

Non-Proprietary FIPS 140-2 Security Policy: KMF/Wave/Traffic CryptR

Document Version: 1.5 Date: January 9, 2020

Table of Contents

KM	F/Wave/Traffic CryptR1		
1	Introduction		
	1.1 Module Description and Cryptographic Boundary		
2	Modes of Operation		
	2.1 Approved Mode Configuration		
3	Cryptographic Functionality		
	3.1 Critical Security Parameters		
4	Roles, Authentication and Services16		
	4.1Assumption of Roles164.2Authentication Methods174.3Services18		
5	Self-tests		
6	Physical Security Policy24		
7	Operational Environment		
8	Mitigation of Other Attacks Policy		
9	Security Rules and Guidance		
	9.1 Invariant Rules		
10	AES-256 GCM IV Generation Protocol27		
11	References and Definitions		

List of Tables

4
4
4
5
5
7
8
9
0
.1
.5
.6
.7
.8
.9
21
28
29

List of Figures

Figure 1: The Module – Rear, Top and Front View	6
Figure 2: Top/Front/Right view	25
Figure 3: Underside/Rear/Left view	25
Figure 4: Right Side Tamper Label Placement	25
Figure 5: Left Side Temper Label Placement	25

1 Introduction

This document defines the Security Policy for the Motorola Solutions KMF/WAVE/Traffic CryptR module, hereafter denoted the Module. The Module is a production grade, multi-chip standalone cryptographic module as defined by FIPS 140-2 and is designed to meet Level 2 Physical Security requirements. The Module provides encryption and decryption services for secure key management, Over-the-Air-Rekeying (OTAR), and secure voice/data traffics for the Motorola's Key Management Facility (KMF) and the Motorola's Wave System. In the Wave System, the Module is referred to as the Wave CryptR/Traffic CryptR. In the Astro System, the Module is referred to as the KMF CryptR. The KMF and KMF CryptR combine to provide cryptographic services for Motorola's APCO-25 compliant Astro[™] radio systems.

Tabl	e 1 – Cryptographic Module Configuration	on

Module	HW P/N* and Version	Base FW Version
KMF/Wave/Traffic CryptR	CLN8566A, Rev. 0x1	R03.03.05
	CLN1875A, Rev. 0x1	

Algorithms may also optionally be loaded into, or "Drop-in" the Module independent of the Base FW via the Program Update service.

Algorithm	Algorithm FW Version	Cert. #
AES128	R01.00.01 (0x52010001)	C489
AES256	R01.00.03 (0x52010003)	C491

Table 3 – Non-Approved Mode Drop-in Algorithms

Algorithm	Algorithm FW Version
ADP	R01.00.00 (0x52010000)
DES-XL	R01.00.00 (0x52010000)
DES-OFB	R01.00.00 (0x52010000)
DES-ECB	R01.00.00 (0x52010000)
DES-CBC	R01.00.00 (0x52010000)
DVI-XL	R01.00.00 (0x52010000)
DVP-XL	R01.00.00 (0x52010000)
Localized Capable	R01.00.00 (0x52010000)

The Module is intended for use by the markets that require FIPS 140-2 validated overall security level 2.

The Module was previously FIPS 140-2 validated with the following FW versions.

CMVP Cert#	FW Version
2876	R02.01.05
1831	R01.02.10, R01.05.00 or R01.05.01

Table 4 – Historical FIPS 140-2 Validation Status

* HW P/N CLN8566A contains two PIKE chips (red and black), and P/N CLN1875A contains one PIKE chip (red). The FIPS 140-2 security levels for the Module are as follows:

Security Requirement	Security Level
Cryptographic Module Specification	2
Cryptographic Module Ports and Interfaces	2
Roles, Services, and Authentication	2
Finite State Model	2
Physical Security	2
Operational Environment	N/A
Cryptographic Key Management	2
EMI/EMC	2
Self-Tests	2
Design Assurance	3
Mitigation of Other Attacks	N/A
Overall	2

Table 5 – Security Level of Security Requirements

1.1 Module Description and Cryptographic Boundary

The KMF CryptR cryptographic boundary is drawn around the entire product which includes the housing, various IC's, FLASH, RAM, and Printed Circuit Board as shown in Figure 1.

Figure 1: The Module – Rear, Top and Front View

The Module's ports and associated FIPS defined logical interface categories are listed in Table 6.

Port	Description	Logical Interface Type
Power	This interface powers all circuitry. This interface does not support input/output of CSP's.	Power Input
Key Variable Loader (KVL) Interface	Provides an interface to the Key Variable Loader. The TEK/KEKs are entered in encrypted form over the KVL interface.	Data Input Data Output Control Input Status Output
Key Variable Loader (KVL) Auxiliary Interface	Only used for version information and program update if BLACK PIKE present.	Data Input Data Output Control Input Status Output
RS-232 Serial Interface	Provides an interface for execution of RS-232 shell commands. This interface does not support output of CSP's.	Data Output Control Input Status Output
Mini-Universal Serial Bus (mini-USB) Interface	Provides an interface for execution of RS-232 shell commands. This interface does not support output of CSP's.	Data Output Control Input Status Output
USB Interface	This port is not used by the Module	N/A
Ethernet Interface (RED)	 This interface routes packets to the Host. All CSPs exchanged over this interface are always encrypted when operating in FIPS Approved mode. This interface also supports the input of encrypted passwords for operator authentication. 	Data Input Data Output Control Input Status Output
Ethernet Interface (BLACK)	Only used for displaying power-up status if BLACK PIKE present.	Status Output
Erase Switch	This interface is used for zeroization of KEKs, TEKs.	Control Input
Reset Switch	This interface forces a reset of the Module.	Control Input
Alarm LED Output	The Alarm LED output turns solid red to indicate an unrecoverable error has been encountered and flashing red to indicate a security condition has been detected that requires operator intervention.	Status Output
Power LED Output	The Power LED output turns steady green after power is applied, flashes five times on power-up, and flashing green to indicate a low or dead battery.	Status Output

