

FIPS 140-2 Non-Proprietary Security Policy

Postal NRevenector US 2018

Version 1.7

Hardware P/N: 58.0036.0301.00 or 58.0036.0302.00

Firmware Version:

Bootloader. 90.0036.0401.00/2019141001

US Application: 90.0036.0416.00/2019141001

FP InovoLabs GmbH Prenzlauer Promenade 28 13089 Berlin Germany

fp-francotyp.com

Contents

1	Introduction	4
2	Cryptographic Module Specification	5
3	Cryptographic Ports and Interfaces	6
4	Rules of Operation	7
5	Roles, Services, Authentication & Identification	9
6	Physical Security	13
7	Cryptographic Functions	14
8	Cryptographic Keys and Critical Security Parameters	16
9	Self-Tests	20
10	Mitigating Other Attacks	22
11	Glossary and Abbreviations	23
12	References	24
Fig	gures	
Figure	ire: 1 <i>Postal NRevenector US 2018</i>	4
Figure	ıre: 2 Module Boundary (Outer Edge of Epoxy)	6
Tal	bles	
Table	le 1: FIPS 140-2 Security Levels	5
Table	le 2: Cryptographic Ports & Interfaces	6
Table	le 3: Services and Roles	11
Table	le 4: FIPS 140-2 Approved Security Functions	14
Table	le 5: FIPS 140-2 Non-Approved Algorithms (Not Security Functions)	15
Table	le 6: Critical Security Parameters	17
Table	le 7: Public Security Parameters	18
Table	le 8: Zeroization	19

Postal NRevenector US 2018 - Security Policy

Table 9: FIPS 140-2 Cryptographic Algorithm Tests	20
Table 10: Conditional Tests	21
Table 11: Glossary and Abbreviations	23
Table 12: Deferences	24

1 Introduction

1.1 Overview

FP InovoLabs GmbH is a wholly-owned subsidiary of Francotyp-Postalia Holding AG (FP), one of the leading global suppliers of mail center solutions. A major component of FP's business is the production and support of postal franking machines (postage meters). FP InovoLabs GmbH is responsible for developing these postal franking machines for FP.

Figure: 1 Postal NRevenector US 2018

Each postal franking machine incorporate a postal security device (PSD) that performs all postage meter cryptographic and postal

security functions and which protects both Critical Security Parameters (CSPs) and Postal Relevant Data Items (PRDIs) from unauthorized access. The *Postal NRevenector US 2018* is FP's latest generation of PSD.

This document forms a Cryptographic Module Security Policy for the cryptographic module of the device under the terms of the NIST FIPS 140-2 validation. This Security Policy specifies the security rules under which this device operates. This policy covers both the operation of the bootloader and the postal application.

1.2 Implementation

The *Postal NRevenector US 2018* is a multiple-chip embedded cryptographic module, based around a cryptographic integrated circuit, together with a small number of support components. The components, mounted on a PCB, are covered by hard opaque potting material. The extent of the potting forms the cryptographic boundary of the module. The module has a proprietary electrical connector forming the interface to it. The module does not contain a modifiable operational environment.

2 Cryptographic Module Specification

2.1 FIPS Security Level Compliance

The cryptographic module is designed to meet FIPS 140-2 as shown in the table below:

Section	Security Requirement	Level
1	Cryptographic Module Specification	3
2	Cryptographic Module Ports and Interfaces	3
3	Roles, Services and Authentication	3
4	Finite State Model	3
5	Physical Security	3 + EFP
6	Operational Environment	N/A
7	Cryptographic Key Management	3
8	Electromagnetic Interference/ Electromagnetic Compatibility (EMI/EMC)	3
9	Self-Tests	3
10	Design Assurance	3
11	Mitigation of Other Attacks	3

Table 1: FIPS 140-2 Security Levels

3 Cryptographic Ports and Interfaces

The cryptographic module ports and interfaces are as indicated in Table 2.

External Port	Interface Type	Description
36-pin Serial IO card edge connector	Data input Data output Control input Status output Power input	Interface for communicating with module
USB Port (disabled for version 58.0036.0302.00)	Data input Data output Control input Status output Power input	Alternate interface for communicating with module
Status LEDs (ERR, BL, PWR, APP)	Status output	 ERR: error BL: Bootloader running PWR: internal power supply on APP: Application running
Battery	Power input	Additional power supply for module.

