

FIPS 140-2 Non-Proprietary Security Policy

Acme Packet 1100 [1] and Acme Packet 3900 [2]

FIPS 140-2 Level 1 Validation

Hardware Version: 1100 [1] and 3900 [2]

Firmware Version: S-Cz8.2.0

Date: December 6th, 2019

Title: Acme Packet 1100 [1] and Acme Packet 3900 [2] Non-Proprietary Security Policy Date: December 6th, 2019 Author: Acumen Security, LLC Contributing Authors: Oracle Communications Engineering Oracle Security Evaluations – Global Product Security

Oracle Corporation World Headquarters 500 Oracle Parkway Redwood Shores, CA 94065 U.S.A. Worldwide Inquiries: Phone: +1.650.506.7000 Fax: +1.650.506.7200 oracle.com

Oracle is committed to developing practices and products that help protect the environment

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only and the contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or fitness for a particular purpose. Oracle specifically disclaim any liability with respect to this document and no contractual obligations are formed either directly or indirectly by this document. This document may reproduced or distributed whole and intact including this copyright notice.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Hardware and Software, Engineered to Work Together

TABLE OF CONTENT Section		F CONTENTS Title	Page
1.	Intr	oduction	1
1	1	Overview	1
1	2	Document Organization	1
2.	Acn	ne Packet 1100 & 3900	2
2	.1	Functional Overview	2
3.	Cry	ptographic Module Specification	3
З	.1	Definition of the Cryptographic Module	
3	.2	FIPS 140-2 Validation Scope	4
3	.3	Approved or Allowed Security Functions	4
3	.4	Non-Approved But Allowed Security Functions	6
З	.5	Non-Approved Security Functions and Services	6
З	.6	Vendor Affirmed Security Functions	7
4.	Мо	dule Ports and Interfaces	8
5.	Phy	sical Security	11
6.	Оре	erational Environment	
7.	Rol	es and Services	
7	'.1	Operator Services and Descriptions	
7	.2	Unauthenticated Services and Descriptions	
7	.3	Operator Authentication	
	7.3.	1 Crypto-Officer: Password-Based Authentication	16
	7.3.	2 User: Certificate-Based Authentication	17
7	.4	Key and CSP Management	17
8.	Self	-Tests	26
8	8.1	Power-Up Self-Tests	26
	8.1.	1 Firmware Integrity Test	26
	8.1.	2 Mocana Cryptographic Library Self-Tests	26
	8.1.	3 Oracle Acme Packet Cryptographic Library Self-tests	26
8	3.2	Critical Functions Self-Tests	
8	.3	Conditional Self-Tests	27
9.	Cry	pto-Officer and User Guidance	
g	.1	Secure Setup and Initialization	
g	.2	AES-GCM IV Construction/Usage	
10.	Ν	Nitigation of Other Attacks	
Acr	onyn	ns, Terms and Abbreviations	
Ref	eren	Ces	

List of Tables

Table 1: FIPS 140-2 Security Requirements	4
Table 2: Approved and Allowed Security Functions for Oracle Acme Packet Cryptographic Library	5
Table 3: Approved and Allowed Security Functions for Oracle Acme Packet Mocana Cryptographic Library	6
Table 4: Non-Approved but Allowed Security Functions	6
Table 5: Non-Approved Disallowed Functions	6
Table 6: Vendor Affirmed Functions	7
Table 7: Mapping of FIPS 140 Logical Interfaces to Physical Ports	8
Table 8: Physical Ports	9
Table 9: Service Summary	13
Table 10: Operator Services and Descriptions	16
Table 11: Operator Services and Description	16
Table 12: Crypto-Officer Authentication	17
Table 13: User Authentication	17
Table 14: CSP Table	25
Table 15: Acronyms, Terms, and Abbreviations	31
Table 16: References	32

List of Figures

Figure 1: Acme P	Packet 1100	
Figure 2: Acme P	Packet 3900	3
Figure 3: Acme P	Packet 1100 – Front View	
Figure 4: Acme P	Packet 1100 – Rear View	
Figure 5: Acme P	Packet 3900 – Front View	
Figure 6: Acme P	Packet 3900 – Rear View	

1. Introduction

1.1 Overview

This document is the Security Policy for the Acme Packet 1100 [1] and Acme Packet 3900 [2] appliances manufactured by Oracle Communications. Acme Packet 1100 [1] and Acme Packet 3900 [2] are also referred to as "the module" or "module". This Security Policy specifies the security rules under which the module shall operate to meet the requirements of FIPS 140-2 Level 1. It also describes how the Acme Packet 1100 [1] and Acme Packet 3900 [2] appliances function to meet the FIPS requirements, and the actions that operators must take to maintain the security of the modules.

This Security Policy describes the features and design of the Acme Packet 1100 [1] and Acme Packet 3900 [2] modules using the terminology contained in the FIPS 140-2 specification. *FIPS 140-2, Security Requirements for Cryptographic Modules* specifies the security requirements that will be satisfied by a cryptographic module utilized within a security system protecting sensitive but unclassified information. The NIST/CCCS Cryptographic Module Validation Program (CMVP) validates cryptographic modules to FIPS 140-2. Validated products are accepted by the Federal agencies of both the USA and Canada for the protection of sensitive or designated information.

1.2 Document Organization

The Security Policy document is one document in a FIPS 140-2 Submission Package. The Submission Package contains:

- Oracle Non-Proprietary Security Policy
- Oracle Vendor Evidence document
- Finite State Machine
- Entropy Assessment Document
- Other supporting documentation as additional references

With the exception of this Non-Proprietary Security Policy, the FIPS 140-2 Validation Documentation is proprietary to Oracle and is releasable only under appropriate non-disclosure agreements. For access to these documents, please contact Oracle.

2. Acme Packet 1100 & 3900

2.1 Functional Overview

The Acme Packet 1100 [1] and Acme Packet 3900 [2] appliances are specifically designed to meet the unique price performance and manageability requirements of the small to medium sized enterprise and remote office/ branch office. Ideal for small site border control and Session Initiation Protocol (SIP) trunking service termination applications, the Acme Packet 1100 [1] and Acme Packet 3900 [2] appliances deliver Oracle's industry leading ESBC capabilities in a small form factor appliance. With support for high availability (HA) configurations, TDM fallback, hardware assisted transcoding and Quality of Service (QoS) measurement, the Acme Packet 1100 [1] and Acme Packet 3900 [2] appliances are a natural choice when uncompromising reliability and performance are needed in an entry-level appliance. With models designed for the smallest branch office to the largest data center, the Acme Packet ESBC product family supports distributed, centralized, or hybrid SIP trunking topologies.

