

FIPS 140-2 Non-Proprietary Security Policy

Acme Packet VME

FIPS 140-2 Level 1 Validation

Software Versions: S-Cz8.2.0 and S-Cz8.2.0p5

Date: November 27th, 2019

Title: Acme Packet VME Non-Proprietary Security Policy Date: November 27th, 2019 Author: Acumen Security, LLC. Contributing Authors: Oracle Communications Engineering Oracle Security Evaluations – Global Product Security

Oracle Corporation World Headquarters 500 Oracle Parkway Redwood Shores, CA 94065 U.S.A. Worldwide Inquiries: Phone: +1.650.506.7000 Fax: +1.650.506.7200 oracle.com

Oracle is committed to developing practices and products that help protect the environment

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only and the contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or fitness for a particular purpose. Oracle specifically disclaim any liability with respect to this document and no contractual obligations are formed either directly or indirectly by this document. This document may reproduced or distributed whole and intact including this copyright notice.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Hardware and Software, Engineered to Work Together

ORACLE

Table of Contents

1.	Int	roduction	1
	1.1	Overview	1
	1.2	Document Organization	1
2.	Ac	me Packet VME	2
	2.1	Functional Overview	2
3.	Cry	yptographic Module Specification	3
	3.1	Definition of the Cryptographic Module	3
	3.2	Definition of the Physical Cryptographic Boundary	3
	3.3	FIPS 140-2 Validation Scope	3
	3.4	Approved or Allowed Security Functions	4
	3.5	Non-Approved But Allowed Security Functions	6
	3.6	Non-Approved Security Functions and Services	6
	3.7	Vendor Affirmed Security Functions	7
4.	Mo	odule Ports and Interfaces	8
5.	Ph	ysical Security	9
6.	Ro	les and Services	10
	6.1	Operator Services and Descriptions	10
	6.2	Unauthenticated Services and Descriptions	13
	6.3	Operator Authentication	13
	6.3	.1 Crypto-Officer: Password-Based Authentication	
	6.3	.2 User: Password-Based Authentication	
	6.4	Key and CSP Management	14
7.	Se	lf-Tests	23
	7.1	Power-Up Self-Tests	23
	7.1	.1 Software integrity Test	23
	7.1	.2 Mocana Cryptographic Library Machine Edition (VME) Self-tests	23
	7.1	.3 Oracle Acme Packet Cryptographic Library Virtual Machine Edition (VME) Self-Tests	23
	7.2	Critical Functions Self-Tests	24
	7.3	Conditional Self-Tests	24
8.	Cry	ypto-Officer and User Guidance	25
	8.1	Secure Setup and Initialization	25
	8.2	AES-GCM IV Construction/Usage	26
9.	Mi	tigation of Other Attacks	27
10). Op	erational Environment	28
	10.1	Tested Environments	28
	10.2	Vendor Affirmed Environment	28
A	crony	ms, Terms and Abbreviations	29
R	eferei	nces	30

List of Tables

Table 1: FIPS 140-2 Security Requirements	
Table 2: Approved and Allowed Security Functions Acme Packet Cryptographic Library Vir	
Table 3: Approved and Allowed Security Functions Oracle Acme Packet Mocana Cryptog	raphic Library Virtual Machine Edition
(VME)	6
Table 4: Non-Approved but Allowed Security Functions	6
Table 5: Non-Approved Disallowed Functions	
Table 6: Vendor Affirmed Functions	7
Table 7: Mapping of FIPS 140 Logical interfaces to Logical Ports	
Table 8: Service Summary	
Table 9: Operator Services and Descriptions	
Table 10: Operator Services and Descriptions	
Table 11: Crypto-Officer and User Authentication	
Table 12: User Authentication	
Table 13: CSP Table	
Table 14: Operating environment	
Table 15: Vendor Affirmed Operating Environment	
Table 16: Acronyms	29
Table 17: References	

List of Figures

Figure 1: VME Logical Cryptographic Boundary	3
······································	-

1. Introduction

1.1 Overview

This document is the Security Policy for the Acme Packet VME developed by Oracle Communications. Acme Packet VME is also referred to as "the module" or "module". This Security Policy specifies the security rules under which the module shall operate to meet the requirements of FIPS 140-2 Level 1. It also describes how the Acme Packet VME functions to meet the FIPS requirements, and the actions that operators must take to maintain the security of the module.

This Security Policy describes the features and design of the Acme Packet VME module using the terminology contained in the FIPS 140-2 specification. FIPS 140-2, Security Requirements for Cryptographic Module specifies the security requirements that will be satisfied by a cryptographic module utilized within a security system protecting sensitive but unclassified information. The NIST/CCCS Cryptographic Module Validation Program (CMVP) validates cryptographic module to FIPS 140-2. Validated products are accepted by the Federal agencies of both the USA and Canada for the protection of sensitive or designated information.

1.2 Document Organization

The Security Policy document is one document in a FIPS 140-2 Submission Package. The Submission Package contains:

- Oracle Non-Proprietary Security Policy
- Oracle Vendor Evidence document
- Finite State Machine
- Entropy Assessment Document
- Other supporting documentation as additional references

With the exception of this Non-Proprietary Security Policy, the FIPS 140-2 Validation Documentation is proprietary to Oracle and is releasable only under appropriate non-disclosure agreements. For access to these documents, please contact Oracle.

2. Acme Packet VME

2.1 Functional Overview

The Acme Packet VME is specifically designed to meet the unique price performance and manageability requirements of the small to medium sized enterprise and remote office/ branch office. Ideal for small site border control and Session Initiation Protocol (SIP) trunking service termination applications, the Acme Packet VME deliver Oracle's industry leading ESBC capabilities in binary packaged executable that can be run in a virtual environment.

Acme Packet VME addresses the unique connectivity, security, and control challenges enterprises often encounter when extending real-time voice, video, and UC sessions to smaller sites. The appliance also helps enterprises contain voice transport costs and overcome the unique regulatory compliance challenges associated with IP telephony. An embedded browser based graphical user interface (GUI) simplifies setup and administration.

