

ASI-HSM AHX5 KNET Cryptographic Module

Hardware Version 1.0.1, Firmware Version 1.0.1

FIPS 140-2 Non-Proprietary Security Policy

Document Version 1.2.1

January 22, 2020

TABLE OF CONTENTS

1	Introduction 4
1.1	Scope
1.2	Overview
1.3	Acronyms and Abbreviations
2	Security Level 6
3	Modes of Operation 7
3.1	FIPS Mode Algorithms
3.2	Non-FIPS Mode Algorithms
4	Identification and Authentication Policy
4.1	Roles
4.2	Authentication
5	Access Control Policy 14
5.1	Supported Roles
5.2	Services Provided
5.3	Cryptographic Keys and Critical Security Parameters (CSPs)
5.4	Access Rights
6	Operational Environment 35
7	Physical Security 36
7.1	Physical Security Mechanisms
7.2	Cryptographic Boundary and Interfaces
7.3	Physical Security Maintenance
7.4	EMC/EMI
8	Self Tests 41
8.1	Power-On Self-Tests
8.2	Conditional Self-Tests
8.3	Indicators

9	Mitigations of Other Attacks Policy	43
10	Guidance and Secure Operation	44
10.1	Initial Configuration	44

1 INTRODUCTION

1.1 Scope

This document is the FIPS 140-2 ASI-HSM AHX5 KNET Cryptographic Module Non-Proprietary Security Policy. It describes how the HSM meets the security requirements of FIPS 140-2.

1.2 Overview

The ASI-HSM AHX5 kNET Cryptographic Module (Figure 1.1) is a multi user, multi-chip embedded crypto-module. The FIPS 140-2 cryptographic boundary is the metal case containing the entire ASI-HSM AHX5 kNET Cryptographic Module. The ASI-HSM AHX5 kNET Cryptographic Module is referred to in the remainder of this document as the module.

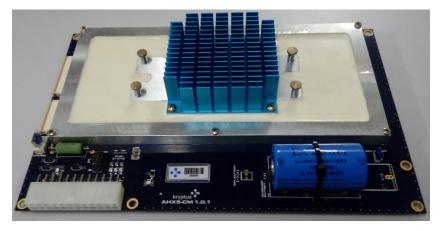


Figure 1.1: ASI-HSM AHX5 kNET Cryptographic Module.

The module exists to provide cryptographic services to applications running on behalf of its users which communicate with it via a standard Ethernet interface using IP protocols. In order to provide these services, the module also requires a power supply.

The module is usually sold embedded within a stand-alone network appliance. That appliance is typically used in large-scale cloud infrastructures, where ease of remote configuration and operation is required.

1.3 Acronyms and Abbreviations

- **AES** Advanced Encryption Standard
- API Application Programming Interface
- CA Certification Authority
- **CBC** Cipher Block Chaining
- **CPU** Central Processing Unit
- **CSP** Critical Security Parameter
- CTR Counter
- DES Data Encryption Standard
- **DSA** Digital Signature Algorithm
- **DRBG** Deterministic Random Bit Generator

ASI-HSM AHX5 KNET Cryptographic Module

ECB Eletronic Codebook ECDSA Elliptic Curve Digital Signature Algorithm **EMC** Eletromagnetic Compatibility **EMI** Eletromagnetic Interference FIPS Federal Information Processing Standard GCM Galois/Counter Mode HMAC Hash-based Message Authentication Code HSM Hardware Security Module **ID** Identifier **IP** Internet Protocol KMIP Key Management Interoperability Protocol **KW** Key Wrapping LED Light-emitting Diode MAC Message Authentication Code MD5 Message-Digest algorithm 5 **NIST** National Institute of Standards and Technology **OAEP** Optimal Asymmetric Encryption Padding **OTP** One Time Password PCB Printed Circuit Board PCO Physical Crypto Officer PHSM Physical Hardware Securityu Module **PIN** Personal Identification Number **RAM** Ramdom Access Memory **RNG** Random Number Generator RSA Rivest-Shamir-Adleman **RTC** Real Time Clock SEC Standards for Efficient Cryptography SHA Secure Hash Algorithm SKMM Secure Key Management Module **SNMP** Simple Network Management Protocol **TLS** Transport Layer Security **TRNG** True Random Number Generator **USB** Universal Serial Bus VCO Virtual Crypto Officer VHSM Virtual Hardware Security Module XML eXtensible Markup Language

2 SECURITY LEVEL

The module meets the overall requirements applicable to Level 3 Security for FIPS 140-2. Table 2.1 lists the security level for each requirements section.

