

FIPS 140-2 Non-Proprietary Security Policy

Gemalto FIPS Object module

Software Version 2.1.0

Date: April 22nd, 2019

Modification History

Version	Date	Description
Version 1.0	9/4/2018	Initial Release
Version 1.1	9/18/2018	Updates based on testing and Gemalto review
Version 1.2	10/09/2018	Updates based on review and Gemalto feedback
Version 1.3	11/18/2018	Updates based on additional CAVP testing and review
Version 1.4	12/20/2018	Updates based on quality and technical review
Version 1.5	12/22/2018	Editorial updates
Version 1.6	12/26/2018	Editorial updates
Version 1.7	12/27/2018	Editorial updates
Version 1.8	03/06/2019	Editorial updates
Version 1.9	03/08/2019	Editorial updates
Version 1.10	03/25/2019	Editorial updates
Version 1.11	04/22/2019	Logo updates

nales company Gemalto FIPS 140-2 Object module Security policy

Table of contents

1.		Introduction	. 4
2.		Ports and Interfaces	. 6
3.		Modes of Operation	. 7
3	3.1	1 Approved Mode	7
3	3.2		9
	3.3		
3	3.4	4 Critical Security Parameters and Public Keys	
4.		Roles, Authentication and Services	12
5.		Self-Tests	
6.		Operational Environment	16
6	.1	Tested Configurations	16
6			16
7.		Mitigation of Other Attacks	17
8.		References	

List of Tables

Table2: Logical Interfaces6Table 3: FIPS Approved Cryptographic Functions8Table 4: Non-FIPS Approved but Allowed Cryptographic Functions9Table 5: Non-FIPS Approved Cryptographic Functions9Table 6: Critical Security Parameters10Table 7: Public Keys10Table 8: DRBG Entropy Requirements11Table 9: Services and CSP Access12-13Table 10: Power On Self-Tests14Table 11: Conditional Self-Tests15Table 12: Tested Configurations16Table 13: Vendor Affirmed Configuration18	Table 1: Security Level of Security Requirements	4
Table 3: FIPS Approved Cryptographic Functions8Table 4: Non-FIPS Approved but Allowed Cryptographic Functions9Table 5: Non-FIPS Approved Cryptographic Functions9Table 6: Critical Security Parameters10Table 7: Public Keys10Table 8: DRBG Entropy Requirements11Table 9: Services and CSP Access12-13Table 10: Power On Self-Tests14Table 11: Conditional Self-Tests15Table 12: Tested Configurations16Table 13: Vendor Affirmed Configuration16	Table2: Logical Interfaces	6
Table 5: Non-FIPS Approved Cryptographic Functions. 9 Table 6: Critical Security Parameters. 10 Table 7: Public Keys. 10 Table 8: DRBG Entropy Requirements. 11 Table 9: Services and CSP Access. 12-13 Table 10: Power On Self-Tests. 14 Table 11: Conditional Self-Tests. 15 Table 12: Tested Configurations. 16 Table 13: Vendor Affirmed Configuration. 16	Table 3: FIPS Approved Cryptographic Functions	8
Table 6: Critical Security Parameters.10Table 7: Public Keys.10Table 8: DRBG Entropy Requirements.11Table 9: Services and CSP Access.12-13Table 10: Power On Self-Tests.14Table 11: Conditional Self-Tests.15Table 12: Tested Configurations.16Table 13: Vendor Affirmed Configuration.16	Table 4: Non-FIPS Approved but Allowed Cryptographic Functions	9
Table 8: DRBG Entropy Requirements 11 Table 9: Services and CSP Access 12-13 Table 10: Power On Self-Tests 14 Table 11: Conditional Self-Tests 15 Table 12: Tested Configurations 16 Table 13: Vendor Affirmed Configuration 16	Table 5: Non-FIPS Approved Cryptographic Functions	9
Table 8: DRBG Entropy Requirements 11 Table 9: Services and CSP Access 12-13 Table 10: Power On Self-Tests 14 Table 11: Conditional Self-Tests 15 Table 12: Tested Configurations 16 Table 13: Vendor Affirmed Configuration 16	Table 6: Critical Security Parameters	10
Table 8: DRBG Entropy Requirements 11 Table 9: Services and CSP Access 12-13 Table 10: Power On Self-Tests 14 Table 11: Conditional Self-Tests 15 Table 12: Tested Configurations 16 Table 13: Vendor Affirmed Configuration 16	Table 7: Public Keys	10
Table 10: Power On Self-Tests	Table 8: DRBG Entropy Requirements	11
Table 11: Conditional Self-Tests		
Table 12: Tested Configurations		
Table 13: Vendor Affirmed Configuration		
Table 13: Vendor Affirmed Configuration		
Table 14: References 18	Table 13: Vendor Affirmed Configuration	16
Table 14. Neterences	Table 14: References	18