Acme Packet 1100 [1] and Acme Packet 3900 [2] appliances address the unique connectivity, security, and control challenges enterprises often encounter when extending real-time voice, video, and UC sessions to smaller sites. The appliances also help enterprises contain voice transport costs and overcome the unique regulatory compliance challenges associated with IP telephony. TDM fallback capabilities ensure continuous dial out service at remote sites in the event of WAN or SIP trunk failures. Stateful high availability configurations protect against link and hardware failures. An embedded browser based graphical user interface (GUI) simplifies setup and administration

3. Cryptographic Module Specification

3.1 Definition of the Cryptographic Module

The module consists of the Acme Packet 1100 [1] and Acme Packet 3900 [2] appliances running firmware version S-Cz8.2.0 on the 1100 and 3900 hardware platforms. The module is classified as a multi-chip standalone cryptographic module. The physical cryptographic boundary for the Acme Packet 1100 is defined as the module case and all components within the case. The physical cryptographic boundary for the Acme Packet 3900 is all components with exception of the removable power supplies.

A representation of the cryptographic boundary is defined below:

Figure 1: Acme Packet 1100

Figure 2: Acme Packet 3900

3.2 FIPS 140-2 Validation Scope

The Acme Packet 1100 and Acme Packet 3900 appliances are being validated to overall FIPS 140-2 Level 1 requirements. See Table 1 below.

The Acme Packet 1100 and 3900	Level
Cryptographic Module Specification	1
Cryptographic Module Ports and Interfaces	1
Roles and Services and Authentication	2
Finite State Machine Model	1
Physical Security	1
Operational Environment	N/A
Cryptographic Key Management	1
EMI/EMC	1
Self-Tests	1
Design Assurance	3
Mitigation of Other Attacks	N/A

Table 1: FIPS 140-2 Security Requirements

3.3 Approved or Allowed Security Functions

The Acme Packet 1100 [1] and Acme Packet 3900 [2] appliances contain the following FIPS Approved Algorithms listed in Table 2 (Oracle Acme Packet Cryptographic Library Acme Packet 1100 and 3900) and Table 3 (Oracle Acme Packet Mocana Cryptographic Library Acme Packet 1100 and 3900):

	Approved or Allowed Security Functions	Certificate		
Symmetric Algo	Symmetric Algorithms			
AES	CBC, ECB, CTR, GCM; Encrypt/Decrypt; Key Size = 128, 256			
Triple DES ¹	DES ¹ CBC; Encrypt/Decrypt; Key Size = 192 <u>C 14</u>			
Secure Hash Standard (SHS)				
SHS	SHA-1, SHA-256, SHA-384, SHA-512 C 140			
Data Authentication Code				
HMAC HMAC-SHA-1, HMAC-SHA-256, HMAC-SHA-384, HMAC-SHA-512 C 140				
Asymmetric Algorithms				

¹ Triple-DES was CAVP tested but is not utilized by the services associated with the Oracle Acme Packet Cryptographic Library.

RSA	RSA: FIPS186-4:	C 140
	186-4 KEY(gen): FIPS186-4_Random_e	
	ALG[ANSIX9.31] SIG(gen) (2048 SHA(1, 256 , 384)	
	ALG[ANSIX9.31] SIG(Ver) (2048 SHA(1, 256, 384))	
	RSA: FIPS186-2 :	
	ALG[ANSIX9.31] SIG(gen) (4096 SHA (256,384))	
	ALG[ANSIX9.31] SIG(Ver) (2048 SHA(1, 256, 384)), (4096 SHA (1, 256, 384))	
	RSA: FIPS186-4:	
	186-4 KEY(gen):	
	FIPS186-4_Random_e_ALG[ANSIX9.31] SIG(gen) (2048 SHA(1, 256 , 384), (4096 SHA	
	(256,384))	
	SIG(Ver) (2048 SHA(1, 256, 384))	
	RSA: FIPS186-2	
	Signature Verification 9.31:	
	Modulus lengths: 2048, 4096	
	SHAs: SHA-1, SHA-256,	
	SHA-384	
ECDSA	FIPS186-4	<u>C 140</u>
	PKG: CURVES (P-256, P-384 Testing Candidates)	
	SigGen: CURVES (P-256: (SHA-256, 384) P-384: (SHA-256, 384)	
	SigVer: CURVES (P-256: (SHA-256, 384) P-384: (SHA-256, 384))	
Random Numbe	r Generation	
DRBG	CTR_DRBG: [Prediction Resistance Tested: Not Enabled; BlockCipher_Use_df: (AES-256)] Hash_Based DRBG: [Prediction Resistance Tested: Not Enabled (SHA-1)	<u>C 140</u>
Key establishme	nt	
Key Derivation	SNMP KDF, SRTP KDF, TLS KDF	<u>C 140</u>
Key Transport	·	
ктѕ	KTS (AES Cert. # C 140 and HMAC Cert. # C 140; key establishment methodology provides 128 c encryption strength);	or 256 bits of

Table 2: Approved and Allowed Security Functions for Oracle Acme Packet Cryptographic Library

	Approved or Allowed Security Functions			
Symmetric Algo	Symmetric Algorithms			
AES	CBC; Encrypt/Decrypt; Key Size = 128, 256 <u>C 139</u>			
Triple DES ²	S ² CBC; Encrypt/Decrypt; Key Size = 192			
Secure Hash Standard (SHS)				
SHS	SHA-1, SHA-256, SHA-384, SHA-512 C 139			
Data Authentication Code				
HMAC	HMAC-SHA-1, HMAC-SHA-256, HMAC-SHA-384, HMAC-SHA-512	<u>C 139</u>		

² Per IG A.13 the same Triple-DES key shall not be used to encrypt more than 2^20 64-bit blocks of data.