Table 6 – Ports and Interfaces

Port	Description	Logical Interface Type
Ready LED Output (RED)	The Ready LED (red) output turns solid green to indicate an Ethernet link has been established and is flashing green when there is activity on the link. This LED will turn red if the KVL or serial shell interface is enabled; if there is a failure on the KVL or serial interface the LED will flash red twice and turn off (note if the Ethernet interface is also enabled the LED will be orange for these operations).	Status Output
Ready LED Output (BLACK)	The Ready LED output (black) is not used and remains off other than at power-up self-test or programming.	Status Output
TX Clear LED Output	The TX Clear LED output turns orange during a firmware upgrade failure. Otherwise it is not used and remains off other than during power-up self-test when the LED turns green momentarily.	Status Output
Status LED Output	The Status LED output is steady red when no key has been loaded and green when a key has been loaded.	Status Output

2 Modes of Operation

The Module can be configured to operate in a FIPS 140-2 Approved mode of operation and a non-Approved mode of operation. To transition between FIPS 140-2 Approved and non-Approved modes, an operator must change the value of CSPs via the Program Update service as mentioned in section 3.1; all other CSPs are automatically zeroized by the Module when switching modes. To verify that the Module is in the Approved mode of operation, output from the Version Query service can be used as specified in Table 7. Note that AES-128 and AES-256 drop-in algorithms may or may not be loaded into the Module, however if they are loaded, they must match the values in Table 2 to be in the Approved mode.

Item ID	Value	Meaning
0x06 (FIPS)	0x02	FIPS Approved mode

The Version Query service can also be used to verify the firmware version matches an approved version listed on NIST's website: <u>http://csrc.nist.gov/groups/STM/cmvp/validation.html</u>

non-Approved mode

2.1 Approved Mode Configuration

0x00

In order to configure the Module into an Approved mode, the Module Configuration service must be used to ensure the following parameters are disabled. Enabling any of the following parameters forces the Module to transition into a non-Approved mode. An operator must also adhere to the procedural enforcement requirements documented in Section 9.2 of this Security Policy.

1. Clear Key Import

0x06 (FIPS)

- 2. Clear Key Export
- 3. Key Loss Key (KLK)

Additionally, the Module supports "drop-in algorithms" via the Program Update service. Drop-in algorithms may be added or removed from the Module independent of the base FW. In order to remain in the Approved mode, only Approved algorithms may be loaded into the Module; in particular AES-128 (Cert. #C 489) and/or AES-256 (Cert. #C 491).

3 Cryptographic Functionality

The Module implements the FIPS Approved and Non-Approved-but-Allowed cryptographic functions listed in the tables below.

Cert	Algorithm	Mode	Description	Functions/Caveats	
	ECB [38A]	Key Sizes: 128	Encrypt, Decrypt		
		CBC [38A]	Key Sizes: 128	Encrypt, Decrypt	
C489	AES [197]	CTR [38A]	Key Sizes: 128	Encrypt, Decrypt	
		OFB [38A]	Key Sizes: 128	Encrypt, Decrypt	
		ECB [38A]	Key Sizes: 256	Encrypt, Decrypt	
		CBC [38A]	Key Sizes: 256	Encrypt, Decrypt	
C491	ΔFS [197]	CTR [38A]	Key Sizes: 256	Encrypt, Decrypt	
C4J1	AL3 [137]	OFB [38A]	Key Sizes: 256	Encrypt, Decrypt	
			Key Sizes: 256	Authenticated Encrypt,	
			Tag Len: 128	Authenticated Decrypt	
C100	AES [107]	OFB [38A]	Key Sizes: 256	Encrypt, Decrypt	
C490	AES [197]	CFB8 [38A]	Key Sizes: 256	Encrypt, Decrypt	
C102	AES [107]	K/W [38E]	Forward	Authenticated Encrypt,	
C492	AL3[197]	KW [301]	Key Sizes: 128, 256	Authenticated Decrypt	
VA	AES MAC [IG G.13]	AES MAC for Proje	AES MAC for Project 25 APCO OTAR (Cert. #C491)		
		[133] Section 6.1 Asymmetric signature key		Key Generation	
		generation using unmodified DRBG output			
		[133] Section 6.2 Asymmetric key establishment			
		key generation using unmodified DRBG output [133] Section 7.1 Direct symmetric key generation			
VA					
V7		using unmodified DRBG output			
		[133] Section 7.3 Derivation of symmetric keys			
		from a key agreement shared secret.			
		[133] Section 7.4 Derivation of symmetric keys			
		from a pre-shared key			
C106	CVL: TLS [135]	v1.2	SHA(384)	Key Derivation	
C490	CVL: SRTP [135]		AES-256	Rey Derivation	
C101		СТР	Use_df	Deterministic Random	
C494	[אטפן טסאט			AES-256	Bit Generation
C495	ECDSA [186]		P-384	KeyGen	

Table 8 – Approved Algorithms

Cert	Algorithm	Mode	Description	Functions/Caveats
			P-384 SHA(384)	SigGen
			P-384 SHA(384)	SigVer
C493	HMAC [198]	SHA-384	Key Sizes: 32 λ = <i>48</i>	Message Authentication, KDF Primitive, Password Obfuscation
C497	KAS [56A]	ECC (Initiator, Responder), KPG, Partial	P-384 SHA-384	Key Agreement Scheme provides 192 bits of encryption strength
N/A	KTS [38F]	ĸw	AES Cert. #C492	Key establishment methodology provides 128 or 256 bits of encryption strength
N/A	KTS [38F]	GCM	AES Cert. #C491	Key establishment methodology provides 256 bits of encryption strength
N/A	KTS [38F]	CBC, ECDSA	AES Cert. #C491 and ECDSA Cert. # C495	Key establishment methodology provides 256 bits of encryption strength
N/A	KTS [38F]	AES, AES MAC	AES-OFB Cert. #C489 and AES MAC for Project 25 APCO OTAR (Cert. #C491)	Key establishment methodology provides 128 bits of encryption strength
N/A	KTS [38F]	AES, AES MAC	AES-OFB Cert. #C491 and AES MAC for Project 25 APCO OTAR (Cert. #C491)	Key establishment methodology provides 256 bits of encryption strength
C493	SHS [180]	SHA-256 SHA-384		Message Digest Generation, Password Obfuscation

* Per IG A.5, the Module generates GCM IVs deterministically as specified in SP800-38D section 8.2.1 using the protocols listed in Section 10.

Algorithm	Description
AES Key Unwrap	[IG D.9] AES-OFB (Cert. #C489) key unwrapping for use in key transport; provides 128 bits of encryption strength.
AES Key Unwrap	[IG D.9] AES-OFB (Cert. #C490) key unwrapping for use in key transport; provides 256 bits of encryption strength.

