FIPS 140-2 Non-Proprietary Security Policy

PacketLight Networks Ltd. PL-2000M, PL-2000AD and PL-2000ADS

Hardware version: PL-2000M, PL-2000AD, PL-2000ADS

Firmware version: 1.3.12

Date: 09/05/2019

Prepared by:

2400 Research Blvd, Suite 395 Rockville, MD 20850 tel: +1 (703) 375-9820 info@acumensecurity.net www.acumensecurity.net

Introduction

Federal Information Processing Standards Publication 140-2 — Security Requirements for Cryptographic Modules specifies requirements for cryptographic modules to be deployed in a Sensitive but Unclassified environment. The National Institute of Standards and Technology (NIST) and Canadian Centre for Cyber Security (CCCS) Cryptographic Module Validation Program (CMVP) run the FIPS 140 program. The NVLAP accredits independent testing labs to perform FIPS 140 testing; the CMVP validates modules meeting FIPS 140 validation. Validated is the term given to a module that is documented and tested against the FIPS 140 criteria.

More information is available on the CMVP website at: <u>https://csrc.nist.gov/projects/cryptographic-module-validation-program</u>

About this Document

This non-proprietary Cryptographic Module Security Policy for the PacketLight Networks, Ltd. PL-2000M, PL-2000AD and PL-2000ADS provides an overview of the product and a high-level description of how it meets the overall Level 2 security requirements of FIPS 140-2.

The PacketLight Networks, Ltd. PL-2000M, PL-2000AD and PL-2000ADS may also be referred to as the "module" in this document.

Disclaimer

The contents of this document are subject to revision without notice due to continued progress in methodology, design, and manufacturing. PacketLight Networks, Ltd. shall have no liability for any error or damages of any kind resulting from the use of this document.

Notices

This document may be freely reproduced and distributed in its entirety without modification.

Table of Contents

Introduction	2
Disclaimer	2
Notices	2
1. Introduction	5
1.1 Scope	5
1.2 Overview	5
2. Security Levels	7
3. Cryptographic Module Specification	8
3.1 Cryptographic Boundary	8
4. Cryptographic Module Ports and Interfaces	9
5. Roles, Services and Authentication	13
5.1 Roles	13
5.2 Services	13
5.3 Authentication	14
6. Physical Security	15
7. Operational Environment	15
8. Cryptographic Algorithms and Key Management	16
8.1 Cryptographic Algorithms	16
8.1.1 Allowed Algorithms	17
8.1.2 Non-Approved Mode of Operation Non-Approved Algorithms and Protocols with	No
Security Claimed	17
8.1.3 Non-Approved Mode of Operation	17
8.1.4 Non-Approved Algorithms	17
8.2 Cryptographic Key Management	18
8.3 Key Generation and Entropy	24
8.4 Zeroization	24
9. Self-tests	24
9.1 Power-On Self-Tests	24
9.2 Conditional Self-Tests	25
9.3 Critical Function Tests	25
10. Guidance and Secure Operation	26
10.1 Initialization	26
10.2 Usage of AES GCM in the module	27
11. Glossary	28

List of Tables

Table 1 - Security Level	7
Table 2 - Physical Port and Logical Interface Mapping (PL-2000M)	10
Table 3 - Physical Port and Logical Interface Mapping (PL-2000AD)	11
Table 4 - Physical Port and Logical Interface Mapping (PL-2000ADS)	12
Table 5 - Approved Services and Role allocation	14
Table 6 – Unauthenticated Services	14
Table 7 - Non-Approved Services	14
Table 8 - Authentication Types	15
Table 9 - Hardware Implementation Algorithms	16
Table 10 - Firmware Algorithm Implementation	17
Table 11 - Allowed Algorithms	17
Table 12 - Non-Approved Algorithms	17
Table 13 - Approved Keys and CSPs Table	20
Table 14 - Approved Service to Key/CSP Mapping	24
Table 15 - Power-up Self-tests	25
Table 16 - Conditional Self-tests	25
Table 17 – Critical Function Tests	25
Table 18 - Glossary of Terms	28

List of Figures

Figure 1 - PL-2000M	8
Figure 2 - PL-2000AD	8
Figure 3 - PL-2000ADS	8
Figure 4 - Right side of modules	8
Figure 5 - Left Side of modules	8
Figure 6 - Rear of modules	8
Figure 7: PL-2000M Ports	9
Figure 8: PL-2000AD Ports	10
Figure 9: PL-2000ADS Ports	11

1. Introduction

1.1 Scope

This document describes the cryptographic module security policy for the PacketLight Networks Ltd. PL-2000M, PL-2000AD and PL-2000ADS (Hardware versions: PL-2000M, PL-2000AD, PL-2000ADS) cryptographic module with Firmware 1.3.12 (also referred to as the "module" hereafter). It contains specification of the security rules, under which the cryptographic module operates, including the security rules derived from the requirements of the FIPS 140-2 standard.

1.2 Overview

The PL-2000AD, PL-2000M and the PL-2000ADS are three product variations of the PL-2000x clone. The products run the same firmware and provide the same cryptographic security services.

The PL-2000x series are a 200G multi-protocol 1U MSPP transponder/muxponder device that provides a secure transport solution for long haul (PL-2000AD), metro (PL-2000M) and short-haul (PL-2000ADS) applications.

The PL-2000M has a single 200G uplink, composed of two multiplexed 100G OTU4 signals, while the PL-2000AD and PL-2000ADS have dual 100G uplinks. The PL-2000x serve as a multi-protocol, multi-rate, high-capacity optical transport platform for various types of client services with bit rates ranging from 10G to 100G. The supported services are:

- 10GbE-LAN, 40GbE-LAN, 100GbE-LAN
- 8G FC, 16G FC, 32G FC
- OC-192, STM-64
- OTU2, OTU2e, OTU3, OTU4

The PL-2000x can be configured to work in the following system modes:

- <u>Transponder</u>: Provides two 100G OTN transponders for 100G client services over a 200G uplink.
- 10G Muxponder mode: Provides two 100G muxponders for aggregation of 10G client services over a 200G uplink.
- <u>32G FC Muxponder</u>: Provides two 100G muxponders for aggregation of 32G client services over a 200G uplink.
- <u>2x40G+12x10G Muxponder</u>: Provides two 100G muxponders for aggregation of 40G and 10G client services over a 200G uplink.
- <u>4x40G+4x10G Muxponder</u>: Provides two 100G muxponders for aggregation of 40G and 10G client services over a 200G uplink.
- <u>100G+10x10G</u>: Provides one 100G OTN transponder for a 100G client service and one muxponder for aggregation of 10G client services over two 100G uplinks.
- <u>100G+40G+6x10G</u>: Provides one 100G OTN transponder for a 100G client service and one muxponder for aggregation of 40G and 10G client services over two 100G uplinks.
- 2x32G+14x10G: Provides muxponder aggregation of 32G and 10G client services over two 100G uplinks.