Asymmetric Algorithms			
RSA RSA: 186-4: 186-4 KEY(gen): FIPS186-4_Random_e PKCS1.5: SIG(Ver) (1024 SHA(1); (2048 SHA (1)) C 13		<u>C 139</u>	
Key Establishment			
Key Derivation SSH KDF, IKEv1/IKEv2 KDF		<u>C 139</u>	
Key Transport			
KTS KTS (AES Cert. # C 139 and HMAC Cert. # C 139; key establishment methodology provides 128 or 256 bits of encryption strength);		r 256 bits of	

Table 3: Approved and Allowed Security Functions for Oracle Acme Packet Mocana Cryptographic Library

Note: P-384 for ECDSA was CAVP tested but is not utilized by the module's services.

3.4 Non-Approved But Allowed Security Functions

The following are considered non-Approved but allowed security functions:

Algorithm	Usage
EC-Diffie-Hellman CVL Certs. #C:140 and #C:139 key agreement; key establishment methodology provides of encryption strength	
Diffie-Hellman	CVL Certs. #C:140 and #C:139 key agreement; key establishment methodology provides 112 bits of encryption strength
RSA Key Wrapping	Key wrapping, key establishment methodology provides 112-bits of encryption strength
NDRNG	Used for seeding the NIST SP 800-90A Hash_DRBG and CTR_DRBG. Per FIPS 140-2 IG 7.14 scenario 1 (a).
	The module provides a minimum of 440 bits of entropy input for the Hash_DRBG. The input length for the CTR_DRBG depends on the size of the AES key used. If the AES key length is 128 bits, the seed size is 256 bits. If the AES key length is 256 bits, then the seed size is 384 bits.
MD5 (TLS 1.0/1.1/1.2)	MACing: HMAC MD5, Hashing: MD5

Table 4: Non-Approved but Allowed Security Functions

3.5 Non-Approved Security Functions and Services

The following services are considered non-Approved and may not be used in a FIPS-approved mode of operation:

Service	Non-Approved Security Functions		
SSH	Asymmetric Algorithms: DSA, Symmetric Algorithms: Rijndael, AES GCM, 192-Bit AES CTR		
SNMP	Hashing: MD5, Symmetric Algorithms: DES		
SRTP	Hashing: MD5		
IKEv1, IKEv2	Hashing: MD5, Symmetric Algorithms: 192-Bit AES CBC		
TLS 1.0/1.1/1.2	Symmetric Algorithms: DES		
Diffie-Hellman	Key agreement, less than 112 bits of encryption strength.		
RSA Key Wrapping	Key wrapping, less than 112 bits of encryption strength.		

Table 5: Non-Approved Disallowed Functions

Services listed in the previous table make use of non-compliant cryptographic algorithms. Use of these algorithms are prohibited in a FIPS-approved mode of operation. Some of these services may be allowed in FIPS mode when using allowed algorithms (as specified in section 9.1).

3.6 Vendor Affirmed Security Functions

The following services are considered non-Approved and may not be used in a FIPS-approved mode of operation:

Algorithm	Vendor Affirmed Security Functions		
СКБ	In accordance with FIPS 140-2 IG D.12, the cryptographic module performs Cryptographic Key Generation (CKG) as per SP800-133 (vendor affirmed). The resulting generated symmetric keys and the seed used in the asymmetric key generation are the unmodified output from an NIST SP 800-90A DRBG.		

Table 6: Vendor Affirmed Functions

4. Module Ports and Interfaces

The module interfaces can be categorized as follows the FIPS 140-2 Standard:

- Data Input Interface
- Data Output Interface
- Control Input interface
- Status Output Interface
- Power Interface

The table below provides a mapping of ports for the Acme Packet 1100 and Acme Packet 3900:

Logical Interface	Physical Port 1100	Physical Port 3900	Information Input/Output	
Data Input	Ethernet INT/EXT Ports TDM Ports	Ethernet SFP Ports P0,1,2,3	Cipher text	
	Ethernet MGT Port	Ethernet MGT	Plain text	
	USB Port	T1/E1 TDM ports		
		USB Port		
Data Output	Ethernet INT/EXT Ports	Ethernet SFP Ports	Cipher text	
	Ethernet MGT Port	T1/E1 TDM ports	Plain text	
	USB Port	Ethernet MGT		
		Ports USB Port		
Control Input	Console Port	Console Port	Plaintext control input via console port	
	Reset Pinhole	Reset Button	(configuration commands, operator passwords)	
	T1/E1 TDM port	Power Switch	(EMS control, CDR accounting, CLI management)	
	Ethernet MGT Port Ethernet INT/EXT Ports USB Port	T1/E1 TDM ports		
		Ethernet MGT Ports		
		Ethernet SFP Ports P0.1.2.3		
		USB Port		
Status Output	Console Port	Console Port	Plaintext status output via console port.	
	Ethernet MGT Ports	Ethernet MGT Ports	Cinhertext status output via network management	
	Ethernet INT/EXT	Ethernet SFP Ports	cipiertext status output via network management	
	Ports	P0,1,2,3		
	T1/E1 TDM port	T1/E1 TDM ports		
	LEDs	LEDs		
Power	Power Plug	Power Plug	N/A	

Table 7: Mapping of FIPS 140 Logical Interfaces to Physical Ports

The table below provides a mapping of ports for the Acme Packet 1100 and Acme Packet 3900:

Physical Interface	Number of Ports	Number of Ports	Description / Use
Console Port	1	1	 Provides console access to the module. The module supports only one active serial console connection at a time. Console port communication is used for administration and maintenance purposes from a central office (CO) location. Tasks conducted over a console port include: Configuring the boot process and management network Creating the initial connection to the module Accessing and using functionality available via the ACLI Performing in-lab system maintenance (services described below) Performing factory-reset to zeroize nyram and keys in Flash
USB Ports	2	2	This port is used for recovery only by Oracle. e.g. system re-installation after zeroization.
Management	1	3	Used for EMS control, CDR accounting, CLI management, and other
Ethernet ports			management functions
Signaling and Media Ethernet ports	2 (INT/EXT)	4 (SFP P0,1,2,3)	Provide network connectivity for signaling and media traffic. These ports are also used for incoming and outgoing data (voice) connections.
Reset Pinhole – Reset Button	1	1	Provides reset functionality
TDM Ports	4	4	Used to convert analog signals to digital signals

Table 8: Physical Ports

Figure 3: Acme Packet 1100 – Front View

Figure 4: Acme Packet 1100 – Rear View

Figure 5: Acme Packet 3900 – Front View

Figure 6: Acme Packet 3900 – Rear View

5. Physical Security

The module's physical embodiment is that of a multi-chip standalone device that meets Level 1 Physical Security requirements. The module is completely enclosed in a rack mountable chassis.