3. Cryptographic Module Specification

3.1 Definition of the Cryptographic Module

The logical cryptographic boundary of the module consists of the Oracle VME ISO image called "nnSCZ820-img.iso" for version S-Cz8.2.0 and "nnSCZ820p5-img.iso" for version S-Cz8.2.0p5.

Figure 1 shows the logical block diagram (red-dotted line) of the module executing in memory and its interactions with the hypervisor through the module's defined logical cryptographic boundary. The module interacts directly with the hypervisor, which runs directly on the host system.

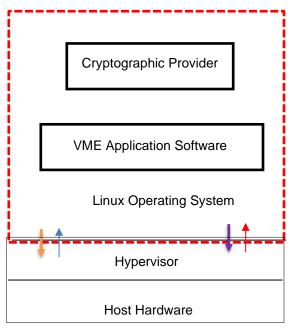


Figure 1: VME Logical Cryptographic Boundary

3.2 Definition of the Physical Cryptographic Boundary

The module consists of binary packaged into an executable that can be run in a virtual environment. The module is classified as a multi-chip standalone cryptographic module. The physical cryptographic boundary is defined as the hard enclosure of the host system on which it runs and no components are excluded from the requirements of FIPS PUB 140-2.

3.3 FIPS 140-2 Validation Scope

The Acme Packet VME appliances are being validated to overall FIPS 140-2 Level 1 requirements. See Table 1 below.

Security Requirements Section	Level
Cryptographic Module Specification	1
Cryptographic Module Ports and Interfaces	1
Roles and Services and Authentication	2
Finite State Machine Model	1
Physical Security	N/A
Operational Environment 1	
Cryptographic Key Management	1
EMI/EMC	1
Self-Tests 1	
Design Assurance	3
Mitigation of Other Attacks	N/A

Table 1: FIPS 140-2 Security Requirements

3.4 Approved or Allowed Security Functions

The Acme Packet VME contains the following FIPS Approved Algorithms listed in Table 2 (Oracle Acme Packet Cryptographic Library Acme Packet Virtual Machine Edition (VME)) and Table 3 (Oracle Acme Packet Mocana Cryptographic Library Acme Packet Virtual Machine Edition (VME)):

	Approved or Allowed Security Functions	Certificate
Symmetric Algorit	thms	
AES	CBC, ECB, CTR, GCM; Encrypt/Decrypt; Key Size = 128, 256	<u>C 144</u>
Triple DES ¹	CBC; Encrypt/Decrypt; Key Size = 192	<u>C 144</u>
Secure Hash Stan	dard (SHS)	
SHS	SHA-1, SHA-256, SHA-384, SHA-512	<u>C 144</u>
Data Authenticat	ion Code	
HMAC	HMAC-SHA-1, HMAC-SHA-256, HMAC-SHA-384, HMAC-SHA-512	<u>C 144</u>
Asymmetric Algoi	rithms	I

¹ Triple-DES was CAVP tested but is not utilized by the services associated with the Oracle Acme Packet Cryptographic Library.

RSA	RSA: FIPS186-4:	C 144
-	186-4 KEY(gen): FIPS186-4 Random e	
	ALG[ANSIX9.31] SIG(gen) (2048 SHA(1, 256 , 384))	
	ALG[ANSIX9.31] SIG(Ver) (2048 SHA(1, 256, 384))	
	RSA: FIPS186-2 :	
	ALG[ANSIX9.31] SIG(gen) (4096 SHA (256,384))	
	ALG[ANSIX9.31] SIG(Ver) (2048 SHA(1, 256, 384)), (4096 SHA (1, 256, 384))	
	RSA: FIPS186-4:	
	186-4 KEY(gen):	
	FIPS186-4_Random_e_ALG[ANSIX9.31] SIG(gen) (2048 SHA(1, 256 , 384), (4096	
	SHA (256,384))	
	SIG(Ver) (2048 SHA(1, 256, 384))	
	RSA: FIPS186-2	
	Signature Verification 9.31:	
	Modulus lengths: 2048, 4096	
	SHAs: SHA-1, SHA-256, SHA-384	
ECDSA	Firmware: FIPS186-4	<u>C 144</u>
	PKG: CURVES (P-256, P-384 Testing Candidates)	
	SigGen: CURVES (P-256: (SHA-256, 384) P-384: (SHA-256, 384)	
	SigVer: CURVES (P-256: (SHA-256, 384) P-384: (SHA-256, 384))	
Random Number G	eneration	
DRBG	CTR_DRBG: [Prediction Resistance Tested: Not Enabled; BlockCipher_Use_df:	<u>C 144</u>
	(AES-256)]	
	Hash_Based DRBG: [Prediction Resistance Tested: Not Enabled (SHA-1)	
Key establishment	· · · ·	
Key Derivation	SNMP KDF, SRTP KDF, TLS KDF (TLS Version: v1.0/1.1, v1.2)	<u>C 144</u>
Key Transport	· · · ·	
KTS	KTS (AES Cert. # C144 and HMAC Cert. # C144; key establishment methodology pro	vides 128 or
	256 bits of encryption strength);	

Table 2: Approved and Allowed Security Functions Acme Packet Cryptographic Library Virtual Machine Edition (VME)

	Approved or Allowed Security Functions	Certificate
Symmetric Algorit	hms	
AES	CBC; Encrypt/Decrypt; Key Size = 128, 256	<u>C 142</u>
Triple DES ²	CBC; Encrypt/Decrypt; Key Size = 192	<u>C 142</u>
Secure Hash Stan	dard (SHS)	
SHS	SHA-1, SHA-256, SHA-384, SHA-512	<u>C 142</u>
Data Authenticat	ion Code	
HMAC	HMAC-SHA-1, HMAC-SHA-256, HMAC-SHA-384, HMAC-SHA-512	<u>C 142</u>

² Per IG A.13 the same Triple-DES key shall not be used to encrypt more than 2^20 64-bit blocks of data.

Asymmetric Algorithms		
RSA	RSA: 186-4: 186-4 KEY(gen): FIPS186-4_Random_e PKCS1.5: SIG(Ver) (1024 SHA(1); (2048 SHA (1))	<u>C 142</u>
Key Establishment		
Key Derivation	SSH KDF, IKEv1/IKEv2 KDF	<u>C 142</u>
Key Transport	· · · · · · · · · · · · · · · · · · ·	
ктѕ	KTS (AES Cert. # C142 and HMAC Cert. # C142; key establishment methodology provides 128 or 256 bits of encryption strength);	

Table 3: Approved and Allowed Security Functions Oracle Acme Packet Mocana Cryptographic Library Virtual Machine Edition (VME)

Note: P-384 for ECDSA was CAVP tested but is not utilized by the module's services.