- 100G+2x32G+4x10G: Provides one 100G OTN transponder for a 100G client service and muxponder aggregation of 32G FC client services and 10G client services over two 100G uplinks.
- 10x10G (PL-2000M only): Provides muxponder for aggregation of 10G client services over 100G uplink.
- 100G (PL-2000M only): Provides 100G OTN transponder for a 100G client service over 100G uplink
- 40G+6x10G (PL-2000M only): Provides muxponder for aggregation of 40G and 10G client services over 100G uplink.
- 2x40G+2x10G (PL-2000M only): Provides muxponder for aggregation of 40G and 10G client services over 100G uplink.

The PL-2000x products provide several optional types of traffic fault protection:

- 1+1 optical fiber fault protection when an optional Optical Switch is installed (not available for PL-2000ADS)
- 1+1 service fault protection (not available for PL-2000M)
- Equipment fault protection per service port with two PL-2000x devices at each site.

The following management protocols are supported by the PL-2000x products¹:

- Command Line Interface (CLI) over a serial interface or Telnet/Secure Shell (SSH) connection
- Web-based HTTP/HTTPS management
- SNMP protocol with support for SNMPv1, SNMPv2c, and SNMPv3 versions
- Remote Authentication Dial-In User Service (RADIUS) protocol for centralized remote user authentication
- Rapid Spanning Tree Protocol (RSTP) for loop prevention of management traffic
- File Transfer Protocols such as TFTP and SFTP for file transfer of system software, Log files, and Configuration files.
- Simple Network Time Protocol (SNTP) for network calendar timing
- Syslog protocol for monitoring device events by a remote server
- Virtual chassis configuration, using a single IP address for multiple nodes

The module supports the following Operations, Administration, and Maintenance (OAM) functions over management interfaces:

- Optical parameters monitoring
- Alarm and Event fault management
- Layer 1 and Layer 2 Performance monitoring (PM)
- Terminal loopback and Facility loopback for optical data ports
- Diagnostic Pseudo Random Binary Sequence (PRBS) for the optical data ports²
- Environmental (External) Alarms

¹ Plaintext protocols shall not be used. Please see Section 10 in this document for instructions on the secure configuration and operation of the module.

² Not utilized for any cryptographic functionality

2. Security Levels

The following table lists the level of validation for each area in FIPS 140-2:

FIPS 140-2 Section Title	Validation Level
Cryptographic Module Specification	2
Cryptographic Module Ports and Interfaces	2
Roles, Services, and Authentication	2
Finite State Model	2
Physical Security	2
Operational Environment	N/A
Cryptographic Key Management	2
Electromagnetic Interference / Electromagnetic Compatibility	2
Self-Tests	2
Design Assurance	2
Mitigation of Other Attacks	N/A
Overall Level	2

Table 1 - Security Level

3. Cryptographic Module Specification

3.1 Cryptographic Boundary

The cryptographic boundary is classified as a multi-chip standalone device and is the entire boundary of the chassis as pictured below.

Figure 1 - PL-2000M

Figure 2 - PL-2000AD

Figure 3 - PL-2000ADS

Figure 4 - Right side of PL-2000M, PL-2000AD & PL-2000ADS modules³

Figure 5 - Left Side of PL-2000M, PL-2000AD & PL-2000ADS modules

Figure 6 - Rear of PL-2000M, PL-2000AD & PL-2000ADS modules

³ The sides (right, left & rear) of the PL-2000M, PL-2000AD & PL-2000ADS are identical and all have similar surface topography.

4. Cryptographic Module Ports and Interfaces

The module provides the following number of physical and logical interfaces to the device, and the physical interfaces provided by the module are mapped to the FIPS 140-2 defined logical interfaces: data input, data output, control input, status output, and power. The logical interfaces and their mapping are described in the following table:

Figure 7: PL-2000M Ports

Physical Port	Qty.	FIPS 140-2 Logical Interface Mapping
CFP2 200G port (uplink)	1	Data Input, Data Output, Control Input, Status out
RJ-45 Control Port	1	Control Input, Status out
10/100 Base-T LAN Ports	2	Data Input, Data Output, Control Input, Status out
QSFP28 100G / QSFP+ 40G/4x10G Service ports	2	Data Input, Data Output, Control Input, Status out
SFP+ 10G Service ports	16	Data Input, Data Output, Control Input, Status out
SFP Management ports	2	Data Input, Data Output, Control Input, Status out
RJ-45 External Alarm port	1	Control Input, Status Output
100-240V AC	1	Power Input
48V DC Power Supply (Optional)	1	Power

Fan Module (Optional)	1	N/A
Status LEDs	Power: 1 Uplink: 1 Clients: 18 MNG: 2 System: 5 PS: 2 Fan: 1 Total=30	Status Output

Figure 8: PL-2000AD Ports

Physical Port	Qty.	FIPS 140-2 Logical Interface Mapping
CFP2 100G ports (uplink)	2	Data Input, Data Output, Control Input, Status out
RJ-45 Control Port	1	Control Input, Status out
10/100 Base-T LAN Ports	2	Data Input, Data Output, Control Input, Status out
QSFP28 100G / QSFP+ 40G/4x10G Service ports	2	Data Input, Data Output, Control Input, Status out
SFP+ 10G Service ports	16	Data Input, Data Output, Control Input, Status out