Table 2: Cryptographic Ports & Interfaces

3.1 Cryptographic boundary

The cryptographic boundary is defined to be the outer edge of the epoxy that covers most of the printed circuit board, as shown below.

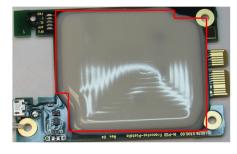


Figure: 2 Module Boundary (Outer Edge of Epoxy)

There are a small number of components on the printed circuit board that lie outside the cryptographic boundary, which may or may not be present depending on the build version of the device. These components have no impact on security-related aspects of the module.

4 Rules of Operation

4.1 FIPS 140-2 Related Security Rules

The Postal NRevenector US 2018 shall:

- 1. Support only an Approved mode of operation. The Approved mode indicator is returned via the Get Device Status service.
- 2. Not allow unauthenticated operators to have any access to the module's cryptographic services.
- 3. Inhibit data output during self-tests and error states.
- 4. Logically disconnect data output from the processes performing zeroization and key generation.
- 5. Enforce identity-based authentication for roles that access Approved algorithms and CSPs.
- 6. Not retain the authentication of an operator following power-off or reboot.
- 7. Support the following roles: Default User, User, and Cryptographic Officer.
- 8. Not permit the output of plaintext cryptographic keys or other CSPs.
- 9. Not support a bypass mode or maintenance mode.
- 10. Support the following logically distinct interfaces:
 - Data input interface
 - Data output interface
 - Control input interface
 - Status output interface
 - Power interface.
- 11. Implement all firmware using a high-level language, except the limited use of low-level languages to enhance performance.
- 12. Protect critical security parameters from unauthorized disclosure, modification and substitution.
- 13. Provide means to ensure that a key entered into or stored within the device is associated with the correct entities to which the key is assigned.
- 14. Support a FIPS approved deterministic random bit generator (DRBG) as specified in NIST SP 800-90a section 10.2.1
- 15. Perform self-tests as listed in section 9 during power-on and on-demand when the corresponding service is used.
- 16. Store an error indication whenever an error state is entered. As a result, the error indication can be read by the Get Device Status Service.
- 17. Not perform any cryptographic functions while in an error state.
- 18. Not support multiple concurrent operators.
- 19. Ensure that no more than 2¹⁶ data block encryptions are performed using the same key during Triple-DES encryptions, in accordance with NIST Implementation Guideline for FIPS 140-2 §A13.

4.2 USPS Related Security Rules

Based on the specifications of the United States Postal Service (USPS) the *Postal NRevenector US 2018* shall:

- 1. Comply with the specifications of the USPS for Intelligent Mail Indicia Performance Criteria.
- 2. Protect the postal registers against unauthorized substitution or modification.
- 3. Never zeroize the postal registers.
- 4. Provide mechanisms to disable the Accounting-Service when it has no connection with its partnering infrastructure on a regular basis.
- 5. Provide mechanisms to re-key the indicia key on a regular basis
- 6. Provide services for protecting postal related data inside its hosting system against unauthorized substitution or modification.

5 Roles, Services, Authentication & Identification

5.1 Roles

The *Postal NRevenector US 2018* supports three distinct roles:

- Default User
- User
- Cryptographic Officer

Any services which do not read, update, modify or generate critical security parameters (CSPs) do not require authentication.

5.2 Default User Role

By default, the device enters the *Default user* role, which is an unauthenticated role, for services that do not require authentication. The Host System typically acts on behalf of the Default operator and can request unauthenticated services.

5.3 User Role

The *User* is authenticated using an identity-based authentication method. This method is based on a challenge-response protocol using a User ID (UID) and secret passphrase known to both parties (preloaded into the module). The Host System typically acts on behalf of the User and can request authenticated services (which may access critical security parameters).

5.4 Cryptographic Officer Role

The *Cryptographic Officer* is authenticated using an identity-based authentication method in the form of an RSA 2048 digital signature. The *Cryptographic Officer* presents a 2048-bit RSA digital signature, which is verified by the module's corresponding public key (PKM public key). After authentication, key agreement is used to generate ephemeral session keys (RSEK and RSAK). The ephemeral session keys (3-Key Triple DES and HMAC-SHA-1) are then used additionally to authenticate several further messages that require CO authentication during that session.