3.5 Non-Approved But Allowed Security Functions

The following are considered non-Approved but allowed security functions:

Algorithm	Usage
EC-Diffie-Hellman	CVL Certs. #C:144 and #C:142, key agreement, key establishment methodology provides 128 or 192-bits of encryption strength.
Diffie-Hellman	CVL Certs. #C:144 and #C:142, key agreement, key establishment methodology provides 112-bits of encryption strength.
RSA Key Wrapping	Key wrapping, key establishment methodology provides 112-bits of encryption strength.
NDRNG	Used for seeding the NIST SP 800-90A Hash_DRBG and CTR_DRBG. Per FIPS 140-2 IG 7.14 scenario 1 (a).
	The module provides a minimum of 440 bits of entropy input for the Hash_DRBG. The input length for the CTR_DRBG depends on the size of the AES key used. If the AES key length is 128 bits, the seed size is 256 bits. If the AES key length is 256 bits, then the seed size is 384 bits.
MD5 (TLS 1.0/1.1/1.2)	MACing: HMAC MD5, Hashing: MD5

Table 4: Non-Approved but Allowed Security Functions

3.6 Non-Approved Security Functions and Services

The following services are considered non-Approved and may not be used in a FIPS-approved mode of operation:

Service	Non-Approved Security Functions
SSH	Asymmetric Algorithms: DSA, Symmetric Algorithms: Rijndael, AES GCM, 192-Bit AES CTR
SNMP	Hashing: MD5, Symmetric Algorithms: DES
SRTP	Hashing: MD5
IKEv1, IKEv2	Hashing: MD5, Symmetric Algorithms: 192-Bit AES CBC
TLS 1.0/1.1/1.2	Symmetric Algorithms: DES

ORACLE

Diffie-Hellman	Key agreement, less than 112 bits of encryption strength.
RSA Key Wrapping	Key wrapping, less than 112 bits of encryption strength.

Table 5: Non-Approved Disallowed Functions

Services listed in the previous table make use of non-compliant cryptographic algorithms. Use of these algorithms is prohibited in a FIPS-approved mode of operation. Some of these services may be allowed in FIPS mode when using allowed algorithms (as specified in section 8.1)

3.7 Vendor Affirmed Security Functions

The following services are considered non-Approved and may not be used in a FIPS-approved mode of operation:

Algorithm	Vendor Affirmed Security Functions
СКС	In accordance with FIPS 140-2 IG D.12, the cryptographic module performs Cryptographic Key Generation (CKG) as per SP800-133 (vendor affirmed). The resulting generated symmetric keys and the seed used in the asymmetric key generation are the unmodified output from an NIST SP 800-90A DRBG.

Table 6: Vendor Affirmed Functions

4. Module Ports and Interfaces

Oracle Virtual Machine edition is a virtualized cryptographic module that meets the overall Level 1 FIPS 140-2 requirements. The module interfaces can be categorized as follows:

- Data Input Interface
- Data Output Interface
- Control Input interface
- Status Output Interface
- Power Interface

The table below provides a mapping of ports for the Oracle VME:

FIPS 140 Interface	Physical Port	VM Port	Logical Interface	Information Input/Output
Data Input	Host System Ethernet (10/100/1000) Ports, Host System USB Ports.	 Virtual Ethernet Ports, Virtual USB Ports. 	API Input Data and Parameters.	Cipher text Plain text
Data Output	Host System Ethernet (10/100/1000) Ports, Host System USB Ports.	 Virtual Ethernet Ports, Virtual USB Ports. 	API Output Data and Parameters.	Cipher text Plain Text
Control Input	Host System Ethernet (10/100/1000) Ports, Host System Serial Ports.	 Virtual Ethernet Ports, Virtual Serial Ports. 	API Command Input Parameters.	 Plaintext control input via console port (configuration commands, operator passwords) Ciphertext control input via network management (EMS control, CDR accounting, CLI management)
Status Output	Host System Ethernet (10/100/1000) Ports, Host System Serial Ports.	 Virtual Ethernet Ports, Virtual Serial Ports. 	API Status Output Parameters.	Plaintext Status Output via Console Port. Ciphertext Status Output via network management.
Power	Host Power Plug	NA	N/A	N/A

Table 7: Mapping of FIPS 140 Logical interfaces to Logical Ports

5. Physical Security

The module is comprised of software only and thus does not claim any physical security.

6. Roles and Services

As required by FIPS 140-2 Level 1, there are three roles (a Crypto Officer Role, User Role, and Unauthenticated Role) in the module that operators may assume. The module supports role-based authentication, and the respective services for each role are described in the following sections. The below table gives a high-level description of all services provided by the module and lists the roles allowed to invoke each service.

Operator Role	Summary of Services	
User	View configuration versions and system performance data	
	Test pattern rules, local policies, and session translations	
	Display system alarms.	
Crypto-Officer	Allowed access to all system commands and configuration privileges	
Unauthenticated	Request Authentication	
	Show Status	
	Initiate self-tests	

Table 8: Service Summary

6.1 Operator Services and Descriptions

The below table provides a full description of all services provided by the module and lists the roles allowed to invoke each service.