Table 9 – Non-Approved but Allowed Cryptographic Functions

Algorithm	Description
AES Key Unwrap	[IG D.9] AES-OFB (Cert. #C491) key unwrapping for use in key transport; provides 256 bits of encryption strength.
NDRNG	[IG G.13] Non-Deterministic RNG; 32 bits per access. Used for seeding DRBG.

Non-Approved Cryptographic Functions for use in non-FIPS mode only:

- ADP
- DES-XL
- DES-OFB
- DES-ECB
- DES-CBC
- DVI-XL
- DVP-XL
- Localized Capable
- AES-OFB Key Wrap

Note that all of the above are "drop-in" algorithms, except AES-OFB Key Wrap.

3.1 Critical Security Parameters

All CSPs used by the Module are described in this section. Usage of these CSPs by the Module (including all CSP lifecycle states) is described in the services detailed in Section 4. It should be noted that Keys/CSPs stored in non-volatile memory/storage are normally preserved during a Program Update. However, all keys/CSPs are zeroized during a Program Update if one or more of the following occurs:

- The key database format/version changes between the resident and upgrade software images.
- The Module's FIPS status changes, post-upgrade (this indicates that a non-FIPS compliant Drop-in algorithm has been loaded onto the Module)

CSP	Description / Usage	
DRBG Entropy Input	2048 bits of entropy used in seeding of the CTR_DRBG during DRBG instantiation at power-up.	
	 Entry: N/A Output: N/A Storage: Plaintext in the volatile memory Zeroization: Power cycle Generation: Internally generated, raw random data from NDRNG 	
DRBG Internal State (V and Key)	 Internal state of SP800-90A CTR_DRBG (V and Key). Entry: N/A Output: N/A Storage: Plaintext in the volatile memory 	

Table 10 – Critical Security Parameters (CSPs)

CSP	Description / Usage		
	 Zeroization: Power cycle Generation: SP800-90A CTR_DRBG state modification. 		
Key Protection Key (KPK)	256-bit AES-CFB8 key used to encrypt all other keys (except KVL-BKK, PEK, UKPPK, and IDK) stored in non-volatile memory.		
	 Entry: N/A Output: N/A Storage: Encrypted by the UKPPK in non-volatile memory (flash) and/ or stored in plaintext in non-volatile memory (BB-RAM) Zeroization: Program Update Generation: DRBG 		
Universal Key	256-bit AES-OFB key used for encrypting the KPK.		
Protection Protection Key (UKPPK)	 Entry: Encrypted by the Image Decryption Key and authenticated with the ECDSA Public Programmed Signature Key via the Program Update service Output: N/A Storage: Plaintext in volatile memory, plaintext in non-volatile memory Zeroization: Power cycle, Program Update Generation: N/A 		
Key Variable Loader Black	256-bit AES-OFB key used for encrypting keys that are input into the Module when connected to the KVL.		
Keyloading Key (KVL-BKK)	 Entry: Encrypted by the Image Decryption Key and authenticated with the ECDSA Public Programmed Signature Key via the Program Update service Output: N/A Storage: Plaintext in volatile memory, plaintext in non-volatile memory Zeroization: Power cycle, Program Update Generation: N/A 		
Image Decryption	A 256-bit AES-CBC key used to decrypt downloaded images.		
Key (IDK)	 Entry: Encrypted by the Image Decryption Key and authenticated with the ECDSA Public Programmed Signature Key via the Program Update service Output: N/A Storage: Plaintext in volatile memory, plaintext split-knowledge in non-volatile memory Zeroization: Power cycle, Program Update Generation: N/A 		
Traffic Encryption Keys (TEKs)	128 and 256-bit AES-OFB keys used for enabling secure communication with target devices. It could be also used for HMAC Key, encryption and authentication of Key Management Messages in OTAP		
	 Entry: Encrypted by the KVL-BKK with AES256 OFB key unwrap or plaintext when authenticated to the KVL role. Encrypted with KEK with AES SP 800-38F KTS, when authenticated to the User role. Output: Encrypted by a KEK with AES SP 800-38F KTS (KW or OTAR format) over the Ethernet Interface. 		

CSP	Description / Usage
	 Storage: Stored plaintext in volatile memory, AES256-CFB8 encrypted by the KPK in non-volatile memory Zeroization: Delete Key Variable, Power cycle, OTAR, Store & Forward, and Program Update Generation: Established through SP 800-56A KAS
Key Encryption Keys (KEKs)	 128 and 256-bit AES-KW or AES-OFB keys used for enabling secure communication with target devices. It could be also used as an HMAC Key. Entry: Encrypted by the KVL-BKK with AES256 OFB key unwrap or plaintext when authenticated to the KVL. Encrypted by the KEK with AES SP 800-38F KTS when authenticated to the User role. Output: Encrypted by a KEK with AES SP 800-38F KTS (KW or OTAR format) over the Ethernet Interface. Storage: Stored plaintext in volatile memory, AES256-CFB8 encrypted by the KPK in non-volatile memory Zeroization: Delete Key Variable, Power cycle and Program Update
Password Encryption Key (PEK)	 Generation: Established through SP 300-364 KAS 256-bit AES-CFB8 key used for decrypting passwords during password validation. Entry: Encrypted by the Image Decryption Key and authenticated with the ECDSA Public Programmed Signature Key via the Program Update service Output: N/A Storage: Plaintext in non-volatile memory Zeroization: Program Update Generation: N/A
User Password	 8-32 ASCII printable characters User authentication password. The SHA-384 hash of the decrypted password is compared with the SHA-384 hash value stored in non-volatile memory during password validation Entry: Encrypted by the PEK with AES256-CFB8. Output: N/A Storage: Plaintext in volatile memory, SHA-384 hash of the plaintext password is encrypted by the PEK in non-volatile memory Zeroization: Power cycle, Program Update, Change User Password Generation: N/A
Crypto-Officer Password	 8-32 ASCII printable characters Crypto-Officer authentication password. The SHA-384 hash value of the plaintext password is stored encrypted on the PEK in non-volatile memory. The SHA-384 hash of the decrypted password is compared with the SHA-384 hash value stored in non-volatile memory during password validation. Entry: Encrypted by the PEK with AES256-CFB8. Output: N/A Storage: Plaintext in volatile memory, SHA-384 hash of the plaintext password is encrypted by the PEK in non-volatile memory Zeroization: Power cycle, Program Update, Change Crypto-Officer Password Generation: N/A