The Cryptographic Officer role shall provide those services necessary to initialize, authorize and validate the *Postal NRevenector US 2018*. This role provides those services which enter, modify or generate critical security parameters.

An infrastructure server belonging to FP typically acts on behalf of a Cryptographic Officer.

5.5 Services and Roles

The following services are offered by the cryptographic module; the abbreviations used in the table are:

• Roles: U = User, DU = Default User, CO= Cryptographic Officer

• Access Rights: R = read, W = write, Z = zeroize, G = generate

Service	Approved Security Functions Used	Associated CSPs	Access Rights	Roles	Note
(All services that access CSPs)	AES 128 CTR AES 128 CBC HMAC-SHA-256	MKEK NVDEK NVDAK	R DU,		The module automatically encrypts, decrypts, and authenticates stored critical security parameters. Operators do not have read access to these CSPs.
Accounting	ECDSA P-224	Indicia Key (private)	R	U	Debits the postal funds and returns indicia content.
Echo	None	None	-	DU	Echoes back data payload.
Generate Indicia Keypair	ECDSA P-224, HMAC-SHA1, DRBG	Indicia Key (private) RSAK DRBG State ¹	G,W R R,W,G	со	Generating and re-keying indicia keypair
Generate PSV Keypair	ECDSA P-224, HMAC-SHA1, DRBG	PSV Key (private) RSAK DRBG State	G,W R R,W,G	со	Generating and re-keying PSV keypair.
Get Device Status	None	None	-	DU	
Local Login	DRBG	Passphrase DRBG State	R R,W,G	DU	The passphrase is used for authentication as part of a 3-way challenge response protocol.
Logoff	None	None	-	CO, U	Leaves the CO or User role.
Postage Value Download	3-Key Triple DES CBC, HMAC-SHA1	RSEK RSAK	R R	со	Finance service, managing postal funds
Postage Value Refund	3-Key Triple DES CBC, HMAC-SHA1	RSEK RSAK	R R	со	Finance service, managing postal funds.
Postal Authorization	HMAC-SHA1	RSAK	R	со	Authorize the device according to the USPS -Intelligent Mail Indicia – Performance Criteria requirements.
Postal Initialization	RSA 2048 Sign/Verify using SHA-256, 3-Key Triple DES CBC, HMAC-SHA1, DRBG	PSD Key (private) RSEK RSAK DRBG State	G,W R R R,W,G	СО	Initialize the device according to the USPS -Intelligent Mail Indicia — Performance Criteria requirements.
Program Flash with firmware	RSA 2048 Verify using SHA-256	None	-	U	Receives firmware from an external source and programs it into the cryptographic module's FLASH memory.
Re-Authorization	HMAC-SHA1	RSAK	R	СО	Updates customer configuration data
Re-Initialization	HMAC-SHA1	RSAK	R	СО	Updates postal configuration data
Reboot Device	None	None	-	DU	Service to cause the device to reboot.
Reenter FP Mac Secret	3-Key Triple DES CBC, HMAC-SHA1	RSEK RSAK	R R	СО	Enters FP Mac Secret used to authenticate proprietary data

¹ DRBG State may include the following CSPs: Entropy string, DRBG seed, DRBG state: Key, and DRBG State: V