U	СО	Service Name	Service Description	Keys and CSP(s)	Access Type(s)
	Х	Configure	Initializes the module for FIPS mode of	Initializes the module for FIPS mode of HMAC-SHA-256 key	
			operation		
	Х	Zeroize CSP's	Clears keys/CSPs from memory and disk	All CSP's	Z
	Х	Software Update	Updates software	Software Integrity Key (RSA)	R, X
	Х	Bypass Configure bypass using TCP or UDP and HI		HMAC-SHA-256 Bypass Key	R, W, X
			viewing bypass service status		

U	СО	Service Name	Service Description	Keys and CSP(s)	Access Type(s)
Х	Х	Decrypt	Decrypts a block of data Using AES or Triple-	TLS Session Keys (AES128)	Х
			DES in FIPS Mode	TLS Session Keys (AES256)	Х
				SSH Session Key (AES128)	Х
				SSH Session Key (AES256)	Х
				SRTP Session Key (AES-128)	Х
				SNMP Privacy Key (AES-128)	Х
				IKE Session Encryption Key (Triple-DES, AES-128, AES-	Х
				256)	
				IPsec Session Encryption Key (Triple-DES, AES-128 or	Х
				AES-256)	
Х	Х	Encrypt	Encrypts a block of data Using AES or Triple-	TLS Session Keys (AES128)	Х
			DES, in FIPS Mode	TLS Session Keys (AES256)	Х
				SSH Session Key (AES128)	Х
				SSH Session Key (AES256)	Х
				SRTP Session Key (AES-128)	Х
				SNMP Privacy Key (AES-128)	Х
				IKE Session Encryption Key (Triple-DES, AES-128, AES-	Х
				256)	
				IPsec Session Encryption Key (Triple-DES, AES-128 or	Х
				AES-256)	
Х	Х	Generate Keys	Generates AES or Triple-DES for	TLS Session Keys (AES128)	R, W
			encrypt/decrypt operations.	TLS Session Keys (AES256)	R, W
				SSH Session Key (AES128)	R, W
				SSH Session Key (AES256)	R, W
				SRTP Session Key (AES-128)	R, W
				SNMP Privacy Key (AES-128)	R, W
				IKE Session Encryption Key (Triple-DES, AES-128, AES-	R, W
				256)	
				IPsec Session Encryption Key (Triple-DES, AES-128 or	R, W
				AES-256)	

U	СО	Service Name	Service Description	Keys and CSP(s)	Access Type(s)
			Generates Diffie-Hellman, EC Diffie-Hellman,	Diffie-Hellman Public Key (DH)	R, W
			and RSA keys for key transport/key	Diffie-Hellman Private Key (DH)	R, W
			establishment.	EC Diffie-Hellman Public Key (ECDH)	R, W
				EC Diffie-Hellman Private Key (ECDH)	R, W
				SSH authentication private Key (RSA)	R, W
				SSH authentication public key (RSA)	R, W
				TLS authentication private Key (ECDSA/RSA)	R, W
				TLS authentication public key (ECDSA/RSA)	R, W
				TLS premaster secret,	R <i>,</i> W
				TLS Master secret,	R, W
				SRTP Master key	R <i>,</i> W
				IKE Private Key (RSA)	R <i>,</i> W
				IKE Public Key (RSA)	R <i>,</i> W
				SKEYSEED	R <i>,</i> W
				SKEYID	R <i>,</i> W
				SKEYID_d	R, W
Х	Х	Verify	Used as part of the TLS, SSH protocol	SSH authentication private Key (RSA)	Х
			negotiation	SSH authentication public key (RSA)	Х
				TLS authentication private Key (ECDSA/RSA)	Х
				TLS authentication public key (ECDSA/RSA)	Х
				Diffie-Hellman Public Key (DH)	Х
				Diffie-Hellman Private Key (DH)	Х
				EC Diffie-Hellman Public Key (ECDH)	Х
				EC Diffie-Hellman Private Key (ECDH)	Х
Х	Х	Generate Seed	Generate an entropy_input for Hash_DRBG,	DRBG Seed	R, W, X
			CTR DRBG	DRBG Entropy Input String	
Х	Х	Generate Random	Generate random number.	DRBG C	R, W, X
		Number		DRBG V	R, W, X
				DRBG Key	R, W, X
Х	Х	HMAC	Generate HMAC	SNMP Authentication Key	Х
				SRTP Authentication Key	Х
				SSH Integrity Keys	Х
				TLS Integrity Keys	Х
				IPsec Session Authentication Key	Х
				IKE Session Authentication Key	Х
Х	Х	Generate Certificate	Generate certificate	Web UI Certificate	R, W, X

U	СО	Service Name	Service Description	Keys and CSP(s)	Access Type(s)
Х	Х	Authenticate	Authenticate Users	Operator Password	R, W, X

R – Read, W – Write, X – Execute, Z - Zeroize

 Table 9: Operator Services and Descriptions

Note: TLS, SRTP and SNMP protocols use the Oracle Acme Packet Cryptographic library. Note: SSH, IKEv2 and IPSec use the Oracle Acme Packet Mocana Cryptographic library.

6.2 Unauthenticated Services and Descriptions

The below table provides a full description of the unauthenticated services provided by the module:

Service Name	Service Description	
On-Demand Self-Test	This service initiates the FIPS self-test when requested.	
Initialization		
Show Status	This service shows the operational status of the module	
Factory Reset Service	Factory Reset Service - This service restores the module to factory defaults	

Table 10: Operator Services and Descriptions

6.3 Operator Authentication

6.3.1 Crypto-Officer: Password-Based Authentication

In FIPS-approved mode of operation, the module is accessed via Command Line Interface over the Console ports or via SSH, SNMPv3 or HTTPS over the Network Management Ports. Other than status functions available by viewing the Status LEDs, the services described are available only to authenticated operators.

Method	Probability of a Single Successful Random Attempt	Probability of a Successful Attempt within a Minute
Password-	Passwords must be a minimum of 8 characters. The	Passwords must be a minimum of 8 characters. The password can
Based	password can consist of alphanumeric values, {a-z, A-Z, 0-9,	consist of alphanumeric values, {a-z, A-Z, 0-9, and special characters],
(CO and User	and special characters], yielding 94 choices per character.	yielding 94 choices per character Assuming 10 attempts per second via
Authentication)	The probability of a successful random attempt is 1/94^8,	a scripted or automatic attack, the probability of a success with
	which is less than 1/1,000,000.	multiple attempts in a one-minute period is 600/94^8, which is less
		than 1/100,000.