6. Operational Environment

The modules support a limited modifiable operational environment as per the FIPS 140-2 Section 4.6.

7. Roles and Services

As required by FIPS 140-2 Level 2, there are three roles (a Crypto Officer Role, User Role, and Unauthenticated Role) in the module that operators may assume. The module supports role-based authentication, and the respective services for each role are described in the following sections. The below table gives a high-level description of all services provided by the module and lists the roles allowed to invoke each service.

Operator Role	Summary of Services
User	 View configuration versions and system performance data
	 Test pattern rules, local policies, and session translations
	Display system alarms.
Crypto-Officer	 Allowed access to all system commands and configuration privileges
Unauthenticated	Request Authentication
	Show Status
	Initiate self-tests

Table 9: Service Summary

7.1 Operator Services and Descriptions

The below table provides a full description of all services provided by the module and lists the roles allowed to invoke each service.

U	СО	Service Name	Service Description	Keys and CSP(s)	Access Type(s)
	Х	Configure	Initializes the module for FIPS mode of	HMAC-SHA-256 key	R, W, X
			operation		
	Х	Zeroize CSP's	Clears keys/CSPs from memory and disk	All CSP's	Z
	Х	Firmware Update	Updates firmware	Firmware Integrity Key (RSA)	R, X
	Х	Bypass	Configure bypass using TCP or UDP and	HMAC-SHA-256 Bypass Key	R, W, X
			viewing bypass service status		

U	СО	Service Name	Service Description	Keys and CSP(s)	Access Type(s)
Х	Х	Decrypt	Decrypts a block of data Using AES or	TLS Session Keys (AES128)	Х
			Triple-DES in FIPS Mode	TLS Session Keys (AES256)	Х
				SSH Session Key (AES128)	Х
				SSH Session Key (AES256)	Х
				SRTP Session Key (AES-128)	Х
				SNMP Privacy Key (AES-128)	Х
				IKE Session Encryption Key (Triple-DES, AES-128, AES-256)	Х
				IPsec Session Encryption Key (Triple-DES, AES-128 or AES-	Х
				256)	
Х	Х	Encrypt	Encrypts a block of data Using AES or	TLS Session Keys (AES128)	Х
			Triple-DES in FIPS Mode	TLS Session Keys (AES256)	Х
				SSH Session Key (AES128)	Х
				SSH Session Key (AES256)	Х
				SRTP Session Key (AES-128)	Х
				SNMP Privacy Key (AES-128)	Х
				IKE Session Encryption Key (Triple-DES, AES-128, AES-256)	Х
				IPsec Session Encryption Key (Triple-DES, AES-128 or AES-	Х
				256)	
Х	Х	Generate Keys	Generates AES or Triple-DES for	TLS Session Keys (AES128)	R, W
			encrypt/decrypt operations.	TLS Session Keys (AES256)	R, W
				SSH Session Key (AES128)	R, W
				SSH Session Key (AES256)	R, W
				SRTP Session Key (AES-128)	R, W
				SNMP Privacy Key (AES-128)	R, W
				IKE Session Encryption Key (Triple-DES, AES-128, AES-256)	R <i>,</i> W
				IPsec Session Encryption Key (Triple-DES, AES-128 or AES-	R, W
				256)	

U	CO	Service Name	Service Description	Keys and CSP(s)	Access Type(s)
			Generates Diffie-Hellman, EC Diffie-	Diffie-Hellman Public Key (DH)	R, W
			Hellman, and RSA keys for key	Diffie-Hellman Private Key (DH)	R, W
			transport/key establishment.	EC Diffie-Hellman Public Key (ECDH)	R <i>,</i> W
				EC Diffie-Hellman Private Key (ECDH)	R, W
				SSH authentication private Key (RSA)	R <i>,</i> W
				SSH authentication public key (RSA)	R <i>,</i> W
				TLS authentication private Key (ECDSA/RSA)	R <i>,</i> W
				TLS authentication public key (ECDSA/RSA)	R <i>,</i> W
				TLS premaster secret,	R <i>,</i> W
				TLS Master secret,	R <i>,</i> W
				SRTP Master key	R <i>,</i> W
				IKE Private Key (RSA)	R <i>,</i> W
				IKE Public Key (RSA)	R <i>,</i> W
				SKEYSEED	R <i>,</i> W
				SKEYID	R <i>,</i> W
				SKEYID_d	R <i>,</i> W
Х	х	Verify	Used as part of the TLS, SSH protocol	SSH authentication private Key (RSA)	Х
			negotiation	SSH authentication public key (RSA)	Х
				TLS authentication private Key (ECDSA/RSA)	Х
				TLS authentication public key (ECDSA/RSA)	Х
				Diffie-Hellman Public Key (DH)	Х
				Diffie-Hellman Private Key (DH)	Х
				EC Diffie-Hellman Public Key (ECDH)	Х
				EC Diffie-Hellman Private Key (ECDH)	Х
Х	Х	Generate Seed	Generate an entropy_input for	DRBG Seed	R, W, X
			Hash_DRBG, CTR DRBG	DRBG Entropy Input String	
Х	Х	Generate Random	Generate random number.	DRBG C	R, W, X
		Number		DRBG V	R, W, X
				DRBG Key	R, W, X
Х	Х	HMAC	Generate HMAC	SNMP Authentication Key	Х
				SRTP Authentication Key	Х
				SSH Integrity Keys	Х
				TLS Integrity Keys	Х
				IPsec Session Authentication Key	Х
				IKE Session Authentication Key	Х
Х	Х	Generate Certificate	Generate certificate	Web UI Certificate	R, W, X

U	СО	Service Name	Service Description	Keys and CSP(s)	Access Type(s)
Х	Х	Authenticate	Authenticate Users	Operator Password	R, W, X

R – Read, W – Write, X – Execute, Z - Zeroize

Table 10: Operator Services and Descriptions

7.2 Unauthenticated Services and Descriptions

The below table provides a full description of the unauthenticated services provided by the module:

Service Name	Service Description
On-Demand Self-Test Initialization	This service initiates the FIPS self-test when requested.
Show Status	This service shows the operational status of the module
Factory Reset Service	This service restores the module to factory defaults.