CSP	Description / Usage
Elliptic Curve Diffie-Hellman Private Key	 Random value used to establish a shared secret over an insecure channel. Entry: N/A Output: N/A Storage: Plaintext in volatile memory. Zeroization: Delete Key Variable, Power cycle, Program Update Generation: Power cycle, FIPS 186-4 Key Generation on Perform Key Agreement service request
Elliptic Curve Diffie-Hellman Shared Secret	 The Elliptic Curve Diffie-Hellman Shared Secret is established as part of the Diffie-Hellman key agreement protocol. Entry: N/A Output: N/A Storage: Plaintext in volatile memory Zeroization: Power cycle, Program Update Generation: Established through SP800-56A KAS
ECDSA Private Generated Signature Key (PGSK)	 384-bit ECDSA key used to generate the signature of the input data from the Generate Signature service request. Entry: N/A Output: N/A Storage: Plaintext in volatile memory, encrypted by a KPK in non-volatile memory. Zeroization: Delete Key Variable, Power cycle, Program Update Generation: FIPS 186-4 Key Generation on Generate Key Variable service request
SRTP/SRTCP Master Key	 256-bit master key used in the SRTP/SRTCP based derivation of KDF Derived Keys Entry: Encrypted by the KVL-BKK with AES256 OFB mode when authenticated to the KVL role. Encrypted by a KEK with AES SP 800-38F KTS or AES OFB key unwrap, depending on host selection when authenticated to the User role. Output: Encrypted by a KEK (User Role only) with AES SP 800-38F KTS (KW or OTAR format) or AES OFB mode over the Ethernet Interface Storage: Stored plaintext in volatile memory, encrypted by the KPK in non- volatile memory Zeroization: Delete Key Variable, Power cycle, Program Update Generation: Internally generated using DRBG or derived from SRTP/ SRTCP KDF through Generate Key Variable service
SRTP/SRTCP Master Salt	 112-bit key used to generate keys using SRTP KDF protocol, or 96-bit key to generate IV internally for AES GCM encryption operation. Entry: Encrypted by a KEK (User Role only) with AES SP 800-38F KTS (KW or OTAR format) or AES OFB key unwrap over the Ethernet Interface Output: Encrypted by a KEK (User Role only) with AES SP 800-38F KTS (KW or OTAR format) over the Ethernet Interface Storage: Plaintext in volatile memory Zeroization: Delete Key Variable, Power cycle

CSP	Description / Usage
	 Generation: Internally generated using DRBG or derived from SRTP/ SRTCP KDF through Generate Key Variable service
TLS KDF Secret	Secret input used in the TLS-based derivation of KDF Derived Keys. In practice, this input will typically be the Premaster Secret or Master Secret as defined in RFC 5246, but is dependent on the operator.
	 Entry: Encrypted by a KEK (User Role only) with AES SP 800-38F KTS (KW or OTAR format) or AES OFB key unwrap over the Ethernet Interface Output: Encrypted by a KEK (User Role only) with AES SP 800-38F KTS (KW or OTAR format) over the Ethernet Interface Storage: Plaintext in volatile memory Zeroization: Delete Key Variable, Power cycle Generation: Internally generated using DRBG or derived from TLS KDF through Generate Key Variable service
KDF Derived Key	 Keys derived using TLS or SRTP/SRTCP KDFs. Module does not have control over the usage of these generated keys, the operator decides the usage. KDF output is always 384 bits, but a key of less length may be derived using a subset of this output. Entry: N/A Output: Encrypted by a KEK (User Role only) with AES SP 800-38F KTS (KW or OTAR format) over the Ethernet Interface Storage: Plaintext in volatile memory Zeroization: Delete Key Variable, Power cycle Generation: Internally derived through TLS or SRTP/ SRTCP KDF on Generate Key Variable service request

3.2 Public Keys

Table 11 – Public Keys

Кеу	Description / Usage
ECDSA Public Programmed Signature Key	 384-bit ECDSA public key used to validate the signature of the firmware image being loaded before it is allowed to be executed. Entry: Encrypted by the Image Decryption Key and authenticated with the ECDSA Public Programmed Signature Key via the Program Update service. The first key is loaded in manufacturing. Output: N/A Storage: Plaintext in non-volatile memory Zeroization: Program Update Generation: N/A
ECDSA Public Generated Signature Key	 384-bit ECDSA key used to verify signatures. Entry: N/A Output: Plaintext over the Ethernet interface Storage: Plaintext in volatile memory Zeroization: Delete Key Variable, Power cycle

Кеу	Description / Usage
	 Generation: FIPS 186-4 Key Generation on Generate Key Variable service request
Elliptic Curve Diffie-Hellman Public Key	 Used to establish a shared secret over an insecure channel. Entry: N/A Output: Plaintext over the Ethernet interface Storage: Plaintext in volatile memory Zeroization: Delete Key Variable, Power cycle Generation: FIPS 186-4 Key Generation on Perform Key Agreement Process service request
Remote Party Diffie-Hellman Ephemeral Public Key	 Used to establish a shared secret over an insecure channel. Entry: Plaintext over Ethernet interface Output: N/A Storage: Plaintext in volatile memory Zeroization: Delete Key Variable, Power cycle Generation: N/A

4 Roles, Authentication and Services

4.1 Assumption of Roles

The Module supports a User, KVL and Cryptographic Officer (CO) role. Authentication data is initialized to a default value in manufacturing and are sent in encrypted form to the Module for authentication. After authenticating, the Crypto-Officer and User passwords may be changed at any time. The Module enforces the separation of roles using login credentials. Re-authentication is enforced when changing roles.

The KVL role is authenticated by the KVL-BKK to configure the Module via KVL Interface, Zeroize Keys via KVL Interface, Key Query, and Store & Forward services.

Table 12 lists all operator roles supported by the Module. The Module does not support a maintenance role or bypass capability. The Module does not support concurrent operators.