SFP Management ports	2	Data Input, Data Output, Control Input, Status out
RJ-45 External Alarm port	1	Control Input, Status Output
48V DC Power Supply	1	Power
100-240V AC Power Supply (Optional)	1	Power
Fan Module (Optional)	1	N/A
Status LEDs	Power: 1 Uplink: 1 Clients: 18 MNG: 2 System: 5 PS: 2 Fan: 1 Total=30	Status Output

Figure 9: PL-2000ADS Ports

Physical Port	Qty.	FIPS 140-2 Logical Interface Mapping			
QSFP28 100G ports (uplink)	2	Data Input, Data Output, Control Input, Status out			
RJ-45 Control Port	1	Control Input, Status out			
10/100 Base-T LAN Ports	2	Data Input, Data Output, Control Input, Status out			
QSFP28 100G / QSFP+ 40G/4x10G Service ports	2	Data Input, Data Output, Control Input, Status out			
SFP+ 10G Service ports	16	Data Input, Data Output, Control Input, Status out			
SFP Management ports	2	Data Input, Data Output, Control Input, Status out			
RJ-45 External Alarm port	1	Control Input, Status Output			
100-240V AC Power Supply	1	Power			
48V DC Power Supply (Optional)	1	Power			
Fan Module (Optional)	1	N/A			
Status LEDs	Power: 1 Uplink: 1 Clients: 18 MNG: 2 System: 3 PS: 2 Fan: 1 Total=28	Status Output			

 Table 4 - Physical Port and Logical Interface Mapping (PL-2000ADS)

Management Interfaces:

- RJ-45 Control port
- Two 10M/100M LAN ports
- Two Remote or local management by two 100/1000M management channels based on pluggable (SFP) optics for out-of-band Optical Supervisory Channels (OSCs)
- Remote management via in-band channels embedded in the OTN uplink signals

5. Roles, Services and Authentication

5.1 Roles

The module supports five different roles, Super-User, Administrator (Admin), Crypto-Officer (CO), Read-Write and Read-Only.

There are 21 unique Crypto-Officer users. Each service port on the module can be assigned a different CO user.

Admin user can access and edit permissions for all functions such as adding and deleting users, changing access levels and resetting/changing passwords. Admin user cannot manage the Super-User or the CO users.

The Crypto-Officer user can manage their own password. The assigned CO user has access to the "Encryption tab" on the WebGUI where they may enter pre-shared-secret information, change the locking of encrypted service, and set the Key Exchange Period for the encryption service for the associated service port.

The Read-Write role can view and manage the module and can manage its own password.

The Read Only User is restricted to only viewing the status of the module and does not have any edit permissions except to change its own password. Both the Read-Write User and Read Only User have no access to any cryptographic functions.

5.2 Services

The module provides the following Approved services which utilize algorithms listed in Table 8 and 9:

Service	Super-User	Read-Write	Read Only	Crypto Officer	Admin
	Role	Role	Role	Role	Role
Initialization		Х			Х
Manage Accounts					Х
Change Password	Х	Х	Х	Х	Х
Encryption Service	Х			Х	
Add/Change Pre-Shared Secret	Х			Х	
Lock Encrypted Service ⁴	Х			Х	
Change Provisioning Type	Х	Х			Х
View Performance Monitoring	Х	Х	Х	Х	Х
View Faults or Alarms	Х	Х	Х	Х	Х
Configure Firewall	Х	Х	Х	Х	Х
Request Status Information	Х	Х	Х	Х	Х
Set Configuration data	Х	Х			Х
Export Backup of Configuration	Х				Х
file over HTTPS/SFTP					
View Network Topology	Х	Х	Х	Х	Х
On-Demand Self-test	X	Х	Х	Х	Х
Zeroization/Factory Reset	Х				Х
Firmware Update	Х	Х			Х

⁴ The Lock Encrypted Service will prevent changing service type, firmware update and Zeroization/Factory Reset

Table 5 - Approved Services and Role allocation

The below table provides a full description of the unauthenticated services provided by the module:

Unauthenticated Services
Request Authentication
On-Demand Self-test
Table 6 – Unauthenticated Services

The module provides the following non-Approved services which utilize algorithms listed in Table 12:

Service
Non-Conformant Key Agreement
Table 7 - Non-Approved Services

Services listed in Table 7 make use of non-compliant cryptographic algorithms. Use of these algorithms are prohibited in a FIPS-approved mode of operation.

5.3 Authentication

The module supports role-based authentication. Users must authenticate using a user ID and password, SSH client key (SSH only), or certificates associated with the correct protocol in order to set up the secure session. Secure sessions that authenticate Users have no interface available to access other services (such as Crypto Officer services). Each User SSH session remains active (logged in) and secured until the operator logs out or inactivity for a configurable amount of time has elapsed. Each User Management Console session remains active until the operator logs out or inactivity for a configurable amount of time has elapsed.

Type of Authentication	Authentication Strength
WebGUI (HTTPS) Password	Passwords are required to be at minimum 8 characters in length, and at maximum 64 bytes (number of characters is dependent on the character set used by system). An 8-character password allowing all printable American Standard Code for Information Interchange (ASCII) characters (95) with repetition equates to a 1:(95 ⁸), or 1:6,634,204,312,890,625 chance of false acceptance. The Crypto- Officer may connect locally using the serial port or remotely after establishing a HTTPS session. Assuming 10 attempts per second via a scripted or automatic attack, the probability of a success with multiple attempts in a one-minute period is 600/95^8, which is less than 1/100,000.
SSH/SFTP Password	Passwords are required to be at least 8 characters in length and maximum of 64 bytes (number of characters is dependent on the character set used by system). An 8-character password allowing all printable American Standard Code for Information Interchange (ASCII) characters (95) with repetition equates to a 1: (95 ⁸), or 1:6,634,204,312,890,625 chance of false acceptance. Assuming 10 attempts per second via a scripted or automatic attack, the probability of a success with multiple attempts in a one-minute period is 600/95^8, which is less than 1/100,000.

