is called
on the
corresponding
SymmetricCngKey
object.

HMAC keys Keys used for HMAC-SHA1, HMAC-
SHA256, HMAC-SHA384 and
HMAC-SHA512. Key size must be
greater than or equal to 112 bits.

RAM Occurs when
Dispose() is called
on the
corresponding
HashTransform
object.

RSA Private Keys3 Keys are generated and output to
the calling application. Key sizes
are 2048 and 3072 bits.

RAM/Disk/
HSM
Device

Occurs when
Dispose() is called
on the
corresponding
AsymmetricCngKey
object.

AES‐CTR DRBG Seed4 A secret value maintained by the
Cryptographic Primitives Library
module that provides the seed
material for AES-CTR DRBG
output.

RAM

AES‐
CTR DRBG Entropy In
put4

A secret value maintained by the
Cryptographic Primitives Library
module that provides the entropy
material for AES-CTR DRBG
output. The module generates
cryptographic keys whose
strengths are modified by
available entropy.

RAM

AES‐CTR DRBG V4 A secret value maintained by the
Cryptographic Primitives Library
module that provides the entropy
material for AES-CTR DRBG
output.

RAM

3 Key storage is outside the boundary and is the responsibility of the operator/User.

Copyright Thycotic Software LLC, 2019 Version 1.9
Public Material – May be reproduced only in its original entirety (without revision)

Page 11 of 19

AES‐CTR DRBG key4 A secret value maintained by the
Cryptographic Primitives Library
module that provides the entropy
material for AES‐CTR DRBG
output.

RAM

PBKDF Password Input password RAM Occurs when
Dispose() is called
on the
corresponding
Pbkdf2Cng object.

TLS Derived Key Keys derived using the TLS 1.2 PRF
and SHA-256.

RAM Occurs when
Dispose() is called
on the
corresponding
SafeNCryptSecretH
andle object.

Table 6 – Keys and CSPs

2.4. Key Management

2.4.1. Key Material

The module contains a single key used for the HMAC-SHA512 self-integrity test. When the

module is instantiated, no other keys exist in the process. The calling application is responsible

for either importing keys into the module or using the module to generate keys.

2.4.2. Key Generation

The module can generate AES, RSA, and HMAC Keys within Microsoft’s Cryptographic Primitive

Library.

The AesCngAlgorithm class can be used to generate AES-128, AES-192, and AES-256 bit keys.

The RsaCngAlgorithm class can be used to generate RSA 2048-bit and RSA 3072-bit keys.

The RngAlgorithm class can be used to generate HMAC keys.

The module generates cryptographic keys whose strengths are modified by available entropy.

2.4.3. Key Establishment

4 These Keys and CSPs belong to the bound module (Microsoft bcryptprimitives.dll).

Copyright Thycotic Software LLC, 2019 Version 1.9
Public Material – May be reproduced only in its original entirety (without revision)

Page 12 of 19

The module provides key establishment using the KeyTransition (non-compliant), Pbkdf2Cng, and

TlsPrfKdf classes.

2.4.3.1 KeyTransition

The KeyTransition class provides Microsoft’s FIPS non-approved RSA encrypt/decrypt to encrypt

AES keys. This establishment methodology provides 112-bits of encryption strength when using

RSA 2048-bit keys. RSA 3072-bit keys provide 128-bits of encryption strength.

2.4.3.2 Pbkdf2Cng

Pbkdf2Cng provides functionality for a FIPS approved Password Based Key Derivation Function as

specified in SP 800-132 (Section 5.3) by deriving a key from a hash value using the PBKDF2 key

derivation algorithm as defined by RFC 2898. There are two (2) options presented in NIST SP 800

- 132, pages 8 - 10, that are used to derive the Data Protection Key (DPK) from the Master Key

for password-based key derivation functions. Pbkdf2Cng uses option 1b.

Keys derived from passwords, as shown in SP 800 - 132, may only be used in storage applications.

In order to run in a FIPS approved manner, it is up to the user and application to pick strong

passwords and use them only for storage applications. The password/passphrase length is

enforced by the caller of the PBKDF interfaces and not the cryptographic module. In order to run

in a FIPS approved manner, the password must be chosen in accordance with the guidelines in

NIST SP 800 - 63 Electronic Authentication Guideline and SP 800 - 118 DRAFT Guide to Enterprise

Password Management. The upper bound for the probability of having the password guessed at

random is to be computed following the SP 800 - 63 and SP 800 - 118 guidelines. The decision for

the minimum length of a password used for key derivation is to be based on the SP 800 - 63 and

SP 800 - 118 guidelines.

2.4.3.3 TlsPrfKdf

TlsPrfKdf provides functionality for a FIPS approved TLS Pseudo-Random Key Derivation Function

2.4.4. Key Entry and Output

AES keys can be imported into or generated by the module using the CngKeyFactory. No export

functionality is provided for AES keys.

HMAC key can be provided to the module using the CreateHash() method for the appropriate

algorithm (Sha1HmacHashCngAlgorithm, Sha384HmacHashCngAlgorithm,

Sha256HmacHashCngAlgorithm, or Sha512HmacHashCngAlgorithm). CreateHash() will return a

HashTransform which manages the handle to the key.