List of Figures

Figure 1:	Module Block Diagram	5
-----------	----------------------	---

1 Introduction

This document is the non-proprietary security policy for the Gemalto FIPS Object Module, hereafter referred to as the Module.

The Module is a software library providing a C language application program interface (API) for use by other processes that require cryptographic functionality. The Module is classified by FIPS 140-2 as a software module, multichip standalone module embodiment. The physical cryptographic boundary is the general-purpose computing device on which the module is installed. The logical cryptographic boundary of the Module is the fipscanister object module, a single object module file named fipscanister.o. The Module performs no communications other than with the calling application (the process that invokes the Module services).

The FIPS 140-2 security levels for the Module are as follows:

Security Requirements Section	Level
Cryptographic Module Specification	1
Cryptographic Module Ports and Interfaces	1
Roles and Services and Authentication	1
Finite State Machine Model	1
Physical Security	N/A
Operational Environment	1
Cryptographic Key Management	1
EMI/EMC	1
Self-Tests	1
Design Assurance	3
Mitigation of Other Attacks	N/A

Table 1: Security Level of Security Requirements

The Module's software version for this validation is 2.1.0.

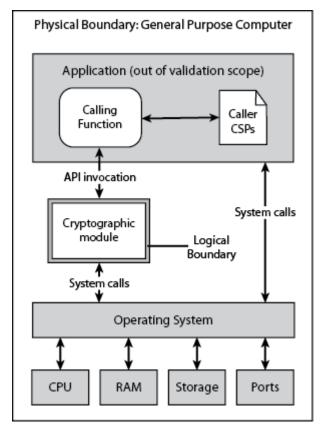


Figure 1: Module Block Diagram

2 Ports and Interfaces

The physical ports of the Module are the same as the general purpose computing device on which it is executing. The logical interface is a C language API.

Logical Interface Type	Description
Control Input	API entry point and corresponding stack or register parameters
Data Input	API entry point data input stack or register parameters
Status Output	API entry point return values and status stack or register parameters
Data Output	API Entry point data output stack or register parameters

Table 2: Logical Interfaces

As a software module, control of the physical ports is outside module scope. However, when the module is performing self-tests, or is in an error state, all output on the logical data output interface is inhibited. The module is single-threaded and in error scenarios returns only an error value (no data output is returned).

3 Modes of Operation

The Module supports FIPS 140-2 Approved, Allowed and Non-Approved algorithms in a single mixed mode of operation.

3.1 Approved Mode

The Module supports the following services and algorithms in FIPS Approved Mode:

Function	Algorithm	Options	Cert#
Random Number Generation;	[SP 800-90A] DRBG ¹	Hash_Based DRBG: [Prediction	2407
symmetric key generation	Prediction resistance	Resistance Tested: Enabled and	
	supported for all variations	Not Enabled (SHA-1, SHA-224,	
		SHA-256, SHA-384, SHA-512)]	
		HMAC_Based DRBG: [Prediction	
		Resistance Tested: Enabled and	
		Not Enabled (SHA-1, SHA-224,	
		SHA-256, SHA-384, SHA-512)]	
		CTR_DRBG: [Prediction Resistance	
		Tested: Enabled and Not Enabled;	
		BlockCipher_Use_df: (AES-128,	
		AES-192, AES-256)]	
		BlockCipher_No_df: (AES-128,	
		AES-192, AES-256)]	
Cryptographic Key Generation (CKG)	[SP 800-133] CKG	Vendor Affirmed	N/A
Encryption, Decryption, and CMAC	[SP 800-67]	3-Key TDES TECB, TCBC, TCFB	2861
	[SP 800-38A]	(CFB1/CFB8/CFB64), TOFB; CMAC	
		generate and verify	
	[FIPS 197] AES	128/ 192/256 ECB, CBC, OFB, CFB 1,	5829
	[SP 800-38B] CMAC	CFB 8, CFB 128, CTR, XTS ² ; CCM;	
	[SP 800-38C] CCM	GCM; CMAC	
	[SP 800-38D] GCM	generate and verify	
	[SP 800-38E] XTS		
Message Digests	[FIPS 180-4]	SHA-1, SHA-2 (224, 256, 384, 512)	4615
Keyed Hash	[FIPS 198] HMAC	SHA-1, SHA-2 (224, 256, 384, 512)	3840
Digital Signature and asymmetric	[FIPS 186-2] RSA	SigGen9.31, SigGenPKCS1.5,	3078
Key Generation		SigGenPSS (4096 with all SHA-2	
-		sizes)	
		SigVer9.31, SigVerPKCS1.5,	
		SigVerPSS	
		(1024/1536/2048/3072/4096 with	
		all SHA sizes)	
	[FIPS 186-4] RSA	KeyGen, SigGen9.31,	3078
		SigGenPKCS1.5, SigGenPSS,	
		SigVer9.31, SigVerPKCS1.5,	
		SigVerPSS(2048/3072 with all SHA-	
		2 sizes)	
	[FIPS 186-4] DSA	Key Pair Gen (2048/3072)	1473
		PQG Gen, Sig Gen (2048/3072 with	
		all SHA-2 sizes)	
		PQG Ver, Sig Ver (1024/2048/3072	

¹For all DRBGs the "supported security strengths" is just the highest supported security strength per[SP800-90A] and [SP800-57].

² Only key lengths 128 and 256 options can be CAVP tested for this mode.

		with all SHA sizes)	
	[FIPS 186-4] ECDSA	Key Pair Gen: CURVES	1558
		P-224	
		P-256	
		P-384	
		P-521	
		(ExtraRandomBits	
		TestingCandidates)	
		PKV: CURVES (ALL-P)	
		SigGen: CURVES	
		P-224: (SHA-224, 256, 384, 512)	
		P-256: (SHA-224, 256, 384, 512)	
		P-384: (SHA-224, 256, 384, 512)	
		P-521: (SHA-224,256, 384, 512)	
		SigVer: CURVES	
		P-192: (SHA-1, 224, 256, 384, 512)	
		P-224: (SHA-1, 224, 256, 384, 512)	
		P-256: (SHA-1, 224, 256, 384, 512)	
		P-384: (SHA-1, 224, 256, 384, 512)	
		P-521: (SHA-1, 224, 256, 384, 512)	
ECC CDH CVL (KAS)	[SP 800-56A] (§5.7.1.2)	All NIST defined P curves except	2098
		size 192	

es company Gemalto FIPS 140-2 Object module Security policy

Table 3: FIPS Approved Cryptographic Functions

3.2 Non-Approved But Allowed Services

The Module supports the following non-approved but allowed services.

Category	Algorithm	Description
Key Agreement	DH	Key agreement is a service provided by the module to establish session keys for secure communication with another module using the Diffie-Hellman algorithm.
Key Agreement	EC DH	Key agreement is a service provided by the module to establish session keys for secure communication with another module using the EC Diffie-Hellman algorithm.
Key Encryption/Decryption	RSA	RSA may be used to perform key establishment with another module by securely exchanging symmetric encryption keys with another module.
Entropy Source	NDRNG	The module obtains the entropy data from NDRNG to seed the DRBG

Table 4: Non-FIPS Approved but Allowed Cryptographic Functions

The module supports the following non-FIPS 140-2 approved but allowed algorithms:

- RSA (key wrapping; key establishment methodology provides between 112 and 256 bits of encryption strength)
- Diffie-Hellman (key agreement; key establishment methodology provides between 112 and 219 bits of encryption strength; non-compliant less than 112 bits of encryption strength)
- EC Diffie-Hellman (CVL Cert. #2098, key agreement; key establishment methodology provides between 112 and 256 bits of encryption strength)

3.3 Non-Approved Services

The Module implements the following services which are Non-Approved per the FIPS 140-2 IG and SP 800-131Ar1 transition:

Function	Algorithm	Options
Digital Signature and Asymmetric Key Generation	[FIPS 186-2] RSA	GenKey9.31, SigGen9.31, SigGenPKCS1.5, SigGenPSS (2048/3072/4096 with SHA1)
	[FIPS 186-2] DSA	PQG Gen, Key Pair Gen, Sig Gen (2048/3072 with SHA1)
	[FIPS 186-4] DSA	PQG Gen, Key Pair Gen, Sig Gen (2048/3072 with SHA-1)
	[FIPS186-2] ECDSA	PKG: CURVES (P-192) SIG (gen): CURVES (P-192 P-224 P-256 P 384 P-521) with SHA-1
	[FIPS 186-4] ECDSA	PKG: CURVES (P-192)
		SigGen: CURVES (P-192: (SHA-1, 224, 256, 384, 512) P224:(SHA- 1) P-256:(SHA-1) P-384: (SHA-1) P-521:(SHA-1)
ECC CDH (KAS)	[SP800-56A] (§5.7.1.2)	P curves sizes 163 and 192

Table 5: Non-FIPS Approved Cryptographic Functions

These algorithms shall not be used when operating in the FIPS Approved mode of operation. The use of these non-conformant algorithms with any of the services in Table 9 will result in the module being placed in the non-approved mode.

3.4 Critical Security Parameters and Public Keys

All CSPs used by the Module are described in this section. All access to these CSPs by Module services are described in Section 4. The CSP names are generic, corresponding to API parameter data structures.

CSP Name	Description
RSA SGK	RSA (2048 to 16384 bits) signature generation key
RSA KDK	RSA (2048 to 16384 bits) key decryption (private key transport) key
DSA SGK	[FIPS 186-4] DSA (2048/3072) signature generation key
DH Private	Diffie-Hellman ≥ 2048 private key agreement key
ECDSA SGK	ECDSA (All NIST defined P curves except size 192) signature generation key
EC DH Private	EC DH (All NIST defined P curves except size 192) private key agreement key.
AES EDK	AES (128/192/256) encrypt / decrypt key
AES CMAC	AES (128/192/256) CMAC generate / verify key
AES GCM	AES (128/192/256) encrypt / decrypt / generate / verify key
AES XTS	AES (256/512 ³) XTS encrypt / decrypt key
Triple-DES EDK	Triple-DES (3-Key) encrypt / decrypt key
Triple-DES CMAC	Triple-DES (3-Key) CMAC generate / verify key
HMAC Key	Keyed hash key (160/224/256/384/512)
Hash_DRBG CSPs	V (440/888 bits) and C (440/888 bits), seed (128/192/256 bits) and entropy input (128/192/256 bits)
HMAC_DRBG CSPs	V (160/224/256/384/512 bits) and Key (160/224/256/384/512 bits), seed (128/192/256 bits) and entropy input (128/192/256 bits)
CTR_DRBG CSPsV (128 bits) and Key (AES 128/192/256 bits), seed (128/192/256 bits), seed (128/192/256 bits)and entropy input (128/192/256 bits)	

Table 6: Critical Security Parameters

³ Only key lengths 128 and 256 options can be CAVP tested for this mode.

The module does not output intermediate key generation values.

CSP Name	Description
RSA SVK	RSA (1024 to 16384 bits) signature verification public key
RSA KEK	RSA (2048 to 16384 bits) key encryption (public key transport) key
DSA SVK	[FIPS 186-4] DSA (2048/3072) signature verification key
ECDSA SVK	ECDSA (All NIST defined P curves) signature verification key
DH Public	Diffie-Hellman public key agreement key
EC DH Public	EC DH (All NIST defined P curves) public key agreement key

Table 7: Public Keys

For all CSPs and Public Keys:

Storage: RAM, associated to entities by memory location. The Module stores DRBG state values for the lifetime of the DRBG instance. The module uses CSPs passed in by the calling application on the stack or registers. The Module does not store any CSP persistently (beyond the lifetime of an API call), with the exception of DRBG state values used for the Modules' default key generation service.

Generation: The Module implements SP 800-90A compliant DRBG services for creation of symmetric keys, and for generation of DSA, elliptic curve, and RSA keys as shown in Table 3. The calling application is responsible for storage of generated keys returned by the module.

FIPS 140-2 IG 7.14 1 (b) is applicable to this module. The module, a software library based in user space will request entropy from the Operational Environment as appropriate to the security strength and seeding configuration for the DRBG that is using it.