Type of Authentication	Authentication Strength
Console Password	For password authentication done by the modules, passwords are required to be at least 8 characters in length and maximum of 64 bytes (number of characters is dependent on the character set used by system). An 8-character password allowing all printable American Standard Code for Information Interchange (ASCII) characters (95) with repetition equates to a 1: (95 ⁸), or 1:6,634,204,312,890,625 chance of false acceptance.
	The fastest data rate for the serial port is 9,600 bps. Each ASCII character is 10 bits (1 Start, 8 data, 1 Stop), so that is $(9600 / 10 =) 960$ characters per second or $(960 * 60 =) 57,600$ characters per minute. Running 100,000 trials in a minute will require a minimum of $(4 * 10 * 100,000 =) 4,000,000$ characters to be sent. This greatly exceeds the 57,600 limit imposed by the data rate of the serial port. Therefore, the probability that a random attempt will succeed or a false acceptance will occur in one minute to be less than 1:100,000 as required by FIPS 140-2.
Public keys	A 2048-bit RSA key has at least 112-bits of equivalent strength. The probability of a successful random attempt is 1/2^112, which is less than 1/1,000,000.
	The module supports RSA certificates for authentication of roles during TLS, HTTPS or SSH/SFTP. Using conservative estimates and equating a 2048-bit RSA key to 112-bits of strength, the probability for a random attempt to succeed during a one-minute period is $1:2^{112}$ or $1:5.19 \times 10^{33}$.
SNMPv3 Passwords	Passwords are required to be at least 8 characters in length and maximum of 64 bytes (number of characters is dependent on the character set used by system). An 8-character password allowing all printable American Standard Code for Information Interchange (ASCII) characters (95) with repetition equates to a 1: (95 ⁸), or 1:6,634,204,312,890,625 chance of false acceptance.
	Assuming 10 attempts per second via a scripted or automatic attack, the probability of a success with multiple attempts in a one-minute period is 600/95^8, which is less than 1/100,000.

Table 8 - Authentication Types

6. Physical Security

The module is a multi-chip standalone cryptographic module made with production grade components and standard passivation. The cover of all the modules are sealed with two tamper-evident seals, applied during manufacturing. The physical security of the module is intact if there is no evidence of tampering with the seal. The locations of the tamper-evident seals are indicated by the red rectangles in Figures 1 through 4⁵.

7. Operational Environment

The module's operational environment is considered a limited operational environment under FIPS 140-2.

⁵ Depicted on Page 8 of this document.

8. Cryptographic Algorithms and Key Management

8.1 Cryptographic Algorithms

The module implements the following approved algorithms in the firmware and hardware:

Hardware Algorithm Implementation							
CAVP Cert #	Algorithm	Sizes	Standard	Mode/Method	Use		
C221	AES	256-bits SP 800-38A FIPS 197 SP 800-38D		ECB, GCM, CTR	Encryption, Decryption, Authentication		
	ктѕ	256-bits	IG D.9	KTS (AES GCM)	Key Transport		

Table 9 - Hardware Implementation Algorithms

Firmware Algorithm Implementation						
CAVP Cert #	Algorithm	Sizes	Standard	Mode/Method	Use	
C416	AES	128, 192, 256- bits	SP 800-38A FIPS 197 SP 800-38D	CBC, CFB, ECB, GCM, CTR	Encryption, Decryption, Authentication	
Vendor Affirmed	СКБ	N/A	SP 800-133	N/A	Key Generation	
C416	CVL	SHA-1, SHA- 256, SHA-384, SHA-512	SP 800-135	TLS ⁶ , SSH, SNMPv3 KDF	Key Derivation	
C416	CVL	Partial Public Key Validation	SP 800-56A	ECC CDH Component Testing	Key Agreement	
C416	ктѕ	128, 192, 256- bits	IG D.9	KTS (AES GCM)	Key Transport key establishment methodology provides between 128 and 256 bits of encryption strength	
C416	DRBG	256-bits	SP 800- 90Arev1	AES CTR_DRBG	Random Bit Generation	
C416	HMAC	160, 256, 384, 512-bits	FIPS PUB 198	SHA-1, SHA-256, SHA-384, SHA-512	Message Authentication	
C416	CVL	FFC: P = 2048, q = 256; ECC: P-256, P- 384, P-521	SP 800-56A	FFC dh Ephem, ECC Ephemeral Unified	Key Agreement	
C416	SHS	SHA-1, SHA- 256, SHA-384, SHA-512	FIPS PUB 180-4	SHA-1, SHA-256, SHA-384, SHA-512	Message Digest Generation	

⁶ Note: TLS only supports SHA-256 and SHA-384

C416	RSA	2048.	FIPS PUB	Key Generation.	Key Generation, Signature
		3072 (Key Generation	186-4	Signature Generation 9.31, Signature Verification 9.31.	Generation, Signature Verification
		Only)		Signature Generation	
				PKCS1.5, Signature	
				Signature Generation PSS.	
				Signature Verification PSS	

Table 10 - Firmware Algorithm Implementation

Note: Not all algorithms/modes tested on the CAVP validation certificates are implemented in the module.

8.1.1 Allowed Algorithms

The module implements the following allowed cryptographic algorithms:

Algorithm	Use
NDRNG	To seed the Approved DRBG
Diffie-Hellman	Diffie-Hellman (CVL Cert. #C416 key agreement; key establishment methodology provides 112 bits of encryption strength)
EC Diffie-Hellman	EC Diffie-Hellman (CVL Cert. #C416 key agreement; key establishment methodology provides between 128 bits and 256 bits of encryption strength)

Table 11 - Allowed Algorithms

No parts of the TLS, SSH or SNMP protocol, other than the KDF, have been tested by the CAVP and CMVP per FIPS 140-2 IG D.11.

8.1.2 Non-Approved Mode of Operation Non-Approved Algorithms and Protocols with No Security Claimed

The module supports the following non-Approved but allowed algorithms with no security claimed:

• 256-bit AES CTR (no security claimed) is used to obfuscate a configuration file while stored on the module⁷.

The operator shall consult FIPS 140-2 IG 1.23 for further understanding of the use of functions where no security is claimed.

8.1.3 Non-Approved Mode of Operation

The Crypto Officer is responsible for configuration of the module. When configured according to the Section 10 in this Security Policy, the modules only support the non-Approved services listed in Table 7. The non-Approved algorithms or plaintext protocols in Section 10 are disabled.