Security Requirements section	Level
Cryptographic module specification	3
Cryptographic module ports and interfaces	3
Roles, services, and authentication	3
Finite state model	3
Physical security (multiple-chip embedded)	3
Operational environment	N/A
Cryptographic key management	3
Electromagnetic interference/electromagnetic compatibility (EMI/EMC)	3
Self-tests	3
Design assurance	3
Mitigation of other attacks	N/A
Cryptographic module security policy	3

3 MODES OF OPERATION

The module supports two modes of operation:

- FIPS Mode
- Non-FIPS Mode

When the module is initialized with the Initialize HSM function, the operator can choose the mode of operation to be used. The mode cannot be changed unless the module is reset to the factory state with the Reset HSM function, and reinitialized in the chosen mode.

3.1 FIPS Mode Algorithms

In FIPS Mode, the supported FIPS-Approved algorithms are those listed in Table 3.1:

CAVP Cert	Algorithm	Standard	Mode/Method	Key Lengths, Curves or Moduli	Use
C212	AES	FIPS 197, SP 800- 38A	ECB, CBC, CTR	128, 192, 256	Data Encryption/Decryp- tion
C212	AES	FIPS 197, SP 800-38F	KW	128, 192, 256	Key Wrapping/Unwrap- ping
C212	AES	SP 800- 38D	GCM	128, 192, 256	Message Authentication, Data Encryption/Decryp- tion
C212	Triple DES	SP 800-67	ECB, CBC, CTR	Three-Key Triple DES	Data Encryption/Decryp- tion
C212	SHA	FIPS 180-4	SHA-224, SHA- 256, SHA-384, SHA-512		Message Digest, Digital Sig- nature Generation, Digital Signature Verification
C212	HMAC	FIPS 198-1	SHA-1, SHA- 224, SHA-256, SHA-384, SHA- 512	Any	Message Authentication
C212	DSA	FIPS 186-4		224, 256	Key Pair Generation
C212	DSA	FIPS 186-4	SHA-224, SHA- 256, SHA-384, SHA-512	224, 256	Digital Signature Genera- tion
C212	DSA	FIPS 186-4	SHA-1, SHA- 224, SHA-256, SHA-384, SHA- 512	160, 224, 256	Digital Signature Verifica- tion

Table 3.1: Supported FIPS-Approved Algorithms.

	1		1	l	
CAVP	A I	Ohana ahamah		Key Lengths,	
Cert	Algorithm	Standard	Mode/Method	Curves or Moduli	Use
				2048, 3072,	
C212	RSA	FIPS 186-4		4096	Key Pair Generation
			SHA-224, SHA-		
C010			256, SHA-384,	2048, 3072,	Digital Signature Genera-
C212	RSA	FIPS 186-4	SHA-512 PKCS1	4096	tion
			v1.5 and PSS		
			SHA-1, SHA-		
			224, SHA-256,	1024, 2048,	Digital Signature Verifica-
C212	RSA	FIPS 186-4	SHA-384, SHA-	3072, 4096	tion
			512 PKCS1 v1.5		
			and PSS SHA-1, SHA-		
			224, SHA-256,	1024, 1536,	
C212	RSA	FIPS 186-2	SHA-384, SHA-	2048, 3072,	Digital Signature Verifica-
	-	(Legacy)	512 PKCS1 v1.5	4096	tion
			and PSS		
C212	ECDSA	FIPS 186-4		P-224, P-256,	Key Pair Generation
	LCDJA	115 100-4		P-384, P-521	
			SHA-224, SHA-	P-224, P-256,	Digital Signature Genera-
C212	ECDSA	FIPS 186-4	256, SHA-384,	P-384, P-521	tion
			SHA-512		
			SHA-1, SHA- 224, SHA-256,	P-224, P-256,	Digital Signature Verifica-
C212	ECDSA	FIPS 186-4	SHA-384, SHA-	P-384, P-521	tion
			512	1 004,1 021	
		SP 800-	Hash_DRBG		
#349	DRBG	90A	(SHA2-256)	-	Key Generation
					Key Generation. Resulting
					Symmetric keys and seeds
Vendor	CKG	SP 800-133	-	-	used for asymmetric key
Affimed					generation are unmodified
					output from the module's
					Approved DRBG.
					Key derivation function used in the TLS protocol.
C212	CVL (TLS 1.2 KDF)	SP 800-135	SHA2-256	-	The TLS protocol has not
					been reviewed or tested
					by the CAVP and CMVP.
		I	1	l	

Table 3.1: Supported FIPS-Approved Algorithms (continued).

KTS (AES Cert. #C212; key establishment methodology provides between 128 and 256 bits of encryption strength). The module generates cryptographic keys whose strengths are modified by

available entropy. The minimum number of bits of entropy generated by the module for use in key generation is 184. There are some algorithm modes that were tested but not implemented by the module. Only the algorithms, modes, and key sizes that are implemented by the module are shown in this table. At this time, RSA Key Pair generation modulo 4096 and RSA SigGen modulo 4096 cannot be tested. As such, they are not listed on C212.