Role ID	Role Description	Authentication Type	Authentication Data
со	Cryptographic Officer Role over Ethernet interface.	Identity-based	8-32 character ASCII password
User	User Role over Ethernet interface.	Identity-based	8-32 character ASCII password

Table 12 – Roles Description

Role ID	Role Description	Authentication Type	Authentication Data
KVL	When a User or CO is connected to the Module through a Motorola KVL device.	Role-based	256-bit AES key (KVL-BKK)

4.2 Authentication Methods

Password Authentication

Since the minimum password length is 8 (default is 15) ASCII printable characters and there are 95 ASCII printable characters, the probability of a successful random attempt is 1 in 95⁸ which is less than 1 in 1,000,000.

The Module limits the number of consecutive failed authentication attempts to a configurable number (factory default 10, maximum 15). The worst-case probability of a successful random attempt within a one-minute period is 15/95⁸, which is less than 1 in 100,000.

If the Module's retry counter is set to zero, infinite retries are allowed. In this case, the Module takes approximately 48ms to authenticate CO/User logging message over Ethernet interface. The worst-case probability of a successful random attempt within a one-minute period is 1250/95⁸ which is less than 1 in 100,000

After a configurable number of consecutive failed attempts, the KPK, TEKs and KEKs are zeroized, a new KPK is generated, and the passwords are reset to the factory default. Note that this makes it very important that physical access to the Module is strictly controlled. The Module is not usable until the factory default password is changed.

KVL-BKK Authentication:

Communications between the Module and a KVL device are encrypted with the 256-bit KVL-BKK. A KVL device is authenticated by having possession of the key needed to decrypt communications. The probability of a successful random attempt is 1 in 2^{256} , which is less than 1 in 1,000,000.

It takes approximately 80.5 milliseconds for each encrypted data packet to be sent between the Module and KVL. Therefore, the maximum number of authentication attempts that can be performed as a KVL Role with the KVL-BKK in one minute is 745 and the probability of a successful random attempt during a one-minute period is 745 in 2²⁵⁶ or 1 in 1.55425e+74, which is less than 1 in 100,000.

Authentication Method	Probability	Probability over a One-Minute Period
Password	1/95 ⁸	15/95 ⁸ or 1250/95 ⁸ , depending on configuration
KVL-BKK	1/2 ²⁵⁶	745/2 ²⁵⁶

Table 13 – Authentication Description

4.3 Services

All services implemented by the Module are listed in the tables below. Note that all services listed in Table 14 and Table 15 below are available in both the FIPS Approved and non-Approved mode. The only distinguishing factor between Approved and non-Approved services is whether non-Approved algorithms/ key establishment schemes are available.

Service	Description	0	User	KVL
Program Update	Update the Module firmware via the Ethernet interface. All keys (stored in volatile and non-volatile memory) and CSPs may be zeroized during a Program Update.	х	Х	х
Validate Crypto- Officer password	Validate the current Crypto-Officer password used to identify and authenticate the Crypto-Officer role via the Ethernet interface. Successful authentication will allow access to services allowed for the Crypto Officer.	X		
Change Crypto- Officer password	Modify the current password used to identify and authenticate the Crypto-Officer Role via Ethernet interface.	х		
Extract Action Log	Exports a history of actions over the Ethernet interface.	Х	Х	
Logout Crypto- Officer Role	Logs out the Crypto-Officer.	x		
Configure Module via Ethernet interface	Perform configuration of the Module (e.g. password length, time configuration, enable/disable clear key import, enable/disable red keyloading, etc.) via the Ethernet interface.	Х		
Validate User Password	Validate the current User password used to identify and authenticate the User role via the Ethernet interface. Successful authentication will allow access to crypto services allowed for the User.		Х	
Change User Password	Modify the current password used to identify and authenticate the User Role via the Ethernet interface.		Х	
Algorithm List Query	Provides a list of algorithms over the Ethernet interface.		Х	
Logout User Role	Logs out the User.		Х	
Export Key Variable	Transfer encrypted key variables (e.g. KEKs, TEKs) out of the Module over the Ethernet interface. Transfer clear key variables out of the Module over Ethernet interface is supported when the Module is running in non-FIPS mode.		Х	

Table 14 – Authenticated Services

Service	Description	СО	User	KVL
Import Key Variable	Receive encrypted key variables (e.g. KEKs, and TEKs) over the Ethernet and KVL interfaces. Receive clear key variables over Ethernet interface is supported when the Module is running in non- FIPS mode.		Х	Х
Generate Key Variable	Auto-generate Public and Private Generated Signature Keys, SRTP/SRTCP Master Key, SRTP/ SRTCP Master Salt, TLS Master Secret Key and the KPK within the Module.		х	
Delete Key Variable	Delete KEKs, TEKs, ECDH Public and Private Keys, ECDH Public and Private Generated Signature Keys, and ECDH Shared Secret.		х	
Encrypt	Encrypt plaintext data to be transferred over the Ethernet interface.		Х	
Decrypt	Decrypt ciphertext data received over the Ethernet interface.		Х	
Generate Signature	Generate a Signature and output result over Ethernet interface.		Х	
Verify Signature	Verify a Signature and output result over Ethernet interface.		Х	
Generate Hash	Generate a hash and output result over Ethernet interface.		Х	
Generate MAC	Generate a Message Authentication Code of a block of data to provide data integrity using a shared symmetric key.		х	
Perform Key Agreement Process	Perform a key agreement process to create an ECDH Shared Secret, and ECDH Public and Private Keys in volatile memory.		х	
Generate Random Number	Generate random data using DRBG and output result over Ethernet interface.		Х	
Key Query	Retrieve the metadata for a given key present in the Module.		Х	
OTAR	Modify and query the TEKs and KEKs in the Module via APCO OTAR Key Management Messages.		Х	
Store & Forward via KVL Interface	Modify and query the KEKs and TEKs stored internally via the KVL interface.			Х
Zeroize Keys via KVL interface	Zeroize KEKs and TEKs when connected to the KVL.			Х
Configure Module via KVL interface	Perform configuration of the Module (e.g. OTAR configuration) when connected to the KVL.			Х

Table 15 – Unauthenticated Services

Service	Description
Perform Self-Tests	Performs module self-tests comprised of cryptographic algorithms test and firmware test. Initiated by a transition from power off state to power on state.

Service	Description
Version Query	Provides module firmware version number and FIPS status over the Ethernet interface.
Erase	Zeroization of CSPs and public keys as listed in Table 16.
Reset	Reset the Module.