Table 11: Operator Services and Description

Note: TLS, SRTP and SNMP protocols use the Oracle Acme Packet Cryptographic library. Note: SSH, IKEv2 and IPSec use the Oracle Acme Packet Mocana Cryptographic library.

7.3 Operator Authentication

7.3.1 Crypto-Officer: Password-Based Authentication

In FIPS-approved mode of operation, the module is accessed via Command Line Interface over the Console ports or via SSH, SNMPv3 or HTTPS over the Network Management Ports. Other than status functions available by viewing the Status LEDs, the services described are available only to authenticated operators.

Method	Probability of a Single Successful Random Attempt	Probability of a Successful Attempt within a Minute
Password-Based	Passwords must be a minimum of 8 characters. The	Passwords must be a minimum of 8 characters. The password can
(CO and User	password can consist of alphanumeric values, {a-z, A-Z, 0-9,	consist of alphanumeric values, {a-z, A-Z, 0-9, and special characters],
Authentication to	and special characters], yielding 94 choices per character.	yielding 94 choices per character Assuming 10 attempts per second via
management	The probability of a successful random attempt is 1/94^8,	a scripted or automatic attack, the probability of a success with
interfaces)	which is less than 1/1,000,000.	multiple attempts in a one-minute period is 600/94^8, which is less
		than 1/100,000.
SNMPv3 Passwords	Passwords must be a minimum of 8 characters. The	Passwords must be a minimum of 8 characters. The password can
	password can consist of alphanumeric values, {a-z, A-Z, 0-9,	consist of alphanumeric values, {a-z, A-Z, 0-9, and special characters],
	and special characters], yielding 94 choices per character.	yielding 94 choices per character. Assuming 10 attempts per second

Method	Probability of a Single Successful Random Attempt	Probability of a Successful Attempt within a Minute
	The probability of a successful random attempt is 1/94^8,	via a scripted or automatic attack, the probability of a success with
	which is less than 1/1,000,000.	multiple attempts in a one-minute period is 600/94^8, which is less
		than 1/100,000.
Password-Based	Passwords must be a minimum of 12 numeric characters. 0-	Passwords must be a minimum of 12 numeric characters. 0-9, yielding
(SIP Authentication	9, yielding 10 choices per character. The probability of a	10 choices per character. Assuming 10 attempts per second via a
Challenge	successful random attempt is 1/10^12, which is less than	scripted or automatic attack, the probability of a success with multiple
Response)	1/1,000,000.	attempts in a one-minute period is 600/10^12, which is less than
		1/100,000.

Table 12: Crypto-Officer Authentication

7.3.2 User: Certificate-Based Authentication

The module also supports authentication via digital certificates for the User Role as implemented by the TLS and SSH protocols. The module supports a public key-based authentication with 2048-bit RSA and 2048-bit ECDSA keys.

Method	Probability of a Single Successful Random Attempt	Probability of a Successful Attempt within a Minute	
Certificate-Based	A 2048-bit RSA/ECDSA key has at least 112-bits of equivalent	Assuming the module can support 60 authentication attempts in one	
	strength. The probability of a successful random attempt is 1	minute, the probability of a success with multiple consecutive attempts	
	/2^112, which is less than 1/1,000,000.	in a one-minute period is 60/2^112, which is less than 1/100,000.	

Table 13: User Authentication

7.4 Key and CSP Management

The following keys, cryptographic key components and other critical security parameters are contained in the module. No parts of the SSH, TLS, IKEv1/IKEv2, SNMP or SRTP protocols, other than the KDF, have been tested by the CAVP and CMVP.

CSP Name	Generation/Input	Establishment/ Export	Storage	Use
Operator Passwords	Generated by the crypto officer as per the module policy	Agreement: NA Entry: Manual entry via console or SSH management session	Non-Volatile RAM	Authentication of the crypto officer and user
		Output : Output as part of HA direct physical connection to another box		

CSP Name	Generation/Input	Establishment/ Export	Storage	Use
Firmware Integrity	Generated externally	Entry: RSA (2048 bits) entered	Flash	Public key used to verify the integrity of
Key (RSA)		as part of Firmware image		firmware and updates
		Output: Output as part of HA		
		direct physical connection to		
		another box		
DRBG Entropy Input	Generated internally from	Agreement: NA	Volatile RAM	Used in the random bit generation
String	hardware sources			process
		Entry: NA		
		Output: None		
DRBG Seed	Generated internally from	Agreement: NA	Volatile RAM	Entropy used in the random bit
	nardware sources	_		generation process
		Entry: NA		
		Output: None		
	Internal value used as part of	Agreement: NA	Volatile RAM	Used in the random bit generation
DIADGIC	SP 800-90a HASH_DRBG	Agreement. NA		process
	_	Entry [.] NA		
		Output: None		
DRBG V	Internal value used as part of	Agreement: NA	Volatile RAM	Used in the random bit generation
	SP 800-90A HASH_DRBG			process
		Entry: NA		
		Output: None		
DRBG V	Internal value used as part of	Agreement: NA	volatile RAM	Used in the random bit generation
	SP 800-90A CTR_DRBG	_		process
		Entry: NA		
		Output: None		

CSP Name	Generation/Input	Establishment/ Export	Storage	Use
DRBG Key	Internal value used as part of SP 800-90A CTR DRBG	Agreement: NA	Volatile RAM	Used in the random bit generation process
		Entry: NA		
		Output: None		
Diffie-Hellman Public	Internal generation by FIPS	Agreement: Diffie-Hellman	Volatile RAM	Used to derive the secret session key
Key (DH) 2048-bit	firmware	Entry: NA		during DH key agreement protocol
		Output: None		
Diffie-Hellman Private	Internal generation by FIPS-	Agreement: NA	Volatile RAM	Used to derive the secret session key
Key (DH) 224-bit	approved CTR_DRBG	Entry: NA		during DH key agreement protocol
		Output: None		
ECDH Public Key (P- 256)	Internal generation by FIPS-	Agreement: EC Diffie-Hellman.	Volatile RAM	Used to derive the secret session key
	firmware	Entry: NA		
		Output: None		
ECDH Private Key (P- 256)	Internal generation by FIPS-	Agreement: EC Diffie-Hellman.	Volatile RAM	Used to derive the secret session key during ECDH key agreement protocol
	firmware	Entry: NA		
		Output: None		
SNMP Privacy Key	NIST SP 800-135 KDF	Agreement: NIST SP 800-135	Volatile RAM	For encryption / decryption of SNMP
(AES-128)		KDF		session traffic
		Entry: NA		
		Output: Output as part of HA		
		direct physical connection to		