Method	Probability of a Single Successful Random Attempt	Probability of a Successful Attempt within a Minute
SNMPv3	Passwords must be a minimum of 8 characters. The	Passwords must be a minimum of 8 characters. The password can
Passwords	password can consist of alphanumeric values, {a-z, A-Z, 0-9, and special characters], yielding 94 choices per character. The probability of a successful random attempt is 1/94^8, which is less than 1/1,000,000.	consist of alphanumeric values, {a-z, A-Z, 0-9, and special characters], yielding 94 choices per character. Assuming 10 attempts per second via a scripted or automatic attack, the probability of a success with multiple attempts in a one-minute period is 600/94^8, which is less than 1/100,000.
Password- Based (Challenge Response)	Passwords must be a minimum of 12 numeric characters. 0- 9, yielding 10 choices per character. The probability of a successful random attempt is 1/10^12, which is less than 1/1,000,000.	Passwords must be a minimum of 12 numeric characters. 0-9, yielding 10 choices per character. Assuming 10 attempts per second via a scripted or automatic attack, the probability of a success with multiple attempts in a one-minute period is 600/10^12, which is less than 1/100,000.

Table 11: Crypto-Officer and User Authentication

6.3.2 User: Password-Based Authentication

The module also supports authentication via digital certificates for the User Role as implemented by the TLS and SSH protocols. The module supports a public key-based authentication with 2048-bit RSA and 2048-bit ECDSA keys.

Method	Probability of a Single Successful Random Attempt	Probability of a Successful Attempt within a Minute	
Certificate-Based	A 2048-bit RSA/ECDSA key has at least 112-bits of equivalent	Assuming the module can support 60 authentication attempts in one	
	strength. The probability of a successful random attempt is 1	minute, the probability of a success with multiple consecutive attempts	
	/2^112, which is less than 1/1,000,000.	in a one-minute period is 60/2^112, which is less than 1/100,000.	

Table 12: User Authentication

6.4 Key and CSP Management

The following keys, cryptographic key components and other critical security parameters are contained in the module. No parts of the SSH, TLS, IKEv1/IKEv2, SNMP or SRTP protocols, other than the KDF, have been tested by the CAVP and CMVP.

CSP Name	Generation/Input	Establishment/ Export	Storage	Use
Operator Passwords	Generated by the crypto	Agreement: NA	Virtual Hard Disk	Authentication of the crypto officer and
	officer as per the module			user

CSP Name	Generation/Input	Establishment/ Export	Storage	Use
	policy	Entry: Manual entry via console		
		or SSH management session		
		Output: Output as part of HA		
		direct physical connection to		
		another box		
Software Integrity Key	Generated externally	Entry: RSA (2048 bits) entered	Virtual Hard Disk	Public key used to verify the integrity of
(RSA)		as part of software image		software and updates
		Output: Output as part of HA		
		direct physical connection to		
		another box		
DRBG Entropy Input	Generated internally	Agreement: NA	Volatile RAM	Used in the random bit generation
String	from hardware sources			process
		Entry: NA		
		Output: None		
DRBG Seed	Generated internally	Agreement: NA	Volatile RAM	Entropy used in the random bit
	from hardware sources			generation process
		Entry: NA		
		Output: None		
DRBG C	Internal value used as	Agreement: NA	Volatile RAM	Used in the random bit generation
	part of SP 800-90a			process
	HASH_DRBG	Entry: NA		
		Output: None		
DRBG V	Internal value used as	Agreement: NA	Volatile RAM	Used in the random bit generation
	part of SP 800-90a			process
	HASH_DRBG	Entry: NA		
		Output: Nono		
		Output: None		

CSP Name	Generation/Input	Establishment/ Export	Storage	Use
DRBG V	Internal value used as	Agreement: NA	Volatile RAM	Used in the random bit generation
	part of SP 800-90a			process
	CTR_DRBG	Entry: NA		
		Output: None		
DRBG Key	Internal value used as	Agreement: NA	Volatile RAM	Used in the random bit generation
	part of SP 800-90a			process
	CTR_DRBG	Entry: NA		
		Output: None		
Diffie-Hellman Public	Internal generation by	Agreement: Diffie-Hellman	Volatile RAM	Used to derive the secret session key
Key (DH) 2048-bit	FIPS-approved CTR_DRBG	Entry: NA		during DH key agreement protocol
Diffie-Hellman Private	Internal generation by	Output: None	Volatile RAM	Used to derive the secret session key
Key (DH) 224-bit	FIPS-approved CTR DRBG	Agreement: Diffie-Hellman		during DH key agreement protocol
Key (D11) 224-bit				
		Entry: NA		
		Output: None		
ECDH Public Key (P-	Internal generation by	Agreement: EC Diffie-Hellman.	Volatile RAM	Used to derive the secret session key
256)	FIPS-approved CTR_DRBG			during ECDH key agreement protocol
		Future NA		
		Entry: NA		
		Output: None		
ECDH Private Key (P-	Internal generation by	Agreement: EC Diffie-Hellman.	Volatile RAM	Used to derive the secret session key
256)	FIPS-approved CTR_DRBG			during ECDH key agreement protocol
		Entry: NA		
		Output: None		
SNMP Privacy Key	NIST SP 800-135 KDF	Agreement: NIST SP 800-135	Volatile RAM	For encryption / decryption of SNMP
(AES-128)		KDF		session traffic

CSP Name	Generation/Input	Establishment/ Export	Storage	Use
		Entry: NA		
		Output: Output as part of HA		
		direct physical connection to		
SNMP Authentication	Internal generation by	another box Agreement: NA	Volatile RAM	160-bit HMAC-SHA-512 for message
Key (HMAC-SHA512)	FIPS-approved CTR_DRBG			authentication and verification in
		Output: Output as part of HA		SNMP
		direct physical connection to		
		another box		
SRTP Master Key (AES- 128)	Internal generation by FIPS-approved	Agreement: Diffie-Hellman	Volatile RAM	Generation of SRTP session keys
120)	Hash_DRBG	Entry: NA		
		Output: encrypted or output as		
		part of HA direct physical connection to another box		
SRTP Session Key (AES-	NIST SP 800-135 KDF	Agreement: NIST SP 800-135	Volatile RAM	For encryption / decryption of SRTP
128)		KDF		session traffic
		Entry: NA		
		Output : Output as part of HA		
		direct physical connection to		
		another box		
SRTP Authentication Key (HMAC-SHA1)	Derived from the master key	Agreement: NA	Volatile RAM	160-bit HMAC-SHA-1 for message authentication and verification in SRTP
		Output: Output as part of HA		
		direct physical connection to		
		another box		
SSH Authentication	Internal generation by	Agreement: RSA (2048 bits)	Virtual Hard Disk	RSA private key for SSH authentication
Private Key (RSA)	FIPS-approved CTR_DRBG		1	