Besides, the module supports the non-FIPS 140-2 approved algorithms listed in Table 3.2. Those algorithms may be used in the FIPS-mode of operation.

Algorithm	Caveat	Use
Brainpool P-224 (r1/t1)	Security Strength: 112 bits	Key Pair Generation, Digital Signature Gen-
biainpoor F-224 (11/11)	Security Siterigin. The bits	eration, Digital Signature Verification
Brainpool P-256 (r1/†1)	Security Strength: 128 bits	Key Pair Generation, Digital Signature Gen-
		eration, Digital Signature Verification
Brainpool P-320 (r1/†1)	Security Strength: 160 bits	Key Pair Generation, Digital Signature Gen-
		eration, Digital Signature Verification
Brainpool P-384 (r1/t1)	Security Strength: 192 bits	Key Pair Generation, Digital Signature Gen-
		eration, Digital Signature Verification
Brainpool P-512 (r1/t1)	Security Strength: 256 bits	Key Pair Generation, Digital Signature Gen-
		eration, Digital Signature Verification
SEC P-256 (k1)	Security Strength: 128 bits	Key Pair Generation, Digital Signature Gen-
		eration, Digital Signature Verification
	CVL Cert. #C212, Key	
	agreement; key establish-	
EC Diffie-Hellman	ment methodology pro-	TLS
	vides 128 bits of security	
	strength	
	Key wrapping; key estab-	
RSA	lishment methodology	TLS
	provides 112 bits of	
	security strength	
NDRNG		Seed Approved DRBG

Table 3.2: Non-Approved but Allowed Cryptographic Algorithms.

3.2 Non-FIPS Mode Algorithms

When configured in Non-FIPS Mode the algorithms in Table 3.3 are supported as well.

Algorithm	Use	
HMAC-MD5	Message Authentication	
	Digital Signature Generation with no padding (raw). Key sizes other	
	than those required by FIPS 140-2 for Key Pair Generation, Digital Sig-	
RSA	nature Generation and Digital Signature Verification. Data Encryption	
	and Data Decryption with OAEP or PKCS1 v1.5 padding and with no	
	padding.	
Brainpool P-160 (r1/t1)	Key Pair Generation, Digital Signature Generation, Digital Signature	
	Verification	
Brainpool P-192 (r1/t1)	Key Pair Generation, Digital Signature Generation, Digital Signature	
	Verification	
Ed25519	Key Pair Generation, Digital Signature Generation, Digital Signature	
	Verification	
Fd448	Key Pair Generation, Digital Signature Generation, Digital Signature	
	Verification	
F-521	Key Pair Generation, Digital Signature Generation, Digital Signature	
	Verification	
SHAKE256 (with 512-bit	Hash Computation; Hash parameter in Digital Signature Generation /	
output) (non-compliant	Verification	
to FIPS-202)		
MD5	Message Digest	

Table 3.3: Supported Non-Approved Algorithms.

4 IDENTIFICATION AND AUTHENTICATION POLICY

4.1 Roles

The module supports three different roles: the Physical HSM Crypto Officer (PCO), the Virtual HSM Crypto Officer (VCO), and the User. A Virtual HSM (VHSM) is a logical security module implemented in the physical module. The physical module is referred as the Physical HSM (PHSM). Multiple VHSMs can be created in the PHSM and each VHSM has its own users and data, which cannot be accessed by other VHSMs.

- **Physical HSM Crypto Officer (PCO)**: The most priviledged role on the physical HSM; created when the physical HSM is initialized or by another PCO. It is responsible for the physical module management, which includes creation and deletion of virtual HSMs and firmware updates.
- Virtual HSM Crypto Officer (VCO): The most priviledged role on the virtual HSM; created when the virtual HSM is initialized or by another VCO. It is responsible for the virtual HSM management, which includes the creation of users, altering the virtual module configurations and backup related operations.
- **User**: Created by a VCO, it is responsible for all cryptographic operations and management of cryptographic objects that it has ownership.