Table 16 defines the relationship between access to Security Parameters and the different module services. The modes of access shown in the table are defined as:

- C = Check CSP: Check status of the CSP (i.e. existence, size, format, etc.).
- D = Decrypt: Decrypts entered key using other KEK during CSP entry over the Ethernet interface or using the KVL-BKK during CSP entry over the KVL interface. In the case of the Program Update service, decryption will occur using the IDK.
- I = Plaintext entry: only applies to public keys, with the exception of TEKs and KEKs, which may be loaded in plaintext over the KVL interface.
- O = Plaintext output: only applies to public keys
- E = Encrypt: Encrypts key prior to output over the Ethernet interface using a KEK.
- G = Generate CSP: Generates key or establishes over KAS.
- S = Store CSP: Stores CSP in volatile or non-volatile memory.
- U = Use CSP: Uses key internally for encryption/decryption services.
- Z = Zeroize: The service zeroizes the CSP.
- - = No access: the service does not access the CSP.

Table 16 – Security Parameters Access by Service

	CSPs and Public Keys																					
Service	DRBG Entropy Input	DRBG Internal state (V and Key)	PEK	TEKs	KEKs	КРК	ки-тыкк	ЯО	Хадул	Crypto-Officer Password	User Password	ECDSA Private Generated Signature Kev	ECDSA Public Programmed Signature Key	ECDSA Public Generated Signature Key	ECDH Private Key	ECDH Shared Secret	ECDH Public Key	ECDH Ephemeral Public Key	SRTP/SRTCP Master Key	SRTP/SRTCP Master Salt	TLS Master Secret Key	KDF Derived Key
Program Update	-	-	D,Z,S	Z	Z	Z	D,Z,S	U,Z,S	D,Z	Z	Z	Z, U	Z, U	Z, U	Z,U	Z	Z	Z	Z	Z	Z	Z
Validate Crypto-Officer password	-	-	U	-	-	D	-	-	U	D,U,Z	-	-	-	-	-	-	-	-	-	-	-	-
Change Crypto-Officer password	-	-	U	-	-	D,S,E,G	-	-	U	D,U,Z,S	-	-	-	-	-	-	-	-	-	-	-	-
Logout Crypto-Officer Role	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Extract Action Log	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Configure Module via Ethernet interface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Validate User Password	-	-	U	-	-	D	-	-	U	-	D,U,Z	-	-	-	-	-	-	-	-	-	-	-
Change User Password	-	-	U	-	-	-	-	-	U	-	D,U,Z,S	-	-	-	-	-	-	-	-	-	-	-
Logout User Role	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Algorithm List Query	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Export Key Variable	-	-	-	D,E,U	D,E,U	U	-	-	-	-	-		-	-	-	D,E,U	-	-	D,E,U	D,E,U	D,E,U	D,E,U
Import Key Variable	-	-	-	D,E,S,U , I	D,E,S,U ,I	U	U	-	-	-	-	-	-	-	U	-	-	-	D,E,S, U	D,E,S, U	D,E,S,U	D,E,S,U
Generate Key Variable	G,U	G,U, Z	-	E,S	E,S	U	-	-	-	-	-	E,G,S	-	0	E,G,S	-	-	-	E,G,S	E,G,S	E,G,S	E,G,S
Delete Key Variable	-	-	-	z	z	-	-	-	-	-	-	Z	-	-	Z	z	-	-	z	Z	Z	Z

	CSPs and Public Keys																					
Service	DRBG Entropy Input	DRBG Internal state (V and Key)	PEK	TEKs	KEKs	КРК	KVL-BKK	וסא	ЛКРРК	Crypto-Officer Password	User Password	ECDSA Private Generated Signature Kev	ECDSA Public Programmed Signature Key	ECDSA Public Generated Signature Kev	ECDH Private Key	ECDH Shared Secret	ECDH Public Key	ECDH Ephemeral Public Key	SRTP/SRTCP Master Key	SRTP/SRTCP Master Salt	TLS Master Secret Key	KDF Derived Key
Encrypt	-	-	-	C,U	C,U	C,U	C,U	-	-	-	-	-	-	-	-	-	-	-	C,U	C,U	C,U	C,U
Decrypt	-	-	-	C,U	C,U	C,U	C,U	-	-	-	-	-	-	-	U	-	-	-	C,U	C,U	C,U	C,U
Generate Signature	-	U	-	-	-	U	-	-	-	-	-	D,U	-	-	U	U	-	-	-	-	-	-
Verify Signature	-	-	-	-	-	U	-	-	-	-	-	-	-	U	-	-	-	-	-	-	-	-
Generate Certificate	-	-	-	-	-	U	-	-	-	-	-	G,U	-	G	-	-	-	-	-	-	-	-
Generate Hash	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Generate MAC	-	-	-	D,U,C	-	U	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	U
Perform Key Agreement Process	-	U	-	-	G	-	-	-	-	-	-	-	-	-	E,G,S	G	G,U,O	U,I	-	-	-	-
Generate Random Number	G,U	G,U, Z	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Key Query	-	-	-	D	D	U	-	-	-	-	-	-	-	-	-	-	-	-	U	U	U	U
OTAR	-	-	-	D,E,S,U	D,E,S,U	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Store & Forward via KVL Interface	-	-	-	D,E,S,U	D,E,S,U	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Zeroize Keys via KVL interface	-	-	-	Z	Z	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Perform Self-Tests	-	-	-	-	-	-	-	-	-	-	-	-	U	U	-	U	-	-	-	-	-	-
Version Query	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Erase	-	-	Z	Z	Z	Z	-	-	-	Z	Z	Z	-	Z	Z	Z	Z	Z	Z	Z	Z	Z
Reset	Z	Z	-	Z	Z	-	Z	-	Z	Z	Z	Z	-	Z	Z	Z	Z	Z	Z	Z	Z	Z

5 Self-tests

The Module performs self-tests to ensure the proper operation of the Module. Per FIPS 140-2 these are categorized as either power-up self-tests or conditional self-tests. Power-up self-tests are available on demand by power cycling the Module.

All algorithm Known Answer Tests (KATs) must be completed successfully prior to any other use of cryptographic functionality by the Module. The "Status LED" lights (red if no keys present on the Module, green if keys are present in the Module) indicate that the Firmware Integrity Test, Firmware Load Test, Cryptographic Algorithm Tests, and Critical Functions Test have completed successfully. The Module enters the Critical Error state and does not light the "Status LED" if the Firmware Integrity Test, Firmware Load Test, Cryptographic Algorithm Tests, or Critical Functions Test fails. The Critical Error state may be exited by powering the Module off then on.