For operation in the Approved mode, Module users (the calling applications) shall use entropy sources that contain at least 112 bits of entropy. To ensure full DRBG strength, the entropy sources must meet or exceed the security strengths shown in the table below.

DRBG Type	Underlying Algorithm	Minimum Seed Entropy
	SHA-1	128
Hash_DRBG or HMAC_DRBG	SHA-224	192
	SHA-256	256
	SHA-384	256
	SHA-512	256
	AES-128	128
CTR_DRBG	AES-192	192
	AES-256	256

Table 8 - DRBG Entropy Requirements

Entry: All CSPs enter the Module's logical boundary in plaintext as API parameters, associated by memory location. However, none cross the physical boundary.

Output: The Module does not output CSPs, other than as explicit results of key generation services. However, none cross the physical boundary.

Destruction: Zeroization of sensitive data is performed automatically by API function calls for temporarily stored CSPs. In addition, the module provides functions to explicitly destroy CSPs related to random number generation services. The calling application is responsible for parameters passed in and out of the module.

Private and secret keys as well as seeds are provided to the Module by the calling application and are destroyed when released by the appropriate API function calls. Keys residing in internally allocated data structures (during the lifetime of an API call) can only be accessed using the Module defined API. The operating system protects memory and process space from unauthorized access. Only the calling application that creates or imports keys can use or export such keys. All API functions are executed by the invoking calling application in a non-overlapping sequence such that no two API functions will execute concurrently. An authorized application as user (Crypto Officer and User) has access to all key data generated during the operation of the Module.

Use: In the event Module power is lost and restored the calling application must ensure that any AES-GCM keys used for encryption or decryption are redistributed.

In the case of AES-GCM, the IV generation method is user selectable and the value can be computed in more than one manner as follows:

- TLS 1.2: The module's AES-GCM implementation conforms to IG A.5, scenario #1, following RFC 5288 for TLS. The counter portion of the IV is set by the module within its cryptographic boundary. When the IV exhausts the maximum number of possible values for a given session key, the first party, client or server, to encounter this condition will trigger a handshake to establish a new encryption key in accordance with RFC 5246.
- Non-TLS 1.2: The module's AES-GCM implementation conforms to IG A.5, scenario #3, when operating in a FIPS approved mode of operation, AES GCM, IVs are constructed both internally and deterministically and are a minimum of 96-bits in length as specified in SP 800-38D, Section 8.2.1.

The selection of the IV construction method is the responsibility of the user of this cryptographic module

The calling application shall ensure that the same Triple-DES key is not used to encrypt more than 216 64-bit blocks of data. In approved mode, users of the module must not utilize GCM with an externally generated IV.

Per the requirements of SP 800-38E, AES-XTS mode shall be used for storage purposes only.

4 Roles, Authentication and Services

The Module implements the required User and Crypto Officer roles. Only one role may be active at a time and the Module does not support user authentication. The User and CO roles are implicitly assumed by the entity accessing services implemented by the module. A user is considered the owner of the thread that instantiates the module and, therefore, only one concurrent user is allowed.

Both roles have access to all of the services provided by the Module.

- User Role (User): Loading the Module and calling any of the API functions.
- Crypto Officer Role (CO): Installation of the Module on the host general purpose computing device and calling of any API functions.

All services implemented by the Module are listed below, along with a description of service CSP access. The access types are determined as follows:

- Generate (G): Generates the Critical Security Parameter (CSP) using an approved Random Bit Generator
- Read (R): Export the CSP (to an assigned location in memory)
- Write (W): Enter/establish and store a CSP (to an assigned location in memory)
- Destroy (D): Overwrite the CSP
- Execute (E): Employ the CSP
- None: No access to CSP's