CSP Name	Generation/Input	Establishment/ Export	Storage	Use
SNMP Authentication	Internal generation by FIPS-	Agreement: NA	Volatile RAM	160-bit HMAC-SHA-1 for message
Key (HMAC-SHA1)	approved CTR_DRBG in firmware	Output: Output as part of HA		authentication and verification in
		direct physical connection to		SNMP
		another box		
SRTP Master Key	Internal generation by FIPS-	Agreement: Diffie-Hellman	Volatile RAM	Generation of SRTP session keys
(AES-128)	approved Hash_DRBG in			
	firmware	Entry: NA		
		Output: encrypted or output as		
		part of HA direct physical		
		connection to another box		
SRTP Session Key	NIST SP 800-135 KDF	Agreement: NIST SP 800-135	Volatile RAM	For encryption / decryption of SRTP
(AES-128)		KDF		session traffic
		Entry: NA		
		Output: Output as part of HA		
		direct physical connection to		
		another box		
SRTP Authentication	Derived from the master key	Agreement: NA	Volatile RAM	160-bit HMAC-SHA-1 for message
Key (HMAC-SHA1)				authentication and verification in SRTP
		Output: Output as part of HA		
		direct physical connection to		
		another box		
SSH Authentication	Internal generation by FIPS-	Agreement: RSA (2048/3072	Flash Memory	RSA private key for SSH authentication
Private Key (RSA)	approved Hash_DRBG	bits)		
		Output: Output as part of HA		
		airect physical connection to		

CSP Name	Generation/Input	Establishment/ Export	Storage	Use
SSH Authentication Public Key (RSA)	Internal generation by FIPS- approved Hash_DRBG	Agreement: RSA (2048/3072 bits)	Flash Memory	RSA public key for SSH authentication.
		Output: Output as part of HA direct physical connection to another box		
SSH Session Keys (AES-128, AES-256)	Derived via SSH KDF. Note: These keys are generated via SSH (IETF RFC 4251). This protocol enforces limits on the number of total possible encryption/decryption operations.	Agreement: Diffie-Hellman	Volatile RAM	Encryption and decryption of SSH session
SSH Integrity Keys (HMAC-SHA1)	Derived via SSH KDF.	Agreement: NA Output: Output as part of HA direct physical connection to another box	Volatile RAM	160-bit HMAC-SHA-1 for message authentication and verification in SSH
TLS Authentication Private Key (ECDSA/RSA)	Internal generation by FIPS- approved CTR_DRBG	Agreement: RSA (2048bits); ECDSA (P- 256/P-384) Output: Output as part of HA direct physical connection to another box	Flash Memory	ECDSA/RSA private key for TLS authentication
TLS Authentication Public Key (ECDSA/RSA)	Internal generation by FIPS- approved CTR_DRBG	Agreement: RSA (2048bits); ECDSA (P- 256/P-384) Output: Output as part of HA direct physical connection to another box	Volatile RAM	ECDSA/RSA public key for TLS authentication.

CSP Name	Generation/Input	Establishment/ Export	Storage	Use
TLS Premaster Secret (48 Bytes)	Internal generation by FIPS- approved CTR_DRBG in firmware	Agreement: NA Entry: Input during TLS negotiation Output: Output to peer encrypted by Public Key	Volatile RAM	Establishes TLS master secret
Bytes)	Master Secret	Agreement. NA		Used for computing the session key
TLS Session Keys (AES- 128, AES-256)	Derived from the TLS Master Secret Note: These keys are generated via TLS (IETF RFC 5246). This protocol enforces limits on the number of total possible encryption/decryption operations.	Agreement: RSA key transport	Volatile RAM	Used for encryption & decryption of TLS session
TLS Integrity Keys (HMAC-SHA1)	Internal generation by FIPS- approved CTR_DRBG in firmware	Agreement: NA Output: Output as part of HA direct physical connection to another box	Volatile RAM	160-bit HMAC-SHA-1 for message authentication and verification in TLS
SKEYSEED (20 Bytes)	Derived by using key derivation function defined in SP800-135 KDF (IKEv2).	Agreement: NIST SP 800-135 KDF Entry: NA Output: Output as part of HA direct physical connection to another box	Volatile RAM	160 bit shared secret known only to IKE peers. Used to derive IKE session keys

CSP Name	Generation/Input	Establishment/ Export	Storage	Use
SKEYID (20 Bytes)	Derived by using key derivation function defined in	Agreement: NIST SP 800-135 KDF	Volatile RAM	160 bit secret value used to derive other IKE secrets
	SP800-135 KDF (IKEv2).	Entry: NA		
		Output: Output as part of HA		
		direct physical connection to		
		another box		
SKEYID_d	Derived using SKEYID, Diffie	Agreement: NIST SP 800-135	Volatile RAM	160 bit secret value used to derive IKE
(20 Bytes)	Allman shared secret and	KDF		session keys
	through key derivation	Findman NIA		
	function defined in SP800-135	Entry: NA		
	KDF (IKEv1/IKEv2).	Output: Output as part of HA		
		direct physical connection to		
		another box		
IKE Pre-Shared Key	Preloaded by the Crypto	Agreement: NA	Flash Memory	Secret used to derive IKE skeyid when
	Officer.			using pre-shared secret authentication
		Output: Output as part of HA		
		direct physical connection to		
		another box		
IKE Session Encryption	Derived via key derivation	Agreement: NIST SP 800-135	Volatile RAM	Triple-DES, AES 128 and 256 key used
Key (Triple-DES, AES- 128, AES-256 bit)	function defined in SP800-135 KDF (IKEv1/IKEv2)	KDF		to encrypt data
		Entry: NA		
		Output: Output as part of HA		
		direct physical connection to		
		another box		