The Module performs the following algorithm KATs on power-up. The AES KATS are inclusive of the drop-in algorithms.

- Firmware Integrity: A digital signature is generated over the base firmware and all Drop-in algorithms code when it is built using SHA-384 and ECDSA P-384 and is stored with the code upon download into the Module. When the Module is powered up the digital signature is verified. If the digital signature matches, then the test passes, otherwise it fails.
- AES-128 encrypt and decrypt KATs for CTR, ECB, OFB, and CBC modes.
- AES-256 encrypt and decrypt KATs for CTR, ECB, OFB, CBC, GCM and CFB modes.
- ECDSA P-384 key generation KAT
- ECDSA P-384 signature generation and verification KATs.
- Diffie-Hellman primitive "Z" computation KAT per IG 9.6.
- SHA-256 and -384 KAT.
- HMAC-384 KAT.
- CTR DRBG KAT.
- AES KW (SP800-38F) KAT

The Module performs the following critical functions tests as indicated.

- The Module performs a read/write test of the internal RAM at each power up.
- Random Number Generator entropy test. This test runs two RNG statistical tests: a FIPS monobit test, and a FIPS "runs" test as defined in SP 800-22r1a.
- External indicator tests upon every power- up, the Module will assert and de-assert each signal connected to an external indicator, so that the User may verify that the indicators are functioning and controlled by the Module.

The Module performs the following conditional self-tests as indicated.

- ECDSA Pairwise consistency test on ECDSA key pair generation: The ECDSA Public and Private Generated Signature Key pair is tested by the calculation and verification of a digital signature. If the digital signature cannot be verified, the test fails.
- Continuous Random Number Generator test: The continuous random number generator test is performed on the NDRNG and DRBG supported by the Module. An initial value is generated and stored upon power up. This value is not used for anything other than to initialize comparison data. A successive call to NDRNG/DRBG generates a new set of data, which is compared to the comparison data. If a match is detected, this test fails; otherwise the new data is stored as the

comparison data and returned to the caller. This testing is done for each 4 byte NDRNG/16 byte DRBG data block, generated by the DRBG. The Module enters the Critical Error State if this test fails.

• Firmware load test: a digital signature is generated over the code when it is built using SHA-384 and ECDSA P-384. Upon download into the Module, the digital signature is verified. If the digital signature matches, then the test passes, otherwise it fails.

6 Physical Security Policy

The Module is a production grade, multi-chip standalone cryptographic module as defined by FIPS 140-2 and is designed to meet Level 2 Physical Security requirements. The Module is entirely contained within a hard-plastic production-grade removable enclosure. The enclosure is opaque within the visible spectrum. The removable cover is protected with two (2) tamper-evident labels. The tamper-evident labels are visible on both sides of the enclosure exterior as shown in Figure 3, Figure 4 and Figure 5 below.

The two (2) tamper labels are installed during manufacturing and serve to inform the user if the Module has been tampered with. These labels should be checked periodically by the operator for signs of tamper. If signs of tamper are detected, the Module is rendered inoperable. If this is the case, the tamper can then be addressed by the operator.

Here are some facts about how the operator can address the tamper state:

- 1. The Crypto Officer is the only role authorized to bring the Module out of tamper.
- 2. Only certain tamper states are operator-recoverable.
 - a. Non-recoverable tamper states are over/under voltage, over/under temperature.
 - b. If the tamper is non-recoverable the Module should be returned to the factory for diagnosis/reprogramming.
- 3. Operator recoverable tamper states can be resolved using the Module's serial console (instructions to clear the tamper conditions are provided on the serial console, the operator should follow said instructions).
- 4. It should also be noted that if the operator is unconfident about the state of their device, after discovering the tamper labels have been broken, they have the option to send the Module to the factory for diagnosis/reprogramming. Similarly, the factory can re-apply new tamper labels to the device.
- 5. No maintenance access interface is available.

Figure 2: Top/Front/Right view

Figure 3: Underside/Rear/Left view

Figure 4: Right Side Tamper Label Placement

Figure 5: Left Side Temper Label Placement

7 Operational Environment

The Module has a non-modifiable operational environment under the FIPS 140-2 definitions. The Module includes Program Update service to support necessary updates. Firmware versions validated through the FIPS 140-2 CMVP will be explicitly identified on a validation certificate. If firmware that is not identified in this Security Policy is loaded into the Module, the Module will be in a non-Approved mode.

8 Mitigation of Other Attacks Policy

The Module is not designed to mitigate any specific attacks outside of those required by FIPS 140-2.

9 Security Rules and Guidance

This section documents the security rules for the secure operation of the Module to implement the security requirements of FIPS 140-2.

9.1 Invariant Rules

- 1. An operator does not have access to any cryptographic services prior to assuming an authorized role.
- 2. Power up self-tests do not require any operator action.
- 3. Data output is inhibited during key generation, self-tests, zeroization, and while in critical error states.
- 4. The Module does not perform any cryptographic functions while in an error state.
- 5. Status information does not contain CSPs or sensitive data that if misused could lead to a compromise of the Module.
- 6. There are no restrictions on which keys or CSPs are zeroized by the zeroization service, specifically Program Update.
- 7. The Module does not support manual key entry.
- 8. The Module does not enter or output plaintext CSPs in the Approved mode.
- 9. The Module implements all firmware using a high-level language, except the limited use of low-level languages to enhance performance.
- 10. The Module conforms to FCC 47 Code of Federal Regulations, Part 15, Subpart B, Unintentional Radiators, Digital Devices, Class B requirements.

9.2 Procedural Enforcement

- 1. An operator shall ensure that the security strength of the TLS KDF Secret is at least as strong as the length of the resulting KDF Derived Key.
- 2. An operator shall ensure KDF Derived Keys used in the FIPS Approved mode have at least 112 bits of security strength
- 3. An operator shall ensure KDF Derived Keys used for key transport have at least the security strength of the key(s) being transported.
- 4. An operator shall ensure KDF Derived keys are only used within the context of the TLS or SRTP/ SRTCP protocols, dependent on which protocol KDF was used to derive the key.
- 5. An operator shall not output a KDF Derived Key in plaintext.
- 6. If the module fails the FW integrity test, an operator shall ship the module to a Motorola service center for recovery.
- 7. The module is capable of outputting keys encrypted with non-Approved key wrapping (AES-OFB encryption without an Approved MAC authentication) as follows: TEKs, KEKs, SRTP/ SRTCP Master Key, SRTP/ SRTCP Master Salt, KDF Derived Key An operator shall ensure that non-Approved key wrapping is not used in the Approved mode of operation.