8.1.4 Non-Approved Algorithms

The module implements the following algorithms which are considered non-Approved:

Algorithm	Use			
Diffie-Hellman	Key Agreement less than 112 bits of encryption strength			
Table 12 - Non-Approved Algorithms				

⁷ The configuration file can only be exported or imported over HTTPS or SFTP.

8.2 Cryptographic Key Management

The module supports the following CSPs listed below in Table 10:

Keys and CSPs	Description	Key/CSP Type	Generation /Input	Output Method	Storage	Zeroization
Operator Passwords	Authentication for the Admin, Crypto- Officers, Read- Write Users and Read Only Users	Minimum of 8 (64 bits) and maximum of 20 bytes (160 bits) string value	Externally generated. Enters the module in encrypted form via a secure TLS or SSH/SFTP session. Enters the module in plaintext via a directly attached cable to the serial port	Exits encapsulated (SSH/SFTP) in configuration backup	Hashed in non- volatile Flash memory	Invoke Factory Reset or Zeroization command
EC DH Key Pair for DEK	Key pair used in NIST SP 800- 56A (Section 5.7.1.2) ECC CDH Primitive computation	EC DH private component 384-bits EC DH public key (P-384)	Generated internally using the SP 800-90A CTR_DRBG Public key of a peer enters the module in plaintext	Private never exits the module	Plaintext in volatile memory	Session termination or power cycle
ECC CDH primitive for DEK	Shared Secret (Z) value that will be used to derive the DEK	384-bit string	Computed per SP 800-56Arev1 (Section 5.7.1.2)	Never exits the module	Plaintext in volatile memory	Session termination or power cycle
Data Encryption Key (DEK)	Used for encrypting or decrypting payload data	AES-GCM 256 bit	Derived per NIST SP 800-56A (Section 5.8.1)	Never exits the module	Plaintext in volatile memory	Power Cycle
Peer- Authentication Pre-Shared Secret	Entered by Crypto-Officer. Parameter used for Peer- Authentication during key exchange	384-bit string	Externally generated. Enters the module in encrypted form via HTTPS	Exits encapsulated (SSH/SFTP) in configuration backup	Encrypted in non- volatile Flash memory	Invoke Factory Reset or Zeroization command
Diffie-Hellman (DH) Key Pair	Negotiating TLS/HTTPS or SSH/SFTP sessions	Diffie-Hellman private component 160 – 512 bits Public component 2048 bits	Generated internally using the SP 800-90A CTR_DRBG Public key of a peer enters the	Private never exits the module	Plaintext in volatile memory	Session termination or power cycle

Keys and CSPs	Description	Key/CSP Type	Generation /Input	Output Method	Storage	Zeroization
			module in plaintext			
Elliptic Curve Diffie-Hellman (ECDH) Key Pair	Negotiating TLS/HTTPS or SSH/SFTP sessions	EC DH private component 384-bits EC DH public key (P-256, P-384 and P-521)	Generated internally using the SP 800-90A CTR_DRBG Public key of a peer enters the module in plaintext	Private never exits the module	Plaintext in volatile memory	Session termination or power cycle
SNMP Privacy Key	Encryption / decryption of SNMP session traffic	AES CFB 128, 192, 256-bit	Derived using SP 800-135 Key derivation (SNMP)	Exits encapsulated (SSH/SFTP) in configuration backup	Encrypted in non- volatile Flash memory	Invoke Factory Reset or Zeroization command
SNMP Authentication Key	Message authentication and verification in SNMP	HMAC-SHA-1, HMAC-SHA-256, HMAC-SHA-384 and HMAC-SHA- 512	Derived using SP 800-135 Key derivation (SNMP)	Exits encapsulated (SSH/SFTP) in configuration backup	Encrypted in non- volatile Flash memory	Invoke Factory Reset or Zeroization command
SNMPv3 Password	Password	Minimum of 8 (64 bits) and maximum of 20 bytes (160 bits) string value	Externally generated. Enters the module in encrypted form via a secure TLS or SSH session.	Exits encapsulated (SSH/SFTP) in configuration backup	Plaintext in non- volatile Flash memory	Invoke Factory Reset or Zeroization command
SSH/SFTP Host Key Pair	Key Pair used for SSH/SFTP authentication	RSA 2048-bit	Internally generated via FIPS-Approved DRBG upon first system power-up	Private never exits the module	Plaintext in non- volatile Flash memory	Zeroization command
Premaster Secret	Establish the TLS Master Secret	384-bit string	Generated internally with the SP 800-90A CTR_DRBG Input during TLS negotiation	Exits in encrypted form during protocol handshake	Plaintext in volatile memory	Session termination or power cycle
TLS Master Secret	Establish the TLS Session Key	384-bit string	Derived ⁸ from the TLS Pre-Master Secret	Never exits the module	Plaintext in volatile memory	Session termination or power cycle
TLS Session Key	Used for encrypting/ decrypting TLS messages	AES CBC, CTR, or GCM 128 or 256- bit key	Generated internally during session negotiation	Exits in encrypted form during protocol handshake	Plaintext in volatile memory	Session termination or power cycle

⁸ Derived via NIST SP 800-135 TLS 1.2 KDF

Keys and CSPs	Description	Key/CSP Type	Generation /Input	Output Method	Storage	Zeroization
TLS Authentication Key	Used for authenticating TLS messages	HMAC SHA-1-, 256-, 384- or 512- bit key	Generated internally during session negotiation	Never exits the module	Plaintext in volatile memory	Session termination or power cycle
SSH/SFTP Session Encryption Key	Used for Encrypting SSH/SFTP messages	AES CBC, CTR, or GCM 128-, 192, or 256-bit key	Internally generated via FIPS-Approved DRBG	Exits in encrypted form during protocol handshake	Plaintext in volatile memory	Session termination or power cycle
SSH/SFTP Session Authentication key	Data authentication for SSH/SFTP sessions	HMAC SHA-1-, 256-, 384- or 512- bit key	Derived via in SP800-135 KDF (SSH)	Never exits the module	Plaintext in volatile memory	Session termination or power cycle
SP 800-90A CTR_DRBG Seed	Seeding material for the SP800-90A CTR_DRBG	384-bit value	Internally generated by the NDRNG	Never exits the module	Plaintext in volatile memory	Power cycle
SP 800-90A CTR_DRBG Nonce	Entropy material for the SP800-90A CTR_DRBG	128-bit value	Internally generated by the NDRNG	Never exits the module	Plaintext in volatile memory	Power cycle
SP 800-90A CTR_DRBG key value	Used for the SP 800-90A CTR_DRBG	Internal state value	Internally generated	Never exits the module	Plaintext in volatile memory	Power cycle
SP 800-90A CTR_DRBG V value	Used for the SP 800-90A CTR_DRBG	Internal state value	Internally generated	Never exits the module	Plaintext in volatile memory	Power cycle

Table 13 - Approved Keys and CSPs Table

The module implements the following access control policy on keys and CSPs in the module shown in the following table. The Access Policy is noted by R=Read, W=Write and X=Execute.