Service	Approved Associated CSPs Security Functions Used		Access Rights	Roles	Note
			¥ Z	ž	
Rekey PSD key	HMAC-SHA1, RSAK		G,W R R R,W,G	со	Generation of a new PSD Key Pair and exchange with the PKM
Remote Login	note Login RSA 2048 Sign/Verify using SHA-256, PSD Key (private) PSD Key (private) RSK RSK RSK RSAK G,W,R			DU	Required to enter the CO role.
Renew PKM key	lew PKM key RSA 2048 Verify using SHA-256 None			со	Loads signed PKM certificate
Scrap	None MKEK NVDEK NVDAK DRBG State		Z Z Z Z	DU	Zeroizes all plaintext CSPs.
Secure Echo	3-Key Triple DES CBC, HMAC-SHA-1	RSEK RSAK	R R	со	Echoes back data payload within a secure session.
Secure Get Status	HMAC-SHA-1	RSAK	R	СО	Provides status within a secure session.
Secure Set Time	HMAC-SHA-1	RSAK	R	со	Synchronizes the RTC within a secure session.
Select Programmed Firmware	None	None	-	DU	Configures the bootloader.
Self-Test	All listed in section 9	None	-	DU	
Setup Parameter	None	None	-	DU	Enters postal configuration data.
Sign PMD Data	RSA 2048 Sign using SHA-256	PMD Key (private)	R	U	Sign postal related items and communication data.
Sign PSV Data	ECSDA Sign using P- 224 and SHA-256	PSV Key (private)	R	U	Sign postal related items to be secured.
Verify Mac	None	None	-	U	Authenticates a data payload (using FP Mac Secret).
Verify PSV Data	ECSDA Verify using P- 224 and SHA-256	None	-	U	Verify postal related items stored (using Public PSV Key).

Table 3: Services and Roles

5.6 Authentication Strength

5.6.1 Cryptographic Officer Role

The probability that a random attempt will succeed or a false acceptance will occur shall be less than one in 1,000,000. This is achieved through use of a 2048-bit RSA key to authenticate the role, which has

_

² The Transport Key Pair is used once during initialization, then replaced by the PSD Key Pair on subsequent Remote Logins

been determined to have an effective strength of 112 bits. The probability that a random attempt will succeed is therefore $1/(2^{112})$, which is less than 1/1,000,000.

Should multiple attempts be made to authenticate during a one-minute period, the probability shall be less than one in 100,000 that a random attempt will succeed or a false acceptance will occur. This is achieved by inserting a delay of 1 second after any failed attempt resulting in a maximum of 60 attempts per minute. The probability is therefore $60/(2^{112})$, which is less than 1/100,000.

5.6.2 User Role

The passphrase contains at least 6 randomly chosen characters for the *User* resulting in a total of more than 62^6 combinations (here, 62 represents the complete set of 26 upper- and 26 lower-case ASCII letters, together with 10 digits). The probability that a random attempt will succeed is therefore $1/(62^6)$, which is less than 1/1,000,000.

Should multiple attempts be made to authenticate during a one-minute period, the probability shall be less than one in 100,000 that a random attempt will succeed or a false acceptance will occur. This is achieved by inserting a delay of 1 second after any failed attempt resulting in a maximum of 60 attempts per minute. The probability is therefore $60/(62^6)$, which is less than 1/100,000.

6 Physical Security

All the components of the device are covered with a hard, tamper-evident potting material, which is tamper evident and opaque within the visible spectrum. The module is inspected for tamper evidence each time it is retrieved from the field. Because of the potting material it is not possible to physically access any internal components without seriously damaging the module or causing zeroization. Hardness testing was performed at ambient temperature and at the extremes of the module's documented operating temperature range (-12 °C to 72 °C).

7 Cryptographic Functions

7.1 Modes of Operation

The module has one mode of operation, the FIPS mode of operation. Once the module has completed its self-test and entered its FIPS mode of operation, the LED marked "APP" will light on the printed circuit board. This LED will extinguish when the module is re-booted, for example to restart the FP Bootloader. Additionally, the Approved mode indicator is returned via the Get Device Status service.

7.2 Approved Algorithms

The module implements the following FIPS approved algorithms:

Algorithm	Standard	Mode/ Method	Key Lengths, Curves or Moduli	CAVP Cert.	Use
AES	FIPS 197, SP 800-38A	ECB, CBC, CTR	128	#5662	Data encryption / decryption
CKG	SP 800-133			Vendor affirmed	The unmodified output of the DRBG is used for symmetric key generation and seeds for asymmetric generation
DRBG	SP 800-90A & SP 800-90B	Block Cipher DF	128	#2497	Deterministic random bit generation
DSA	FIPS 186-4		(2048, 224)	#1455	Key generation only for KAS
ECDSA	FIPS 186-4		P-224 ³	#1530	Key Generation, Digital signature generation and verification
HMAC	FIPS 198-1	HMAC-SHA-1	160	#3769	Message authentication
		HMAC-SHA-256	128, 256		
KAS-SSC	SP 800-56Ar3	dhEphem, C(2e, 0s, FFC DH)	(2048, 224) ⁴	Vendor affirmed	Key Agreement: Shared Secret Computation
KDA	SP 800-56Cr1	Single-Step KDF	SHA-256	Vendor Affirmed	Key Agreement: Key Derivation Function
RSA	FIPS 186-4	KeyGen	(2048)	#3046	Key Generation,
		PKCS 1.5 SigGen	(2048, SHA-256)		Digital signature generation and verification
		PKCS 1.5 SigVer	(2048, SHA-256)		מווט עכווווכמנוטוו
		PKCSPSS SigVer	(2048, SHA-256)		
SHS	FIPS 180-4	SHA-1 SHA-256		#4538	Message digest
TDES	SP 800-67r2	ECB, CBC	192	#2839	Data encryption / decryption

Table 4: FIPS 140-2 Approved Security Functions

³ The P-256 curve is included in the CAVP certificate, but is not used by the module

⁴ 186-type FFC primes

7.3 Allowed Algorithms

The module uses a single hardware implemented NDRNG for seeding the DRBG. The NDRNG is allowed, but not FIPS approved. The NDRNG is used as the entropy source for the module's DRBG, which is seeded with full entropy (security strength of 128 bits).

7.4 Non-Approved Algorithms (Not Security Functions)

The following algorithms may be used in the approved mode of operation because they are considered non-approved cryptographic algorithms that are not security functions per IG 1.23. Data secured with these algorithms is considered plaintext.

Algorithm	Caveat	Use
AES	(no security claimed)	Proprietary implementation used for obfuscation of data that remains within the module.
FP MAC	(no security claimed)	Proprietary implementation used for non-compliant legacy verification of non-security relevant data.
KDF	(no security claimed)	Proprietary implementation used to derive non-compliant keys used for obfuscation in the Local Login challenge-response protocol. This algorithm is compliant with FIPS 140-2 requirements for authentication strength.
PBKDF	(no security claimed)	Used to derive non-compliant keys used for obfuscation of data in transit during the Local (User) session. This algorithm is compliant with FIPS 140-2 requirements for authentication strength.

Table 5: FIPS 140-2 Non-Approved Algorithms (Not Security Functions)

8 Cryptographic Keys and Critical Security Parameters

The following section lists the critical and public security parameters that are retained by the device. All encrypted critical security parameters in the module are protected by 128-bit AES using the MKEK (which encrypts the NVDEK and NVDAK, which encrypt and authenticate all encrypted CSPs), which is zeroized by the scrap service. Critical security parameters, including private and secret keys, are not output by or input to the module.

8.1 Critical Security Parameters

The table below lists the critical security parameters:

Name	Algorithm	Storage	Generation	Establishment	Destruction	Purpose
Data Encryption Master Key (MKEK) (128-bit key)	AES-128 bits, Counter mode	Plaintext	Internal DRBG (during manufacturing)	N/A	Scrap service or tamper event	Serves to encrypt and decrypt critical security parameters.
Data Encryption Key (NVDEK) (128-bit key)	AES CBC	Encrypted	Internal DRBG (during manufacturing)	N/A	Scrap service, tamper event.	Serves to encrypt and decrypt other internally stored critical security parameters.
Data Authentication Key (NVDAK) (128-bit key)	HMAC-SHA256	Encrypted	Internal DRBG (during manufacturing)	N/A	Scrap service, tamper event.	Serves to authenticate other internally stored critical security parameters.
Entropy string	NDRNG	Not persistently stored	Internal NDRNG	N/A	Power cycle (volatile)	Required for generation of DRBG state
DRBG seed	CTR_DRBG using AES 128	Not persistently stored	Internal NDRNG	N/A	Power cycle (volatile)	Internal state of the Deterministic Random Bit Generator.
DRBG State: Key	CTR_DRBG using AES 128	Encrypted	Updated during random number generation	N/A	Scrap service, tamper event.	Internal state of the Deterministic Random Bit Generator.
DRBG State: V	CTR_DRBG using AES 128	Encrypted	Updated during random number generation	N/A	Scrap service, tamper event.	Internal state of the Deterministic Random Bit Generator.
Passphrase	N/A	Encrypted	N/A	Pre-loaded (during manufacturing)	N/A (encrypting key zeroized by scrap/tamper)	Used for User Identity based authentication