CSP Name	Generation/Input	Establishment/ Export	Storage	Use
		Output: Output as part of HA		
		direct physical connection to		
		another box		
SSH Authentication	Internal generation by	Agreement: RSA (2048 bits)	Virtual Hard Disk	RSA public key for SSH authentication.
Public Key (RSA)	FIPS-approved CTR_DRBG			
		Output: Output as part of HA		
		direct physical connection to		
		another box		
SSH Session Keys (AES- 128, AES-256)	Derived via SSH KDF.	Agreement: Diffie-Hellman	Volatile RAM	Encryption and decryption of SSH session
	Note: These keys are			
	generated via SSH (IETF			
	RFC 4251). This protocol			
	enforces limits on the			
	number of total possible			
	encryption/decryption			
	operations.			
SSH Integrity Keys (HMAC-SHA2-256)	Derived via SSH KDF.	Agreement: NA	Volatile RAM	160-bit HMAC-SHA2-256 for message authentication and verification in SSH
		Output: Output as part of HA		
		direct physical connection to		
		another box		
TLS Authentication	Internal generation by	Agreement: RSA (2048bits);	Virtual Hard Disk	ECDSA/RSA private key for TLS
Private Key	FIPS-approved CTR DRBG	ECDSA (P- 256/P-384)		authentication
(ECDSA/RSA)	This approved em_black			
		Output: Output as part of HA		
		direct physical connection to		
		another box		
TLS Authentication	Internal generation by	Agreement: RSA (2048bits);	Volatile RAM	ECDSA/RSA public key for TLS
Public Key	FIPS-approved CTR_DRBG	ECDSA (P- 256/P-384)		authentication.
(ECDSA/RSA)				
		Output: Output as part of HA		
		direct physical connection to		
		another box		
TLS Premaster Secret	Internal generation by	Agreement: NA	Volatile RAM	Establishes TLS master secret
(48 Bytes)	FIPS-approved CTR_DRBG			

CSP Name	Generation/Input	Establishment/ Export	Storage	Use
		Entry: Input during TLS		
		negotiation		
		Output: Output to peer		
		encrypted by Public Key		
TLS Master Secret (48	Derived from the TLS Pre-	Agreement: NA	Volatile RAM	Used for computing the Session Key
Bytes)	Master Secret			
TLS Session Keys (AES-	Derived from the TLS	Agreement: RSA key transport	Volatile RAM	Used for encryption & decryption of
128, AES-256)	Master Secret			TLS session
	Note: These keys are			
	generated via TLS (IETF			
	RFC 5246). This protocol			
	enforces limits on the			
	number of total possible			
	encryption/decryption			
TLC Integrity Kove	operations. Internal generation by	Agreement: NA	Volatile RAM	160-bit HMAC-SHA256 or HMAC-
TLS Integrity Keys (HMAC-SHA256 or	FIPS-approved CTR DRBG	Agreement. NA		SHA384 for message authentication
HMAC-SHA384)		Output: Output as part of HA		and verification in TLS
		direct physical connection to		
		another box		
SKEYSEED	Derived by using key	Agreement: NIST SP 800-135	Volatile RAM	160 bit shared secret known only to IKE
	derivation function	KDF		peers. Used to derive IKE session keys
	defined in SP800-135 KDF			
	(IKEv2).	Entry: NA		
		Output : Output as part of HA		
		direct physical connection to		
		another box		
SKEYID	Derived by using key	Agreement: NIST SP 800-135	Volatile RAM	160 bit secret value used to derive
(20 Bytes)	derivation function			other IKE secrets

CSP Name	Generation/Input	Establishment/ Export	Storage	Use
	defined in SP800-135 KDF (IKEv2).	KDF		
		Entry: NA		
		Output: Output as part of HA		
		direct physical connection to another box		
SKEYID_d (20 Bytes)	Derived using SKEYID, Diffie Hellman shared secret and other non-	Agreement: NIST SP 800-135 KDF	Volatile RAM	160 bit secret value used to derive IKE session keys
	secret values through key derivation function defined in SP800135 KDF	Entry: NA		
	(IKEv1/IKEv2).	Output: Output as part of HA		
		direct physical connection to another box		
IKE Pre-Shared Key	Preloaded by the Crypto Officer.	Agreement: NA	Flash Memory	Variable size secret used to derive IKE skeyid when using pre-shared secret
		Output: Output as part of HA		authentication
		direct physical connection to another box		
IKE Session Encryption Key (Triple-DES, AES-128,	Derived via key derivation function defined in SP800-135 KDF	Agreement: NIST SP 800-135 KDF	Volatile RAM	Triple-DES, AES 128 or 256 key used to encrypt data
AES-256 bit)	(IKEv1/IKEv2)	Entry: NA		
		Output: Output as part of HA		
		direct physical connection to another box		
IKE Session Authentication Key (HMAC-SHA-512)	Derived via key derivation function defined in SP800-135 KDF (IKEv1/IKEv2)	Agreement: NIST SP 800-135	Volatile RAM	512 bit key HMAC-SHA-512 used for data authentication

CSP Name	Generation/Input	Establishment/ Export	Storage	Use
		KDF		
		Entry: NA		
		Output: Output as part of HA		
		direct physical connection to another box		
IKE Private Key (RSA 2048-bit)	Internal generation by FIPS-approved CTR_DRBG	Agreement: RSA (2048 bits)	Volatile RAM	RSA 2048 bit key used to authenticate the module to a peer during IKE
		Output: Output as part of HA direct physical connection to another box		
IKE Public Key (RSA 2048-bit)	Internal generation by FIPS-approved CTR_DRBG	Agreement: RSA (2048 bits)	Volatile RAM	RSA 2048 bit public key for TLS authentication.
		Output: Output as part of HA direct physical connection to another box		
IPsec Session Encryption Key (Triple-DES, AES-128 or	Derived via a key derivation function defined in SP800-135 KDF	Agreement: NIST SP 800-135 KDF	Volatile RAM	Triple-DES, AES 128 or 256 key used to encrypt data
AES-256 bit)	(IKEv1/IKEv2).	Entry: NA		
		Output: Output as part of HA		
		direct connection to another box		
IPsec Session Authentication Key (HMAC-SHA-512)	Derived via a key derivation function defined in SP800-135 KDF	Agreement: NIST SP 800-135 KDF	Volatile RAM	512 bit HMAC-SHA-512 key used for data authentication for IPsec traffic
	(IKEv1/IKEv2).	Entry: NA		
		Output: Output as part of HA		
		direct connection to another		