Module Service	CSP Access	Rights (R/W/X)
Initialization	Diffie-Hellman (DH) Key Pair, Elliptic Curve Diffie-Hellman (ECDH) Key Pair, Premaster Secret, TLS Master Secret, TLS Session Key, TLS Authentication Key, SSH/SFTP Host Key Pair, SSH/SFTP Session Encryption Key, SSH/SFTP Session Authentication Key, SP 800- 90A CTR_DRBG Seed, SP 800-90A CTR_DRBG Nonce, SP 800-90A CTR_DRBG key value, SP 800-90A V value	R/W/X
Manage Accounts	Operator Passwords	R/W/X
	DH Key Pair, ECDH Key Pair, Premaster Secret, TLS Master Secret, TLS Session Key, TLS Authentication Key; SSH/SFTP Host Key Pair, SSH/SFTP Session Encryption Key, SSH/SFTP Session Authentication key, SP 800-90A CTR_DRBG Seed, SP 800-90A CTR_DRBG Nonce, SP 800-90A CTR_DRBG key value, SP 800-90A V value	R/W/X
Change Password	Operator Passwords	R/W/X
	DH Key Pair, ECDH Key Pair, Premaster Secret, TLS Master Secret, TLS Session Key, TLS Authentication Key; SSH/SFTP Host Key Pair, SSH/SFTP Session Encryption Key, SSH/SFTP Session Authentication key, SP 800-90A CTR_DRBG Seed, SP 800-90A CTR_DRBG Nonce, SP 800-90A CTR_DRBG key value, SP 800-90A V value	R/W/X
Encryption Service	EC DH Key Pair for DEK; ECC CDH primitive for DEK; DEK; Peer- Authentication Pre-Shared Secret; SP 800-90A CTR_DRBG Seed, SP 800-90A CTR_DRBG Nonce, SP 800-90A CTR_DRBG key value, SP 800-90A V value	R/W/X
	DH Key Pair, ECDH Key Pair, Premaster Secret, TLS Master Secret, TLS Session Key, TLS Authentication Key; SSH/SFTP Host Key Pair, SSH/SFTP Session Encryption Key, SSH/SFTP Session Authentication key, SP 800-90A CTR_DRBG Seed, SP 800-90A	R/W/X

	CTR_DRBG Nonce, SP 800-90A	
	CTR_DRBG key value, SP 800-90A V	
Add/Change Due Changed Count	Value	D (14)
Add/Change Pre-Shared Secret	Peer-Authentication Pre-Shared Secret	
	DH Key Pair, ECDH Key Pair, Premaster	R/W/X
	Kov TIS Authorization Kov: SSH/SETP	
	Host Key Pair SSH/SETP Session	
	Encryption Key SSH/SETP Session	
	Authentication key SP 800-90A	
	CTR_DRBG Seed, SP 800-90A	
	CTR DRBG Nonce. SP 800-90A	
	CTR DRBG key value, SP 800-90A V	
	value	
Lock Encrypted Service	DH Key Pair, ECDH Key Pair, Premaster	R/W/X
	Secret, TLS Master Secret, TLS Session	
	Key, TLS Authentication Key; SSH/SFTP	
	Host Key Pair, SSH/SFTP Session	
	Encryption Key, SSH/SFTP Session	
	Authentication key, SP 800-90A	
	CTR_DRBG Seed, SP 800-90A	
	CTR_DRBG Nonce, SP 800-90A	
	CTR_DRBG key value, SP 800-90A V	
	value	- 66
View Performance Monitoring	SNMP Privacy Key, SNMP	R/W/X
	Authentication Key, SNMPv3	
	Password, DH Key Pair, ECDH Key Pair,	
	TIS Session Key, TIS Authentication	
	Key: SSH/SETP Host Key Dair SSH/SETP	
	Session Encryption Key SSH/SETP	
	Session Authentication key, SP 800-	
	90A CTR_DRBG Seed, SP 800-90A	
	CTR DRBG Nonce. SP 800-90A	
	CTR DRBG key value, SP 800-90A V	
	value	
View Faults or Alarms	SNMP Privacy Key, SNMP	R/W/X
	Authentication Key, SNMPv3	
	Password, DH Key Pair, ECDH Key Pair,	
	Premaster Secret, TLS Master Secret,	
	TLS Session Key, TLS Authentication	
	Key; SSH/SFTP Host Key Pair, SSH/SFTP	
	Session Encryption Key, SSH/SFTP	
	Session Authentication key, SP 800-	
	90A CTR_DRBG Seed, SP 800-90A	
	CTR_DRBG Nonce, SP 800-90A	
	UTK_DKBG KEY VALUE, SP 800-90A V	
Configuro Eirowall		
	Authentication Koy, SNIVIP	K/VV/X
	Authentication Key, SNIVIPVS Dessword: DH Key Pair FCDH Key Pair	
	Premaster Secret TIS Master Secret	

PacketLight Networks, Ltd. 2019 Version 1.5 Public Material – May be reproduced only in its original entirety (without revision).