CSP Name	Generation/Input	Establishment/ Export	Storage	Use
IKE Session	Derived via key derivation	Agreement: NIST SP 800-135	Volatile RAM	512 bit key HMAC-SHA-512 used for
Authentication Key	function defined in SP800-135	KDF		data authentication
(HMAC-SHA-512)	KDF (IKEv1/IKEv2)			
		Entry: NA		
		Output: Output as part of HA		
		direct physical connection to		
		another box		
IKE Private Key	Internal generation by FIPS-	Agreement: RSA (2048 bits)	Volatile RAM	RSA 2048 bit key used to authenticate
(RSA 2048 bit)	approved CTR_DRBG in			the module to a peer during IKE
	firmware	Output: Output as part of HA		
		direct physical connection to		
		another box		
IKE Public Key	Internal generation by FIPS-	Agreement: RSA (2048 bits)	Volatile RAM	RSA 2048 bit public key for TLS
(RSA 2048-bit)	approved CTR_DRBG in			authentication
	firmware	Output: Output as part of HA		
		direct physical connection to		
		another box		
IPsec Session	Derived via a key derivation	Agreement: NIST SP 800-135	Volatile RAM	Triple-DES, AES 128 or 256 bit key used
Encryption Key	function defined in SP800-135	KDF		to encrypt data
(Triple-DES, AES-128	KDF (IKEV1/IKEV2).			
01 AL3-230 Dit)		Entry: NA		
		Output: Output as part of HA		
		direct physical connection to		
		another box		

CSP Name	Generation/Input	Establishment/ Export	Storage	Use
IPsec Session	Derived via a key derivation	Agreement: NIST SP 800-135	Volatile RAM	512 bit HMAC-SHA-512 key used for
Authentication Key	function defined in SP800-135	KDF		data authentication for IPsec traffic
(HMAC-SHA-512)	KDF (IKEv1/IKEv2).			
		Entry: NA		
		Output: Output as part of HA		
		direct physical connection to		
		another box		
Web UI Certificate	Internal generation by FIPS	Agreement: NA	Flash	Web server certificate
	approved CTR_DRBG in			
	firmware	Output: TLS session with		
		operator		
Bypass Key	HMAC-SHA-256 Bypass	Agreement: NA	Flash	256-bit HMAC-SHA-256 key used by
(HMAC-SHA-256)				Bypass service
		Output: NA		

Table 14: CSP Table

Note: When the module generates symmetric keys or seeds used for generating asymmetric keys, unmodified DRBG output is used as the symmetric key or as the seed for generating the asymmetric keys.

Note: All keys generated by the module use the direct output of a FIPS approved DRBG. This meets the requirements of SP 800-133.

8. Self-Tests

The modules include an array of self-tests that are run during startup and conditionally during operations to prevent any secure data from being released and to ensure all components are functioning correctly. Self-tests may be run on-demand by power cycling the module.

8.1 Power-Up Self-Tests

Acme Packet 1100 and Acme Packet 3900 appliances perform the following power-up self-tests when power is applied to the module. These self-tests require no inputs or actions from the operator:

8.1.1 Firmware Integrity Test

• Firmware Integrity Test (RSA 2048/SHA-256)

8.1.2 Mocana Cryptographic Library Self-Tests

- AES (Encrypt/Decrypt) Known Answer Test;
- Triple-DES (Encrypt/Decrypt) Known Answer Test;
- SHA-1 Known Answer Test;
- SHA-256 Known Answer Test;
- SHA-384 Known Answer Test;
- SHA-512 Known Answer Test;
- HMAC-SHA-1 Known Answer Test;
- HMAC-SHA-256 Known Answer Test;
- HMAC-SHA-384 Known Answer Test;
- HMAC-SHA-512 Known Answer Test; and
- RSA verify Known Answer Test.

8.1.3 Oracle Acme Packet Cryptographic Library Self-tests

- SHA-1 Known Answer Test;
- SHA-256 Known Answer Test;
- SHA-512 Known Answer Test;
- HMAC-SHA-1 Known Answer Test;
- HMAC-SHA-256 Known Answer Test;
- HMAC-SHA-384 Known Answer Test;
- HMAC-SHA-512 Known Answer Test;
- AES (Encrypt/Decrypt) Known Answer Test;
- AES GCM (Encrypt/Decrypt) Known Answer Test;
- SP 800-90A HASH DRBG Known Answer Test;
- SP 800-90A CTR DRBG Known Answer Test;
- RSA sign/verify Known Answer Test; and
- ECDSA sign/verify Known Answer Test.

When the module is in a power-up self-test state or error state, the data output interface is inhibited and remains inhibited until the module can transition into an operational state. While the CO may attempt to restart the module in an effort to clear an error, the module will require re-installation in the event of a hard error such as a failed self-test.

8.2 Critical Functions Self-Tests

Acme Packet 1100 [1] and Acme Packet 3900 [2] appliances perform the following critical self-tests. These critical function tests are performed for each SP 800-90A DRBG implemented within the module.

- SP 800-90A Instantiation Test
- SP 800-90A Generate Test
- SP 800-90A Reseed Test
- SP 800-90A Uninstantiate Test

8.3 Conditional Self-Tests

The module performs the following conditional self-tests when called by the module.

- Pair Wise consistency tests to verify that the asymmetric keys generated for RSA, and ECDSA work correctly by performing a sign and verify operation;
- Continuous Random Number Generator test to verify that the output of approved-DRBG is not the same as the previously generated value for both DRBGs;
- Continuous Random Number Generator test to verify that the output of entropy is not the same as the previously generated value;
- Bypass conditional test using HMAC-SHA-256 to ensure the mechanism governing media traffic is functioning correctly, and;
- Firmware Load test using a 2048-bit/SHA-256 RSA-Based integrity test to verify firmware to be loaded into the module.

9. Crypto-Officer and User Guidance

FIPS Mode is enabled by a license installed by Oracle, which will open/lock down features where appropriate. This section describes the configuration, maintenance, and administration of the cryptographic module.