Name	Algorithm	Storage	Generation	Establishment	Destruction	Purpose
Transport Signing (private) Key (2048 bit key)	RSA PKCS#1 V1.5	Encrypted	Internal DRBG (during manufacturing)	N/A	N/A (encrypting key zeroized by scrap/tamper)	Serves to properly identify device after shipping and to establish initial secure session.
PMD Signing (private) Key (2048 bit key)	RSA PKCS#1 V1.5	Encrypted	Internal DRBG (during manufacturing)	N/A	N/A (encrypting key zeroized by scrap/tamper)	Used to support hosting device during its authentication services.
PSD Signing (private) Key (2048 bit key)	RSA PKCS#1 V1.5	Encrypted	Internal DRBG	N/A	N/A (encrypting key zeroized by scrap/tamper)	Serves to setup regular secure sessions.
Indicia Key (private part of 224 bit key)	ECDSA P-224	Encrypted	Internal DRBG	N/A	N/A (encrypting key zeroized by scrap/tamper)	Serves to authenticate indicia (barcode part).
PSV Key (private part of 224 bit key)	ECDSA P-224	Encrypted	Internal DRBG	N/A	N/A (encrypting key zeroized by scrap/tamper)	Serves to authenticate postal related items.
Ephemeral Diffie- Hellman Client (private) Key (224 bit key)	KAS SP 800-56A	Not persistently stored	Internal DRBG	N/A	Zeroized after use	Serves to derive session keys for the Cryptographic Officer.
Remote Session Authentication Key (RSAK) (160-bit HMAC key)	HMAC -SHA1	Not persistently stored	N/A	Key Agreement/ Derivation	Zeroized after use	Serves to authenticate data during a remote secure session (CO role)
Remote Session Encryption Key (RSEK) (192 bit 3-Key Triple-DES key)	3-Key Triple-DES CBC	Not persistently stored	N/A	Key Agreement/ Derivation	Zeroized after use	Serves to encrypt and decrypt data during a remote secure session (CO role).

Table 6: Critical Security Parameters

8.2 Public Security Parameters

The following public keys are stored in the device:

	-			
Name of certificate or public key	Algorithm	Storage	Establishment	Purpose
FPRootCACert & public key	2048-bit RSA key	Plaintext	N/A	Serves to authenticate FDC and PKM keys
FPCustomerRootKey	2048-bit RSA key	Plaintext	N/A	Used to verify integrity of Bootloader firmware
Firmware Verification Key	2048-bit RSA key	Plaintext	N/A	Used to verify firmware from Francotyp- Postalia.
FDCCert & public key	2048-bit RSA key	Plaintext	N/A	Serves to authenticate TransportKey
PKMCert & public key	2048-bit RSA key	Plaintext	N/A	Serves to authenticate Cryptographic Officer
TransportCert & public key	2048-bit RSA key	Plaintext	Internal DRBG (Manufacturing)	Serves to initially authenticate <i>Postal NRevenector US 2018</i>
PSDKey (certificate & public key)	2048-bit RSA key	Plaintext	Internal DRBG	Serves to authenticate <i>Postal NRevenector US</i> 2018
RootCABCCert & public key	2048-bit RSA key	Plaintext	N/A	Serves to authenticate FDCBC and PMD keys
FDCBCCert & public key	2048-bit RSA key	Plaintext	N/A	Serves to authenticate PMDKey
PMDKeyCert & public key	2048 bit RSA key	Plaintext	Internal DRBG (Manufacturing)	Used to support hosting device during its authentication services.
Ephemeral Diffie-Hellman Client (public) Key	KAS SP 800-56A	Not persistently stored	Internal (KAS SP 800-56A)	Serves to derive session keys for the Cryptographic Officer.
(2048 bit key)				
Ephemeral Diffie-Hellman Server (public) Key	KAS SP 800-56A	Not persistently	KAS SP 800-56A	Serves to derive session keys for the Cryptographic Officer.
(2048 bit key)		stored		
Indicia Key (public part of 224 bit key)	ECDSA P-224	Plaintext	Generated by Internal DRBG per FIPS 186-4	Serves to authenticate indicia (barcode part).
PSV Key (public part of 224 bit key)	ECDSA P-224	Plaintext	Generated by Internal DRBG per FIPS 186-4	Serves to authenticate postal related items.