	TLS Session Key, TLS Authentication	
	Key; SSH/SFTP Host Key Pair, SSH/SFTP	
	Session Encryption Key, SSH/SFTP	
	Session Authentication key, SP 800-	
	90A CTR_DRBG Seed, SP 800-90A	
	CTR_DRBG Nonce, SP 800-90A	
	CTR_DRBG key value, SP 800-90A V	
	value	
Request Status Information	SNMP Privacy Key, SNMP	R/W/X
	Authentication Key, SNMPv3	
	Password; DH Key Pair, ECDH Key Pair,	
	Premaster Secret, TLS Master Secret,	
	TLS Session Key, TLS Authentication	
	Key; SSH/SFTP Host Key Pair, SSH/SFTP	
	Session Encryption Key, SSH/SFTP	
	Session Authentication key, SP 800-	
	90A CTR DRBG Seed, SP 800-90A	
	CTR DRBG Nonce, SP 800-90A	
	CTR_DRBG key value. SP 800-90A V	
	value	
Set Configuration data	SNMP Privacy Key, SNMP	R/W/X
	Authentication Key, SNMPv3	, ,
	Password: DH Key Pair. ECDH Key Pair.	
	Premaster Secret, TLS Master Secret,	
	TLS Session Key, TLS Authentication	
	Kev: SSH/SETP Host Key Pair SSH/SETP	
	Session Encryption Key, SSH/SETP	
	Session Authentication key SP 800-	
	90A CTR_DRBG Seed, SP 800-90A	
	CTR_DRBG Nonce_SP 800-90A	
	CTR_DRBG key value. SP 800-90A V	
	value	
View Network Topology	SNMP Privacy Key, SNMP	R/W/X
	Authentication Key, SNMPv3	
	Password; DH Key Pair, ECDH Key Pair,	
	Premaster Secret, TLS Master Secret,	
	TLS Session Key, TLS Authentication	
	Key; SSH/SFTP Host Key Pair, SSH/SFTP	
	Session Encryption Key, SSH/SFTP	
	Session Authentication key, SP 800-	
	90A CTR_DRBG Seed, SP 800-90A	
	CTR_DRBG Nonce, SP 800-90A	
	CTR_DRBG key value, SP 800-90A V	
	value	
On-Demand Self-test	N/A	N/A
Zeroization/Factory Reset	All CSPs	R/W/X
Firmware Update	DH Key Pair, ECDH Key Pair, Premaster	R/W/X
	Secret, TLS Master Secret, TLS Session	
	Key, TLS Authentication Key, SP 800-	
	90A CTR_DRBG Seed, SP 800-90A	
	CTR_DRBG Nonce, SP 800-90A	
	CTR_DRBG key value, SP 800-90A V	

	value	
Table 14 - Approved Service to Key/CSP Mapping		

8.3 Key Generation and Entropy

The module is a hardware module with an entropy-generating NDRNG inside the module's cryptographic boundary consistent with Scenario 1 (a) described in FIPS 140-2 IG 7.14. The module performs a CRNGT on the entropy input it receives. The module's firmware requests 512-bits from the entropy buffer (which is filled by the NDRNG). The firmware will use 384 bits as seed for the Approved CTR_DRBG. Therefore, the 384-bits used to seed the DRBG will contain ~307-bits of actual entropy which is more than 256-bits of entropy required for the CTR_DRBG, per NIST SP 800-90A.

In accordance with FIPS 140-2 IG D.12, the cryptographic module performs Cryptographic Key Generation (CKG) as per SP 800-133 (vendor affirmed). The resulting generated symmetric keys are the unmodified output from the SP 800-90A DRBG.

8.4 Zeroization

Ephemeral secret keys are zeroized either at session termination or by power-cycling the module. Persistently stored CSPs can also be zeroized by issuing a factory reset. This changes all values back to zero or the default values.

In the case SSH/SFTP Host Key Pair, the zeroization command must be invoked by the Admin role at the CLI.

If the module is transitions from the non-Approved to the Approved mode or vice versa, the module shall be zeroized prior to switching modes.

The output data path is provided by the data interfaces and is logically disconnected from processes performing key generation or zeroization. No key information will be output through the data output interface when the module zeroizes keys.

9. Self-tests

FIPS 140-2 requires the module to perform self-tests to ensure the module integrity and the correctness of the cryptographic functionality at start-up. Some functions require conditional tests during normal operation of the module.

If any of the tests fail, the module will return an error code and transition to an error state where no functions can be executed. An operator can attempt to reset the state by cycling the power. However, the failure of a self-test may require the module to be replaced.

9.1 Power-On Self-Tests

Power-on self-tests are run upon the initialization of the module and do not require operator intervention to run. If any of the tests fail, the module will not initialize. The module will enter an error state and no services can be accessed by the operator.

The module implements the following power-on self-tests in the Module:

Туре	Test Description
Integrity Test	HMAC-SHA-384 keyed hash integrity test on the module firmware

Known Answer	Hardware AES ECB KAT (Encryption and Decryption. Size 256)	
Tests	Hardware AES GCM KAT (Encryption and Decryption. Size 256)	
	• Firmware SHS KAT (SHA-1, SHA-256, SHA-384 and SHA-512)	
	Firmware HMAC KAT (HMAC-SHA-384)	
	Firmware AES ECB KAT (Encryption and Decryption. Size 256)	
	• Firmware AES GCM KAT (Encryption and Decryption. Size 256)	
	Firmware SP 800-90A CTR_DRBG KAT	
	Firmware RSA (Sign and Verify. Size 2048)	
	Firmware Diffie-Hellman Primitive "Z" Computation KAT	
	Firmware EC Diffie-Hellman Primitive "Z" Computation KAT	
Table 15 - Power-up Self-tests		

The module performs all power-on self-tests automatically when it is initialized. All power-on self-tests must be passed before a User/Crypto Officer can perform services. The Power-on self-tests can be run on demand by rebooting the module in FIPS approved Mode of Operation. Should any of the above tests fails, the device enters an error state. In an error state no traffic is allowed In/Out of the device.

9.2 Conditional Self-Tests

Conditional self-tests are test that run during operation of the module. Each module performs the following conditional self-tests:

Туре	Test Description
CRNGT on NDRNG	Continuous RNG test (CRNGT) performed on entropy input from the
	TRNG
CRNGT on the DRBG	Continuous RNG test (CRNGT) for the SP800-90A DRBG
DRBG Health Tests	Performed on DRBG, per SP 800-90A Section 11.3. Required per IG
	W.3.
Pairwise Consistency Test	RSA Key Generation
Bypass Test	SHA-384 hash on service table
Firmware Load Test	HMAC-SHA-384 based integrity test to verify firmware to be loaded
	into the module

Table 16 - Conditional Self-tests

9.3 Critical Function Tests

The module implements the following critical function tests which execute at start-up or during operation of the module.