9.1 Secure Setup and Initialization

The operator shall set up the device as defined in the Session Border Controller ACLI Configuration Guide. The Crypto-Officer shall also:

- Verify that the firmware version of the module is Version S-Cz8.2.0.
- A new account for the Crypto-Officer and User shall be created as part of Setup and Initialization process. Upon creation of the new CO and User accounts the "default" accounts shipped with the module shall be disabled.
- Ensure all traffic is encapsulated in a TLS, SSH, or SRTP tunnel as appropriate.
- HTTPS shall be enabled and configure the web server certificate prior to connecting to the WebUI over TLS.
- Ensure that SNMP V3 is configured with AES-128/HMAC only.
- Ensure IKEv1 and IKEv2 is using AES CBC or CTR mode for encryption and HMAC-SHA-512 for authentication
- Ensure SSH is configured to use AES CTR mode for encryption.
- Ensure SSH and IKEv1/IKEv2 only use Diffie-Hellman group 14 in FIPS approved mode.
- Ensure all management traffic is encapsulated within a trusted session (i.e., Telnet should not be used in FIPS mode of operation).
- Ensure RSA keys are at least 2048-bit keys for TLS, IKEv1/IKEv2. No 512-bit or 1024-bit keys can be used in FIPS mode of operation.
- All operator passwords must be a minimum of 8 characters in length.
- Ensure use of FIPS-approved algorithms for TLS:
 - o TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
 - TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
 - TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
 - TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
 - TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
 - TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
 - o TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
 - TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
 - o TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
 - TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
- Be aware that when configuring High Availability (HA), only a local HA configuration to a directly connected box via a physical cable over the management port is allowed in FIPS Approved Mode. Remote HA is not allowed in FIPS Approved mode.
- Be aware that HA configuration data that contains keys and CSP's must never be transported over an untrusted network. Ensure that the HA ports used for the transport of HA data (including keys and CSP's) are bound to a private IP address range during setup.
- Be aware that only the HA state transactions between the two devices over the direct physical connection are permitted over those dedicated ports.
- RADIUS and TACACS+ shall not be used in FIPS approved mode.
- Any firmware loaded into this module that is not shown on the module certificate, is out of the scope of this validation and requires a separate FIPS 140-2 validation.

Services in Table 5 of Section 3.5 make use non-compliant cryptographic algorithms. Use of these algorithms will place the module in a non-Approved mode of operation.

9.2 AES-GCM IV Construction/Usage

The AES-GCM IV is used in the following protocols:

• TLS: The TLS AES-GCM IV is generated in compliance with TLSv1.2 GCM cipher suites as specified in RFC 5288 and section 3.3.1 of NIST SP 800-52rev1. Per RFC 5246, when the nonce_explicit part of the IV exhausts the maximum number of possible values for a given session key, the module will trigger a handshake to establish a new encryption key.

In case the module's power is lost and then restored, the key used for the AES GCM encryption or decryption shall be redistributed.

Note: IKE/IPSec does not use AES GCM.

10. Mitigation of Other Attacks

The module does not mitigate attacks beyond those identified in FIPS 140-2.

Acronyms, Terms and Abbreviations

Term	Definition	
AES	Advanced Encryption Standard	
CMVP	Cryptographic Module Validation Program	
CDR	Call Data Record	
CSEC	Communications Security Establishment Canada	
CSP	Critical Security Parameter	
DHE	Diffie-Hellman Ephemeral	
DRBG	Deterministic Random Bit Generator	
ECDSA	Elliptic Curve Digital Signature Algorithm	
ESBC	Enterprise Session Border Controller	
EDC	Error Detection Code	
EMS	Enterprise Management Server	
НА	High Availability	
НМАС	(Keyed) Hash Message Authentication Code	
IKE	Internet Key Exchange	
КАТ	Known Answer Test	
KDF	Key Derivation Function	
LED	Light Emitting Diode	
MGT	Management	
NIST	National Institute of Standards and Technology	
NVRAM	Non-Volatile RAM	
POST	Power-On Self-Test	
PUB	Publication	
RAM	Random Access Memory	
ROM	Read Only Memory	
SHA	Secure Hash Algorithm	
SIP	Session Initiation Protocol	
SNMP	Simple Network Management Protocol	
SRTP	Secure Real Time Protocol	
TDM	Time Division Multiplexing	
TLS	Transport Layer Security	

Table 15: Acronyms, Terms, and Abbreviations

References

The FIPS 140-2 standard, and information on the CMVP, can be found at <u>http://csrc.nist.gov/groups/STM/cmvp/index.html</u>.

More information describing the module can be found on the Oracle web site at

https://www.oracle.com/industries/communications/enterprise/products/session-border-controller/index.html

This Security Policy contains non-proprietary information. All other documentation submitted for FIPS 140-2 conformance testing and validation is "Oracle - Proprietary" and is releasable only under appropriate non-disclosure agreements.

Document	Author	Title
FIPS PUB 140-2	NIST	FIPS PUB 140-2: Security Requirements for Cryptographic Modules
FIPS IG	NIST	Implementation Guidance for FIPS PUB 140-2 and the Cryptographic Module
		Validation Program
FIPS PUB 140-2 Annex A	NIST	FIPS 140-2 Annex A: Approved Security Functions
FIPS PUB 140-2 Annex B	NIST	FIPS 140-2 Annex B: Approved Protection Profiles
FIPS PUB 140-2 Annex C	NIST	FIPS 140-2 Annex C: Approved Random Number Generators
FIPS PUB 140-2 Annex D	NIST	FIPS 140-2 Annex D: Approved Key Establishment Techniques
DTR for FIPS PUB 140-2	NIST	Derived Test Requirements (DTR) for FIPS PUB 140-2, Security Requirements for
		Cryptographic Modules
NIST SP 800-67	NIST	Recommendation for the Triple Data Encryption Algorithm TDEA Block Cypher
FIPS PUB 197	NIST	Advanced Encryption Standard
FIPS PUB 198-1	NIST	The Keyed Hash Message Authentication Code (HMAC)
FIPS PUB 186-4	NIST	Digital Signature Standard (DSS)
FIPS PUB 180-4	NIST	Secure Hash Standard (SHS)
NIST SP 800-131A	NIST	Recommendation for the Transitioning of Cryptographic Algorithms and Key Sizes
PKCS#1	RSA	PKCS#1 v2.1: RSA Cryptographic Standard
	Laboratories	

Table 16: References

.