Table 7: Public Security Parameters

8.3 Zeroization

Zeroization may occur under the following conditions:

Event	Effect	Resulting State	Speed	Recovery Action
Tamper	All CSPs rendered unreadable.	Chip unbootable until tamper cause has been removed and device is power cycled. If bootable, device permanently enters DEFECT state. No cryptographic functions may be used.	Immediate	Return to FP.
Battery removed	All CSPs rendered unreadable.	Restoring battery will result in device permanently entering DEFECT state. No cryptographic functions may be used.	Immediate	Return to FP.
Scrap service run	All CSPs rendered unreadable.	Device permanently enters SCRAPPED state. No cryptographic functions may be run.	Fast (<40µs)	Return to FP.

Table 8: Zeroization

9 Self-Tests

9.1 Power on self-tests

The following self-tests are performed when the module starts:

9.1.1 Firmware Integrity Test

The integrity of the *NRevenector US 2018* (Bootloader) is verified at initial power-on of the module by comparing the generated hash against a known SHA 256 hash from PKCSPSS (RSA #3046). The *NRevenector US 2018* (Bootloader) checks the SHA 256 hash of the *Postal NRevenector US 2018* (US Application) firmware in the cryptographic module and verifies this against a known hash value generated as part of the PKCS#1 V1.5 (Signature Scheme) (RSA #3046).

9.1.2 Cryptographic Algorithm Tests

The following table lists the cryptographic algorithm tests for approved security functions that are performed as part of the power-on self-tests. See Table 4 for corresponding NIST certificates.

Security Function	Type of self-test
AES 128 Encrypt/Decrypt (ECB, CBC)	Encrypt KATs (Known Answer Tests)
	Decrypt KATs
DRBG ⁵	Instantiate KAT
	Generate KAT
	Reseed KAT
DSA Key Pair Generation (2048, 224)	DSA does not include Sign/Verify functionality; only testing for key generation is applicable (included in Diffie-Hellman Key Agreement conditional test)
ECDSA P-224 Curve Sign/Verify using SHA-256	Pairwise Consistency Test
HMAC-SHA-1 & HMAC-SHA-256 (includes SHA tests)	HMAC-SHA-1 KAT
	HMAC-SHA-256 KAT
Key Agreement Scheme	Diffie-Hellman Primitive Z computation KAT
	SHA-256 KDF KAT (covered by HMAC-SHA-256 KAT)
RSA 2048 bit Sign/Verify using SHA-256	Sign KAT
	Verify KAT
Triple-DES Encrypt/Decrypt (ECB, CBC)	Encrypt KATs
	Decrypt KATs

Table 9: FIPS 140-2 Cryptographic Algorithm Tests

_

 $^{^{5}}$ In accordance with FIPS 140-2 Implementation Guidelines February 2019 sect 9.8, the SP 800-90A compliant DRBG does not perform the continuous random number generator test as described in FIPS 140-2 section 4.9.2

9.2 Conditional Tests

The following conditional tests are performed:

Security Function	Self-Test Performed
NDRNG ⁶	Repetition count test and adaptive proportion test in accordance with FIPS 140-2 Implementation Guidelines February 2019 sect 9.8.
Diffie-Hellman Key Agreement	DH FFC Pairwise Consistency Test (covers Key Generation for DSA Cert. #1455)
	Assurance of Public Key Validation
	Assurance of Domain Parameter Validity
	On key establishment:
	See SP 800-56A, see FIPS 140-2 section 4.9.2 "Pair-wise consistency test 2"
	See SP 800-56A section 5.6.2 and 5.5.2
ECDSA P-224 Curve using SHA- 256	On key generation: see FIPS 140-2 section 4.9.2 "Pair-wise consistency test 2".
RSA 2048 bit using SHA-256	On key generation: see FIPS 140-2 section 4.9.2 "Pair-wise consistency test 2".
Triple-DES (ECB & CBC)	Triple-DES encryption limit of 2^16. This is enforced by the use of a counter that is incremented every time that the module performs a Triple-DES encryption. If the counter reaches the encryption limit, then the module will enter an error state, the user session will be broken, and the module will be re-booted.
Firmware Loading Test	On loading of programmed firmware (US Application):
	Performs RSA 2048 SHA 256 signature verification.