Service	Role	Description	Access Type
Initialize	User, CO	Module initialization. Does not access CSPs.	
Self-test	User, CO	Perform self-tests (FIPS_selftest).	
Show status	User, CO	 Functions that provide module status information: Version (as unsigned long or const char *) FIPS Mode (Boolean value "1") 	
Zeroize	User, CO	Functions that destroy CSPs: fips_drbg_uninstantiate DRBG CSPs (Hash_DRBG CSPs, HMAC_DRBG CSPs, CTR_DRBG CSPs) All other services automatically overwrite CSPs stored in allocated memory. Stack cleanup is the responsibility of the calling application.	
Random number generation	User, CO	Used for random number and symmetric key generation. Seed or reseed a DRBG instance Determine security strength of a DRBG instance Obtain random data Hash_DRBG CSPs, HMAC_DRBG CSPs, CTR_DRBG CSPs.	
Asymmetric key generation	User, CO	Used to generate DSA, ECDSA and RSA keys: RSA SGK, RSA SVK; DSA SGK, DSA SVK; ECDSA SGK, ECDSA SVK	
Symmetric encrypt/decrypt	User, CO	Used to encrypt or decrypt data. AES EDK, TRIPLE-DES EDK, AES GCM, AES XTS (passed in by the calling process).	
Symmetric digest	User, CO	Used to generate or verify data integrity with CMAC. R AES CMAC, TRIPLE-DES CMAC (passed in by the calling process)	
Message digest	User, CO	Used to generate a SHA-1 or SHA-2 message digest.	None

www.gemalto.com

Thales company Gemalto FIPS 140-2 Object module Security policy

Keyed Hash	User, CO	CO Used to generate or verify data integrity with HMAC.	
		HMAC Key (passed in by the calling process).	
Key transport ⁴	Key transport ⁴ User, CO Used to encrypt or decrypt a key value on behalf of the calling process (does not establish keys into the module).		R/E
		RSA KDK, RSA KEK (passed in by the calling process).	
-, -,		Used to perform key agreement primitives on behalf of the calling process (does not establish keys into the module).	R/E/G/W
		Diffie-Hellman/EC Diffie-Hellman Private, Diffie-Hellman/EC Diffie-Hellman Public (passed in by the calling process)	
Digital signature	User, CO	Used to generate or verify RSA, DSA or ECDSA digital signatures.	R/E/G/W
		RSA SGK, RSA SVK; DSA SGK, DSA SVK; ECDSA SGK, ECDSA SVK (passed in by the calling process).	
Utility	User, CO	Miscellaneous helper functions.	None

Table 9: Services and CSP Access

⁴ "Key transport" can refer to a) moving keys in and out of the module, or b) the use of keys by an external application. The latter definition is the one that applies to the OpenSSL FIPS Object Module

5 Self-Tests

The Module performs the self-tests listed below on invocation of Initialize or Self-test.

Algorithm	Туре	Test Attributes	
Software integrity	КАТ	HMAC-SHA-1	
НМАС	КАТ	One KAT per SHA-1, SHA-224, SHA-256, SHA-384 and SHA-	
		512 Per IG 9.3, this testing covers SHA POST requirements.	
AES	КАТ	Separate encrypt and decrypt, ECB mode, 128-bit key length	
AES CCM	КАТ	Separate encrypt and decrypt, 192 key length	
AES GCM	КАТ	Separate encrypt and decrypt, 256 key length	
XTS-AES	КАТ	128, 256-bit key sizes to support either the 256-bit key size (for XTS-AES-128) or the 512-bit key size (for XTS-AES-256)	
AES CMAC	КАТ	Sign and verify CBC mode, 128, 192, 256 key lengths	
Triple-DES	КАТ	Separate encrypt and decrypt, ECB mode, 3-Key	
Triple-DES CMAC	КАТ	CMAC generate and verify, CBC mode, 3-Key	
RSA	КАТ	Sign and verify using 2048 bit key, SHA-256, PKCS#1	
DSA	РСТ	Sign and verify using 2048 bit key, SHA-384	
DRBG	КАТ	CTR_DRBG: AES, 256-bit with and without derivation function	
		HASH_DRBG: SHA256	
		HMAC_DRBG: SHA256	
ECDSA	РСТ	Keygen, sign, verify using P-224 and SHA-512	
ECC CDH	КАТ	Shared secret calculation per SP 800-56A §5.7.1.2, IG 9.6	

Table 10: Power-On Self-Tests

Per IG 9.10, the Module implements a default entry point and automatically runs the FIPS self-tests upon startup.

The module has a function called FIPS_module_mode_set() within the init code that is automatically set to enable "FIPS Mode" by default. When the Gemalto FIPS Object Module is initialized, it will always run its power-on self-tests meeting the IG 9.10 requirement.