Туре	Test Description
Hardware TRNG Health checks	The hardware-based entropy source performs health checking functions prior to providing output.
DRBG Health Tests	Performed on DRBG, per SP 800-90A Section 11.3. Required per IG W.3.

Table 17 – Critical Function Tests

10. Guidance and Secure Operation

This section describes the configuration, maintenance, and administration of the cryptographic module. The Crypto Officer is responsible for ensuring none of the plaintext protocols or non-Approved ciphers in Section 10 are disabled. When configured according to the Section 10 in this Security Policy, the modules only run in their FIPS-Approved mode of operation with the exception of the Services in Table 7. Services listed in Table 7 make use of non-compliant cryptographic algorithms. Use of these algorithms are prohibited in a FIPS-approved mode of operation.

When the module is powered on, its power-up self-tests are executed without any operator intervention.

10.1 Initialization

The operator shall set up the device as defined in the PacketLight PL-2000M_AD_ADS Security Guide (the Security Guide is shipped with the cryptographic module). The Crypto-Officer shall also:

- Verify that the firmware version of the module is 1.3.12.
- The default password of the Admin and Crypto-officer shall be changed upon first use.
- All operator passwords must be a minimum of 8 characters in length.
- The default Pre-Shared Secret for Data Plane Encryption must be changed by the Crypto-Officer prior to enabling the Data Plane Encryption Service
- RADIUS shall be disabled and not used the Approved mode of operation.
- Syslog shall be disabled and not used the Approved mode of operation.
- The Crypto-Officer shall be aware that performing the "Lock Encrypted Service" command will prevent the module from zeroizing CSPs.
- Enable HTTPS and configure the web server certificate prior to connecting to the WebUI over TLS.
- Ensure that SNMPv1 and SNMPv2c are disabled.
- Ensure the SNMP V3 Authentication is not set to use "No Auth" or "No Priv". HMAC-SHA-1, HMAC-SHA-256, HMAC-SHA-384 or HMAC-SHA-512 shall be used for Authentication. AES-128, AES-192 and AES-256 shall be used for Privacy.
- For SSH/SFTP, ensure modulus sizes of 2048-bits of strength or use group 14 selected for Diffie-Hellman.
- Ensure that SSH is configured to use RSA for authentication.
- Ensure RSA keys are at least 2048-bit keys. No 512-bit or 1024-bit keys shall be used in FIPS mode of operation.
- The Crypto Officer shall ensure the Key Exchange Period for OTU4 traffic does not exceed 80 hours.
- Ensure all traffic is encapsulated in a TLS tunnel as appropriate. Ensure use of FIPS-approved algorithms for TLS:
 - DHE-RSA-AES256-GCM-SHA384;
 - DHE-RSA-AES128-GCM-SHA256;
 - ECDHE-RSA-AES256-GCM-SHA384;
 - ECDHE-RSA-AES128-GCM-SHA256;
 - DHE-RSA-AES256-SHA256;
 - DHE-RSA-AES128-SHA256;
 - ECDHE-RSA-AES256-SHA384;

- ECDHE-RSA-AES128-SHA256;
- ECDHE-RSA-AES256-SHA;
- ECDHE-RSA-AES128-SHA;
- DHE-RSA-AES256-SHA; and
- DHE-RSA-AES128-SHA.

Use of the services in Section 8.1.2 or non-conformant algorithms listed in Section 8.1.3 will place the module in a non-approved mode of operation.

10.2 Usage of AES GCM in the module

The module's software AES-GCM implementation conforms to IG A.5 scenario #1 following RFC 5288 for TLS. The module is compatible with TLS v1.2 and provides support for the acceptable GCM cipher suites from SP 800-52 Rev1, Section 3.3.1. The counter portion of the IV is set by the module within its cryptographic boundary. When the IV exhausts the maximum number of possible values for a given session key, the first party, client or server, to encounter this condition will trigger a handshake to establish a new encryption key. In case the module's power is lost and then restored, a new key for use with the AES GCM encryption/decryption shall be established.

The module's hardware AES-GCM implementation conforms to IG A.5, scenario #4. The module uses a 128-bit IV which is constructed deterministically per SP 800-38D Section 8.2.1 from a Frame Block Counter, Multi-Frame Index (MFI), Multi Frame Alignment Signal (MFAS) and a nonce.

Per the requirements specified in Section 8 in NIST SP 800-38D, the probability that the authenticated encryption function ever will be invoked with the same IV and the same key on two (or more) distinct sets of input data is no greater than 2^{-32} .

The in all cases the module enforces FIPS 140-2 IG A.5, which states that in case the module's power is lost and then restored, a new key for use with the AES GCM encryption/decryption shall be established.

11. Glossary

Term	Description
AES	Advanced Encryption Standard
CAVP	Cryptographic Algorithm Validation Program
CFP	C Form-factor Pluggable
СКС	Cryptographic Key Generation
CMVP	Cryptographic Module Validation Program
СОМ	Communication
CRNGT	Continuous Random Number Generator Test
CSP	Critical Security Parameter
CTR	Counter
DRBG	Deterministic Random Bit Generator
ECB	Electronic Codebook
FIPS	Federal Information Processing Standards
GCM	Galois/Counter Mode
IG	Implementation Guidance
IV	Initialization vector
КАТ	Known answer test
KBKDF	Key-Based Key Derivation Function
KDF	Key-Derivation Function
MFAS	Multi-Frame Alignment Signal
MFI	Multi-Frame Index
NIST	National Institute of Standards and Technology
NDRNG	Non-Deterministic Random Number Generator
OSC	Open Sound Control
OTN	Optical Transport Network
QSFP	Quad Small Form-factor Pluggable
RSA	Rivest Shamir Adleman
SFP	Small Form-factor Pluggable
SHA	Secure Hash Algorithm
SHS	Secure Hash Standard
TRNG	True Random Number Generator

Table 18 - Glossary of Terms