Table 10: Conditional Tests

9.2.1 Critical Function Tests

The module continuously checks the consistency of the redundantly stored postal registers and tests the Microcontroller Operational Mode.

9.3 Error States

The module implements several self-tests during power up and as conditional self-tests linked to cryptographic operations.

In the event of an error being detected, the *Postal NRevenector US 2018* enters an error state and stores the reason (error identifier) persistently. The error state information can be retrieved via the Get Device Status service.

Error states may be cleared only by power-cycling the module.

-

 $^{^6}$ In accordance with FIPS 140-2 Implementation Guidelines February 2019 sect 9.8, the NDRNG performs the repetition count test instead of the continuous random number generator test as described in FIPS 140-2 section 4.9.2

10 Mitigating Other Attacks

The device includes environmental failure protection means for the battery voltage and the module temperature. If an attack is detected then the contents of the cryptographic integrated circuit's battery-powered key storage are automatically zeroized, leaving the module inoperable.

The device includes environmental failure protection means for the main input voltage, the internal core voltage. If one of these conditions is outside a defined range the device is held in the reset condition. The device also includes environmental failure protection such that temperature changes outside the normal operating ranges will not compromise the security of the device.

The device includes a protection means to test for drift in the main clock frequency of the processor. The cryptographic module's processor also incorporates a layer of metal shielding as one of its layers, used to detect attempts at intrusion at a die level. In the event of an intrusion attempt being detected, the contents of its battery-powered key storage are automatically zeroized leaving the module inoperable.

The failure protection for the battery voltage and temperature, and the tamper detection for the physical breach of the module's physical boundary are present using power from the battery even when the device is switched off. The module's processor responds by destroying the stored plaintext CSPs.

11 Glossary and Abbreviations

Term	Definition
AES	Advanced Encryption Standard
CKG	Cryptographic Key Generation
CSPs	Critical Security Parameters
DH	Diffie-Hellman
DRBG	Deterministic Random Bit Generator
DSA	Digital Signature Algorithm
ECDSA	Elliptic Curve Digital Signature Algorithm
EMI/EMC	Electromagnetic Interference/ Electromagnetic Compatibility
FP	Francotyp-Postalia Holding AG
HMAC	Hash-based Message Authentication Code
KAS	Key Agreement Scheme
KDF	Key Derivation Function
MAC	Message Authentication Code
MKEK	Data Encryption Master Key
NVDAK	Non-Volatile Data Authentication Key
NVDEK	Non-Volatile Data Encryption Key
PBKDF	Password-Based Key Derivation Function
PRDIs	Postal Relevant Data Items
PSD	Postal Security Device
RSA	Rivest–Shamir–Adleman (asymmetric algorithm)
RSAK	Remote Session Authentication Key
RSEK	Remote Session Encryption Key
SHS	Secure Hash Algorithm
TDES or Triple DES	Triple Data Encryption Standard
UID	User ID
USPS	United States Postal Service

Table 11: Glossary and Abbreviations

12 References

Reference	Publication
FIPS 140-2 Derived Test Requirements (DTR)	January 2011
FIPS 140-2 Implementation Guidance (IG)	February 2019; August 2019
FIPS 140-2 Publication (PUB)	May 2001
FIPS 180-4	August 2015
FIPS 186-4	July 2013
FIPS 197	November 2001
FIPS 198-1	July 2008
NIST SP 800-38A	December 2001
NIST SP 800-56A	Revision 1, March 2007; Revision 3, April 2018
NIST SP 800-56C	Revision 1, April 2018
NIST SP 800-67	Revision 2, November 2017
NIST SP 800-90A	June 2015
NIST SP 800-90B	January 2018
NIST SP 800-133	December 2012

Table 12: References