CSP Name	Generation/Input	Establishment/ Export	Storage	Use
		box		
Web UI Certificate	Internal generation by FIPS-approved CTR_DRBG	Agreement: NA	Virtual Hard Disk	Web server certificate
		Output: TLS session with		
		operator		
Bypass Key (HMAC-SHA-256)	Internal generation by FIPS-approved CTR_DRBG	Agreement: NA	Virtual Hard Disk	Bypass service. 256-bit HMAC-SHA-256 used to protect bypass table
		Output: NA		

Table 13: CSP Table

Note: When the module generates symmetric keys or seeds used for generating asymmetric keys, unmodified DRBG output is used as the symmetric key or as the seed for generating the asymmetric keys.

Note: All keys generated by the module use the direct output of a FIPS approved DRBG. This meets the requirements of SP 800-133.

7. Self-Tests

The modules include an array of self-tests that are run during startup and conditionally during operations to prevent any secure data from being released and to ensure all components are functioning correctly. Self-tests may be run on-demand by power cycling the module.

7.1 Power-Up Self-Tests

Acme Packet VME appliance performs the following power-up self-tests when the virtual machine is started. These self-tests require no inputs or actions from the operator:

7.1.1 Software integrity Test

• RSA 2048 Software Integrity Test

7.1.2 Mocana Cryptographic Library Machine Edition (VME) Self-tests

- AES (Encrypt/Decrypt) Known Answer Test;
- Triple-DES (Encrypt/Decrypt) Known Answer Test;
- SHA-1 Known Answer Test;
- SHA-256 Known Answer Test;
- SHA-384 Known Answer Test;
- SHA-512 Known Answer Test;
- HMAC-SHA-1 Known Answer Test;
- HMAC-SHA-256 Known Answer Test;
- HMAC-SHA-384 Known Answer Test;
- HMAC-SHA-512 Known Answer Test; and
- RSA verify Known Answer Test.

7.1.3 Oracle Acme Packet Cryptographic Library Virtual Machine Edition (VME) Self-Tests

- SHA-1 Known Answer Test;
- SHA-256 Known Answer Test;
- SHA-512 Known Answer Test;
- HMAC-SHA-1 Known Answer Test;
- HMAC-SHA-256 Known Answer Test;
- HMAC-SHA-384 Known Answer Test;
- HMAC-SHA-512 Known Answer Test;
- AES (Encrypt/Decrypt) Known Answer Test;
- AES GCM (Encrypt/Decrypt) Known Answer Test;
- SP 800-90A HASH DRBG Known Answer Test;
- SP 800-90A CTR DRBG Known Answer Test;
- RSA sign/verify Known Answer Test; and
- ECDSA sign/verify Known Answer Test.

When the module is in a power-up self-test state or error state, the data output interface is inhibited and remains inhibited until the module can transition into an operational state. While the user may attempt to restart the

ORACLE

module to clear an error, the module will require re-installation in the event of a hard error such as a failed self-test.

7.2 Critical Functions Self-Tests

Acme Packet VME performs the following critical self-tests. These critical function tests are performed for each SP 800-90A DRBG implemented within the module.

- SP 800-90A Instantiation Test
- SP 800-90A Generate Test
- SP 800-90A Reseed Test
- SP 800-90A Uninstantiate Test

7.3 Conditional Self-Tests

The module performs the following conditional self-tests when called by the module:

- Pair Wise consistency tests to verify that the asymmetric keys generated for RSA, and ECDSA work correctly by performing a sign and verify operation;
- Continuous Random Number Generator test to verify that the output of approved-DRBG is not the same as the previously generated value;
- Continuous Random Number Generator test to verify that the output of entropy is not the same as the previously generated value;
- Bypass conditional test using HMAC-SHA-256 to ensure the mechanism governing media traffic is functioning correctly, and;
- Software Load test using a 2048-bit/SHA-256 RSA-Based integrity test to verify software to be updated.

8. Crypto-Officer and User Guidance

FIPS Mode is enabled by a license installed by Oracle, which will open/lock down features where appropriate. This section describes the configuration, maintenance, and administration of the cryptographic module.

8.1 Secure Setup and Initialization

The operator shall set up the device as defined in the Session Border Controller ACLI Configuration Guide. The Crypto-Officer shall also:

- Verify that the firmware version of the module is Version S-Cz8.2.0 or S-Cz8.2.0p5.
- A new account for the Crypto-Officer and User shall be created as part of Setup and Initialization process. Upon creation of the new CO and User accounts the "default" accounts shipped with the module shall be disabled.
- Ensure all traffic is encapsulated in a TLS, SSH, or SRTP tunnel as appropriate.
- Ensure that SNMP V3 is configured with AES-128/HMAC only.
- Ensure IKEv1 and IKEv2 is using AES CBC or CTR mode for encryption and HMAC-SHA-512 for authentication
- Ensure SSH is configured to use AES CTR mode for encryption.
- Ensure SSH and IKEv1/IKEv2 only use Diffie-Hellman group 14 in FIPS approved mode.
- Ensure all management traffic is encapsulated within a trusted session (i.e., Telnet should not be used in FIPS mode of operation).
- Ensure RSA keys are at least 2048-bit keys for TLS, IKEv1/IKEv2. No 512-bit or 1024-bit keys can be used in FIPS mode of operation.
- All operator passwords must be a minimum of 8 characters in length.
- Ensure use of FIPS-approved algorithms for TLS:
 - TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
 - TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
 - o TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
 - TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
 - TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
 - TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
 - o TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
 - TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
 - o TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
 - TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
- Be aware that HA configuration data that contains keys and CSP's must never be transported over an untrusted network. Ensure that the HA ports used for the transport of HA data (including keys and CSP's) are bound to a private IP address range during setup.
- RADIUS and TACACS+ shall not be used in FIPS approved mode.
- HTTPS shall be enabled and configure the web server certificate prior to connecting to the Web UI over TLS.
- Any firmware loaded into this module that is not shown on the module certificate, is out of the scope of this validation and requires a separate FIPS 140-2 validation.