10 AES-256 GCM IV Generation Protocol

The Module generates GCM IVs deterministically as specified in SP800-38D section 8.2.1 using the following protocols:

- TLS: The Module is compliant with RFC 5288, which implies compliance with TLS v1.2 and SP800-52 Rev1, Section 3.3.1 as required per IG A.5. The fixed field consists of a 16-bit salt that is generated internally to the Module and the invocation field consists of a 64-bit nonce_explicit passed into the Module as an input parameter.
- SRTP: The Module is compliant with RFC 7714, Section 8.1 IV construction. The fixed field consists
 of a 32-bit Synchronization Source identifier and 16-bits of zeroes, and the invocation field
 consists of a 16-bit Sequence Number and 32-bit Rollover Counter. Both the fixed field and
 invocation field are passed into the Module as input parameters and XORed with a 96-bit random
 salt imported or generated internally. Note that the XOR operation does not have an impact on
 SP 800-38D requirements because the salt is not regenerated until a key is re-established and
 therefore acts as a constant within an individual key's lifecycle.
- SRTCP: The Module is compliant with RFC 7714, Section 9.1 IV construction. The fixed field consists of a 32-bit Synchronization Source and 17 bits of zeroes, and the invocation field consists of a 31-bit SRTCP Index. Both the fixed field and invocation field are passed into the Module as input parameters and XORed with a 96-bit random salt imported or generated internally. Note that the XOR operation does not have an impact on SP 800-38D requirements because the salt is not regenerated until a key is re-established and therefore acts as a constant within an individual key's lifecycle.

If the Module's power is lost and restored for any of the protocols listed above, a new GCM key will be established. The invocation field is incremented externally and input to the Module; if the new invocation field is not greater than the last value then the Module will transition to an error state. Following an overflow of the invocation field, the Module will transition to an error state.

11 References and Definitions

The following standards are referred to in this Security Policy.

Abbreviation	Full Specification Name
[FIPS140-2]	Security Requirements for Cryptographic Modules, May 25, 2001
[IG]	Implementation Guidance for FIPS PUB 140-2 and the Cryptographic Module Validation Program
[108]	NIST Special Publication 800-108, Recommendation for Key Derivation Using Pseudorandom Functions (Revised), October 2009
[131A]	Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms and Key Lengths, January 2011
[133]	NIST Special Publication 800-133, Recommendation for Cryptographic Key Generation, December 2012
[135]	National Institute of Standards and Technology, Recommendation for Existing Application-Specific Key Derivation Functions, Special Publication 800-135rev1, December 2011.
[186]	National Institute of Standards and Technology, Digital Signature Standard (DSS), Federal Information Processing Standards Publication 186-4, July, 2013.
[197]	National Institute of Standards and Technology, Advanced Encryption Standard (AES), Federal Information Processing Standards Publication 197, November 26, 2001
[198]	National Institute of Standards and Technology, The Keyed-Hash Message Authentication Code (HMAC), Federal Information Processing Standards Publication 198-1, July, 2008
[180]	National Institute of Standards and Technology, Secure Hash Standard, Federal Information Processing Standards Publication 180-4, August, 2015
[22r1a]	National Institute of Standards and Technology, A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications, April 2010
[38A]	National Institute of Standards and Technology, Recommendation for Block Cipher Modes of Operation, Methods and Techniques, Special Publication 800-38A, December 2001
[38B]	National Institute of Standards and Technology, Recommendation for Block Cipher Modes of Operation: The CMAC Mode for Authentication, Special Publication 800- 38B, May 2005
[38D]	National Institute of Standards and Technology, Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC, Special Publication 800-38D, November 2007

Table 17 – References

Abbreviation	Full Specification Name
[38F]	National Institute of Standards and Technology, Recommendation for Block Cipher Modes of Operation: Methods for Key Wrapping, Special Publication 800-38F, December 2012
[56Ar2]	NIST Special Publication 800-56A Revision 2, Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography, May 2013
[90A]	National Institute of Standards and Technology, Recommendation for Random Number Generation Using Deterministic Random Bit Generators, Special Publication 800-90A, June 2015.
[OTAR]	Project 25 – Digital Radio Over-The-Air-Rekeying (OTAR) Messages and Procedures [TIA-102.AACA-A], September 2014
[RFC2246]	The TLS Protocol, August 2008
[RFC3711]	The Secure Real-time Transport Protocol (SRTP), March 2004
[RFC5286]	AES Galois Counter Mode (GCM) Cipher Suites for TLS, August 2008
[RFC5246]	The Transport Layer Security (TLS) Protocol, August 2008
[RFC7714]	AES-GCM Authenticated Encryption in the Secure Real-time Transport Protocol (SRTP), December 2015

Table 18 – Acronyms and Definitions

Acronym	Definition
ADP	Advanced Digital Privacy
AES	Advanced Encryption Standard
CBC	Cipher Block Chaining
CFB	Cipher Feedback
CSP	Critical Security Parameter
DRBG	Deterministic Random Bit Generator
ECB	Electronic Code Book
ECDH	Elliptic Curve Diffie-Hellman
ECDSA	Elliptic Curve Digital Signature Algorithm
FW	Firmware
GCM	Galois/Counter Mode
IDK	Image Decryption Key
IV	Initialization Vector
KDF	Key Derivation Function

Acronym	Definition
KLK	Key Loss Key
KMF	Key Management Facility
КРК	Key Protection Key
КЕК	Key Encryption Key
KVL	Key Variable Loader
KVL-BKK	KVL - Black Keyloading Key
OTAR	Over The Air Rekeying
PEK	Password Encryption Key
PGSK	Private Generated Signature Key
NDRNG	Non-Deterministic Random Number Generator
SRTP	Secure Real-time Transport Protocol
SRTCP	Secure Real-time Transport Control Protocol
ТЕК	Traffic Encryption Key
TLS	Transport Layer Security
UKPPK	Universal Key Protection Protection Key