The Module also implements the following conditional tests:

Algorithm	Test	
DRBG	[SP 800-90A] Section 11.3 Instantiate, Generate, Reseed health tests for Hash_DRBG/HMAC_DRBG and CTR_DRBG	
DRBG	FIPS 140-2 continuous test for stuck fault	
NDRNG	FIPS 140-2 Continuous test for NDRNG	
DSA	Pairwise consistency test on each generation of a key pair	
ECDSA	Pairwise consistency test on each generation of a key pair	
RSA	Pairwise consistency test on each generation of a key pair	

Table 11: Conditional Self-Tests

In the event of a DRBG self-test failure the calling application must un-instantiate and re-instantiate the DRBG per the requirements of [SP 800-90A]; this is not something the Module can do itself.

Pairwise consistency tests are performed for both possible modes of use, e.g. Sign/Verify and Encrypt/Decrypt

6 Operational Environment

The operational environments tested are considered modifiable operational environments under FIPS 140-2. The tested operating systems segregate user processes into separate process spaces. Each process space is logically separated from all other processes by the operating system software and hardware. The Module functions entirely within the process space of the calling application, and implicitly satisfies the FIPS 140-2 requirement for a single user mode of operation.

6.1 Tested Configurations

#	Operational Environment	Processor	Platform
1	Android 4.4 ⁵	Qualcomm APQ8064 (ARMv7)	LG Nexus 4
2	Android 5.1	Samsung Exynos (ARMv8) Samsung Galaxy S6	
3	Android 6.0	Qualcomm Snapdragon 810(ARMv8)	Huawei Nexus 6P
4	Android 7.1	Qualcomm Snapdragon 821 (ARMv8)	Google Pixel XL
5	Android 8.1	Qualcomm Snapdragon 835 (ARMv8)	Google Pixel 2
6	iOS 9.3	Apple A8 (ARMv8)	iPhone 6
7	iOS 10.3	Apple A6 (ARMv7)	iPhone 5
8	iOS 11.4	Apple A11 (ARMv8)	iPhone 8

The module was tested in the following configurations.

Table 12: Tested Configurations

6.2 Vendor Affirmed Configurations

The following platforms have not been tested as part of the FIPS 140-2 level 1 certification however Gemalto "vendor affirms" that these platforms are equivalent to the tested and validated platforms. Additionally, Gemalto affirms that the module will function the same way and provide the same security services on any of the operating systems listed below.

- Android 5.0
- Android 7.0
- Android 8.0
- Android 9
- iOS 10.0 10.2
- iOS 11.0 11.3
- iOS 12

As per FIPS 140-2 Implementation Guidance G.5, the CMVP makes no statement as to the correct operation of the module or the security strengths of the generated keys when so ported if the specific operational environment is not listed on the validation certificate.

⁵ Tested with and without PAA

7 Mitigations of Other Attacks

The module is not designed to mitigate against attacks which are outside of the scope of FIPS 140-2.

8 References

The FIPS 140-2 standard, and information on the CMVP, can be found at

<u>https://csrc.nist.gov/projects/cryptographic-module-validation-program</u>. More information describing the module can be found on the Gemalto web site at www.gemalto.com.This Security Policy contains non-proprietary information. All other documentation submitted for FIPS 140-2 conformance testing and validation is "Gemalto - Proprietary" and is releasable only under appropriate non-disclosure agreements.

References	Full Specification Name	
[FIPS 140-2]	Security Requirements for Cryptographic modules, May 25, 2001	
[FIPS 180-4]	Secure Hash Standard	
[FIPS 186-4]	Digital Signature Standard	
[FIPS 197]	Advanced Encryption Standard	
[FIPS 198-1]	The Keyed Hash Message Authentication Code (HMAC)	
[SP 800-38A]	Recommendation for Block Cipher Modes of Operation: Methods and Techniques	
[SP 800-38B]	Recommendation for Block Cipher Modes of Operation: The CMAC Mode for Authentication	
[SP 800-38C]	Recommendation for Block Cipher Modes of Operation: The CCM Mode for Authentication and Confidentiality	
[SP 800-38D]	Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC	
[SP 800-56A]	Recommendation for Pair Wise Key Establishment Schemes Using Discrete Logarithm Cryptography	
[SP 800-67R1]	Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher	
[SP 800-89]	Recommendation for Obtaining Assurances for Digital Signature Applications	
[SP 800-90A]	Recommendation for Random Number Generation Using Deterministic Random Bit Generators	
[SP 800-131A]	Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms and Key Lengths	

Table 14: References