Services in Table 5 of Section 3.6 make use non-compliant cryptographic algorithms. Use of these algorithms will place the module in a non-Approved mode of operation.

8.2 AES-GCM IV Construction/Usage

The AES-GCM IV is used in the following protocols:

• TLS: The TLS AES-GCM IV is generated in compliance with TLSv1.2 GCM cipher suites as specified in RFC 5288 and section 3.3.1 of NIST SP 800-52rev1. Per RFC 5246, when the nonce_explicit part of the IV exhausts the maximum number of possible values for a given session key, the module will trigger a handshake to establish a new encryption key.

In case the module's power is lost and then restored, the key used for the AES GCM encryption or decryption shall be redistributed.

9. Mitigation of Other Attacks

The module does not mitigate attacks beyond those identified in FIPS 140-2.

10. Operational Environment

10.1 Tested Environments

The module is installed using a common base image distributed in a compatible hypervisor format (i.e ova, ovm, qcow2). The software image that is used to deploy the VME is common across all models. The tested configuration includes:

Operating Environment	Processor	Hardware
Oracle Linux 7 running on VMware ESXi version 6.5	Intel Xeon Gold Processor	Oracle Server X7-2

Table 14: Operating environment

This is considered a modifiable OE as defined by FIPS 140-2. The tested operating environments isolate virtual systems into separate isolated process spaces. Each process space is logically separated from all other processes by the operating environments software and hardware. The module functions entirely within the process space of the isolated system as managed by the single operational environment. This implicitly meets the FIPS 140-2 requirement that only one entity at a time can use the cryptographic module.

10.2 Vendor Affirmed Environment

The following platforms have not been tested as part of the FIPS 140-2 level 1 certification however Oracle "vendor affirms" that these platforms are equivalent to the tested and validated platform. Additionally, Oracle affirms that the module will function the same way and provide the same security services on the system listed below.

Operating Environment	Processor	Hardware
Oracle Linux 7 running on VMware ESXi version 6.5	Intel Xeon Platinum Processors	Oracle Server X7-2
Oracle Linux 7 running on VMware ESXi version 6.5	Intel Xeon Processor E5-2600 V3	Oracle Server X5-2
Oracle Linux 7 running on VMware ESXi version 6.5	Intel Xeon Platinum Processors	Oracle Server X8-2

Table 15: Vendor Affirmed Operating Environment

CMVP makes no statement as to the correct operation of the module or the security strengths of the generated keys when so ported if the specific operational environment is not listed on the validation certificate.

Acronyms, Terms and Abbreviations

Term	Definition
AES	Advanced Encryption Standard
CDR	Call Data Record
CMVP	Cryptographic Module Validation Program
CSEC	Communications Security Establishment Canada
CSP	Critical Security Parameter
DHE	Diffie-Hellman Ephemeral
DRBG	Deterministic Random Bit Generator
ECDSA	Elliptic Curve Digital Signature Algorithm
ESBC	Enterprise Session Border Controller
EDC	Error Detection Code
EMS	Enterprise Management Server
HMAC	(Keyed) Hash Message Authentication Code
IKE	Internet Key Exchange
КАТ	Known Answer Test
KDF	Key Derivation Function
LED	Light Emitting Diode
MGT	Management
NIST	National Institute of Standards and Technology
POST	Power On Self Test
PUB	Publication
RAM	Random Access Memory
ROM	Read Only Memory
SHA	Secure Hash Algorithm
SNMP	Simple Network Management Protocol
SRTP	Secure Real Time Protocol
TDM	Time Division Multiplexing
TLS	Transport Layer Security
VME	Virtual Machine Edition

Table 16: Acronyms

References

The FIPS 140-2 standard, and information on the CMVP, can be found at http://csrc.nist.gov/groups/STM/cmvp/index.html.

More information describing the module can be found on the Oracle web site at https://www.oracle.com/industries/communications/enterprise/products/session-border-controller/index.html.

This Security Policy contains non-proprietary information. All other documentation submitted for FIPS 140-2 conformance testing and validation is "Oracle - Proprietary" and is releasable only under appropriate non-disclosure agreements.

Document	Author	Title
FIPS PUB 140-2	NIST	FIPS PUB 140-2: Security Requirements for Cryptographic Modules
FIPS IG	NIST	Implementation Guidance for FIPS PUB 140-2 and the Cryptographic
		Module Validation Program
FIPS PUB 140-2 Annex A	NIST	FIPS 140-2 Annex A: Approved Security Functions
FIPS PUB 140-2 Annex B	NIST	FIPS 140-2 Annex B: Approved Protection Profiles
FIPS PUB 140-2 Annex C	NIST	FIPS 140-2 Annex C: Approved Random Number Generators
FIPS PUB 140-2 Annex D	NIST	FIPS 140-2 Annex D: Approved Key Establishment Techniques
DTR for FIPS PUB 140-2	NIST	Derived Test Requirements (DTR) for FIPS PUB 140-2, Security
		Requirements for Cryptographic Modules
NIST SP 800-67	NIST	Recommendation for the Triple Data Encryption Algorithm TDEA Block
		Cypher
FIPS PUB 197	NIST	Advanced Encryption Standard
FIPS PUB 198-1	NIST	The Keyed Hash Message Authentication Code (HMAC)
FIPS PUB 186-4	NIST	Digital Signature Standard (DSS)
FIPS PUB 180-4	NIST	Secure Hash Standard (SHS)
NIST SP 800-131A	NIST	Recommendation for the Transitioning of Cryptographic Algorithms and
		Key Sizes
PKCS#1	RSA	PKCS#1 v2.1: RSA Cryptographic Standard
	Laboratories	

Table 17: References