RSA keys can be generated by the module or opened from a CNG KSP. No other functionality is

provided for importing RSA keys. No export functionality is provided for RSA keys.

Copyright Thycotic Software LLC, 2019 Version 1.9
Public Material – May be reproduced only in its original entirety (without revision)

Page 13 of 19

2.4.5. Key Storage

The module does not store AES or HMAC keys. It is the responsibility of the calling application to

manage those keys.

RSA keys may be generated and stored using the CngKeyFactory.GeneratePersistedKeys()

method. The keys generated by this method are stored and managed using the Microsoft

Software KSP, by default, but other CNG KSPs may be substituted. CNG KSPs are outside of the

module’s logical cryptographic boundary, regardless of which one is used.

2.4.6. Key Zeroization

The module also provides key zeroization for AES and RSA keys using the Cryptographic Primitives

Library. The module only exposes a CNG key handle, not the key itself, through either the

SymmetricCngKey or AsymmetricCngKey class.

Keys in memory can be zeroized by calling SymmetricCngKey.Dispose() or

AsymmetricCngKey.Dispose(), respectively.

When Dispose() is called on either class, a call is made to the BCryptDestroyKey() method in the

Cryptographic Primitives Library which will zeroize the key.

For a persisted RSA key, AsymmetricCngKey.DeleteKey() must be called to zeroize the key.

HMAC keys can be zeroized by calling HashTransform.Dispose().

The SafeNCryptSecretHandle secretHandle passed to the TlsPrfKdf.DeriveKey() function can be

zeroized by calling SafeNCryptSecretHandle.Dispose().

3. Roles, Authentication and Services

3.1. Assumption of Roles

The module supports two operator roles that are implicitly assumed: Crypto-Officer (CO) and

User.

The CO is responsible for setting up the operational environment and ensuring that it is running

in a FIPS approved mode according to Section 1.5 Modes of Operation. The Crypto-officer is also

responsible for installing the module.

The User is considered to be the owner of the thread, of which there can only be a single user

concurrently. The User is responsible for choosing FIPS approved algorithms when running in FIPS

approved mode, otherwise the algorithm will be subject to fail.

Copyright Thycotic Software LLC, 2019 Version 1.9
Public Material – May be reproduced only in its original entirety (without revision)

Page 14 of 19

The module does not support authentication, nor does it implement a maintenance role or

bypass capability.

Copyright Thycotic Software LLC, 2019 Version 1.9
Public Material – May be reproduced only in its original entirety (without revision)

Page 15 of 19

3.2. Services

Service Name Description Role

Initialize Module The CLR will call a static constructor to run the module integrity
check and self-tests on initialization.

Crypto-
Officer

Show Status Call CryptoStatus.IsReady() to determine if the module is ready. User

Data Encryption5 AesCngAlgorithm class can be used to encrypt data. User

Data Decryption5 AesCngAlgorithm class can be used to decrypt data. User

Asymmetric Key
Generation5

RsaCngAlgorithm class can be used to generate RSA private and
public keys.

User

Symmetric Key
Generation5

AesCngAlgorithm class can be used to generate keys for AES and
HMAC operations.

User

Message Hashing5 Sha1HashCngAlgorithm, Sha256HashCngAlgorithm,
Sha384HashCngAlgorithm, and Sha512HashCngAlgorithm classes
can be used to generate a SHA-1 or SHA-2 output.

User

Keyed Message
Hashing5

Sha1HmacHashCngAlgorithm, Sha256HmacHashCngAlgorithm,
Sha384HmacHashCngAlgorithm, and
Sha512HmacHashCngAlgorithm can be used to calculate data
integrity codes with HMAC.

User

Password-Based Key
Derivation Function5

Pbkdf2Cng can be used to generate a key based on a secret input
and a SHA-1 or SHA-2 based message digest.

User

TLS PRF KDF Key
Derivation (SP 800-
135) 5

TlsPrfKdf class can be used to derive a key using the TLS 1.2 PRF and
SHA-256.

User

DRBG (SP 800-90A)
output5

RngAlgorithm class can be used to generate random numbers. User

Utility AlgorithmSupport – Determines if algorithm is supported by the
operating system.
FIPSProvider.IsFIPSComplianceEnabled property – Determines if
FIPS compliance mode is enabled and enforced in the operating
system. Checks if one of the following registry settings are
enabled:
HKLM\System\CurrentControlSet\Control\Lsa\FIPSAlgorithmPolic
y\Enabled
HKLM\SYSTEM\CurrentControlSet\Policies\Microsoft\Cryptograp
hy\Configuration\SelfTestAlgorithms

User

Table 7 - Service description and roles

5 These Services belong to the bound module (Microsoft bcryptprimitives.dll). All other services belong the Thycotic
HSM module.

Copyright Thycotic Software LLC, 2019 Version 1.9
Public Material – May be reproduced only in its original entirety (without revision)

Page 16 of 19

3.3. Non-Approved Services

Service Name Description Role

RSA Encrypt Used to encrypt data using a RSA key. User

RSA Decrypt Used to decrypt data using a RSA key. User

Encrypted Key Entry Used to encrypt/decrypt an AES key using a RSA key. User
Table 8 – Non-Approved Service description and roles

Critical Security Parameters modes of access:

 W = Create/Write: The module generates or writes the CSP.

 X = Execute: The module executes using the CSP.

 D = Zeroization: The module removes the CSP.

Service Name Sy
m

m
et

ri
c

en
cr

yp
ti

o
n

/d
ec

ry
p

ti
o

n

ke
ys

H
M

A
C

 k
ey

s

R
SA

 P
ri

va
te

 k
ey

s

R
SA

 P
u

b
lic

 k
ey

s

A
ES

-C
TR

Se

ed
,

En
tr

o
p

y,

K
ey

, a
n

d
 V

P
B

K
D

F
In

p
u

t
K

ey

TL
S

P
R

F
K

ey

Initialize Module and
Perform Self-Test

Show Status

Data Encryption/Decryption X

Key and Key-Pair Generation W,D W,D W,D6 W,D

Message Hashing

Keyed Message Hashing X

Password-Based Key
Derivation Function

 X,D X

TLS Pseudo Random Function
 X,D W,D

6 The key storage location is determined by the CNG KSP configured by the user. By default, the module will use the
Microsoft Software Key Storage Provider, which stores the key in-memory.

Copyright Thycotic Software LLC, 2019 Version 1.9
Public Material – May be reproduced only in its original entirety (without revision)

Page 17 of 19

DRBG (SP 800-90A) Output X

Utility
Table 9 - CSP Access Rights within Services

4. Physical Security Policy

The module is software only and does not have any physical security mechanisms.

5. Self-tests

The module performs self-tests automatically when it is loaded. The self-tests include a

mechanism to verify the integrity of the module. This is performed by generating a HMAC-SHA-

512 value of the module file. If the integrity check fails, any attempt to perform a cryptographic

operation will fail with a CryptoOperationError.

The Cryptographic Primitives Library, and its supported validated libraries, perform both power-

up and conditional self-tests for their cryptographic algorithms.

The power-up self-tests can be run by an operator, on-demand, by reloading the module. The

operator may check to see if the module is in a failed state by calling

CryptoStatus.IsErrorStatus(). Details on why the module is in a failed state may be obtained by

calling CryptoStatus.GetStatusMessage().

The module does not implement its own conditional self-tests. If the integrity check or any

Cryptographic Primitives Library’s self-tests fails, the module will not perform any services

except the Show Status service.

6. Guidance and Secure Operation

6.1. Crypto-Officer Guidance

The key storage location may also be changed to disk or a HSM device. In the case of a HSM, the user would configure
the module to use a CNG KSP provided by the HSM vendor. Once configured, the key will be stored and managed by
the HSM. Any access and use of the key will go through the HSM.

The output of the RSA private key falls outside of the module’s logical cryptographic boundary.

Copyright Thycotic Software LLC, 2019 Version 1.9
Public Material – May be reproduced only in its original entirety (without revision)

Page 18 of 19

The Crypto-officer is responsible for setting up the operational environment and ensuring that it

is running in a FIPS approved mode according to Section 1.5 Modes of Operation. The Crypto-

officer is also responsible for installing the module.

After the operating system has been installed, it must be configured by enabling the “System

cryptography: Use FIPS compliant algorithms for encryption, hashing, and signing” under FIPS

Cert #2351/#2357

Windows must be booted normally, meaning Debug mode is disabled and Driver Signing

enforcement is enabled. FIPS Cert #2355.

6.2. User Guidance

The calling application is responsible for managing all key material that resides outside of the

module (i.e. key material that will be imported into the module). The calling application shall not

use any non-approved algorithms defined in Table 4.

7. Mitigation of Other Attacks

The module provides no additional mitigation of other attacks.

8. Security Levels

Security Requirement Security Level

Cryptographic Module Specification 1

Cryptographic Module Ports and Interfaces 1

Roles, Services, and Authentication 1

Finite State Model 1

Physical Security N/A

Operational Environment 1

Cryptographic Key Management 1

EMI/EMC 1

Self-Tests 1

Design Assurance 1

Mitigation of Other Attacks N/A

9. Acronyms

Term Definition

AES Advanced Encryption Standard

Copyright Thycotic Software LLC, 2019 Version 1.9
Public Material – May be reproduced only in its original entirety (without revision)

Page 19 of 19

API Application Programming Interface

CAVP Cryptographic Algorithm Validation Program

CBC Cipher-Block Chaining mode

CFB Cipher Feedback mode

CNG Cryptography, Next Generation

CLR Common Language Runtime

CSP Critical Security Parameter

CTR Counter-mode

DRBG Deterministic Random Bit Generator

GPC General Purpose Computer

FIPS Federal Information Processing Standards

HMAC Hash-base Message Authentication Code

HSM Hardware Security Module

KSP Key Storage Provider

RSA Rivest Shamir Adleman

RSADP RSA Decryption Primitive

RSAEP RSA Encryption Primitive

SHA Secure Hash Algorithm

SHS Secure Hash Standard