4.2 Authentication

The module enforces indentity-based authentication and each identity is mapped to a single role, where the user ID is used as the identification for identity-based authentication. The module supports the following authentication schemes:

- **Password-based authentication**: user ID and password. The authentication data is encrypted using the TLS protocol. The password is composed of 6 or more alphanumeric characters, which may include both upper and lower case letters, punctuation marks, and symbols (such as @, &, and *).
- **Certificate-based authentication**: private key and certificate. Both are used to enable client authentication according to the TLS protocol, in which a handshake message is digitally signed using the private key and the signature is sent to the module.
- Quorum authentication: the PHSM and the VHSMs can be configured to activate quorum authentication. The quorum authentication activation can be requested by any crypto officer, who defines a number M of crypto officers for the quroum. Then, M out of a total N crypto officers must authenticate themselves (with one of the above schemes) and agree to activate the quorum authentication for the PHSM or VHSM. Once the quorum authentication is activated, critical operations can only be executed if M out of N crypto officers allow it. To do that, the crypto officers must authenticate themselves using one of the methods above and allow the execution of the operation.

Table 4.1 summarizes the roles and authentication methods.

Role	Type of Authentication	Authentication Data
PCO VCO	Identity-based	Password-based: username and password; Certificate-based: certificate and digitally-signed
User		data (per TLS protocol). Quorum Authentication: one of the above.

Table 4.1: Roles and Required Identification and Authentication

Table 4.2 brings the cryptographic strength of the authentication mechanisms.

Table 4.2: Strengths of Authentication Mechanisms

Authentication Mecha- nism	Strength of Mechanism
Password-based	The worst case scenario is a 6-character password, containing uppercase and lowercase characters, symbols or digits totalling 96 possibilities (10 digits, 52 letters and 34 symbols); thus, the probability that a random attempt will succeed is $1/96^6 = 1/782,757,789,696$, much smaller than the required $1/1,000,000$. The password authentication uses an exponential backoff delay on failed attempts for a given operator. After the first failure, a new attempt can be made after 1 s; 2 s after the second failure; 4 s after the third; 8 s after the fourth; and 16 s after the fifth. Therefore the number of maximum possible attempts during a one-minute period is 7, given a probability of $7/782,757,789,696 = 1/111,822,541,385$ which is smaller than the required $1/100,000$.
Certificate-based	The strength of the mechanism relies on the strength of the digital signature employed. The module will restrict the algorith to 2048-bit RSA or larger; or 224-bit ECDSA or larger. These provide a 112-bit security level, therefore, the chance that a random attempt will succeed is roughly $1/2^{112}$, much smaller than the required $1/1,000,000$. The module is able to execute at most 30,000 verifications per second (less than that in practice, due to software overhead). Being optimistic and assuming 30,000, the chance that random attempts during a one-minute window will succeed is $30,000/2^{112}$, which is roughly equal to $6/10^{30}$ and much smaller than the required $1/100,000$.
Quorum Authentication	The strength of the mechanism relies on the strength of the above mechanisms and on the number M of operators in the quorum. M must always be equal or greater than half of the operators (N), rounded up.

The module also supports multi-factor authentication mechanisms. One of the mechanisms in Table 4.2 must always be used, but the operator can strengthen the authentication security providing additionally (but not alone), one or more of the mechanisms in Table 4.3.

Authentication Mecha-	Strength of Mechanism
nism	
Time-based OTP	The operator must provide a 6-digit time-based OTP value when au- thenticating. The module checks if the OTP matches the expected value, which is calculated based in the current interval of time. The strength of the mechanism relies on the strength of HMAC-SHA1 with 160-bit key and of the OTP value itself (which changes every 30 seconds). The algorithm provides a 80-bit security level, therefore, the chance that a random attempt of guessing the key will succeed is roughly $1/2^{80}$, much smaller than the required $1/1,000,000$. If the attacker tries to guess the OTP value itself, probability that a random attempt will succeed is the required $1/1,000,000$. Sice the time-based OTP is subject to the same exponential backoff delay mentioned above the number of maximum possible attempts during a one-minute period is 7, given a probability of $7/1,000,000 =$ 1/142,857 which is smaller than the required $1/100,000$. In practice,
	since the code changes every 30 seconds, the odds are even lower.
HMAC-based OTP	The operator must provide a hash-based OTP value when authenti- cating. The module checks if the OTP matches the expected value, which is calculated based in the number of successfull requests done so far using the mechanism. The strength of the mechanism relies on the strength of HMAC-SHA1 with 160-bit key and of the OTP value itself (which changes after every successful login). The algorithm provides a 80-bit security level, therefore, the chance that a random attempt of guessing the key will succeed is roughly 1/2 ⁸⁰ , much smaller than the required 1/1,000,000. If the attacker tries to guess the OTP value itself, proba- bility that a random attempt will succeed is the required 1/1,000,000. Sice the hash-based OTP is subject to the same exponential backoff delay mentioned above the number of maximum possible attempts during a one-minute period is 7, given a probability of 7/1,000,000 = 1/142,857 which is smaller than the required 1/100,000.
Client token	The operator must register a certificate in the module and use the corresponding private key to sign a token value provided by the module. The module checks the signature to allow the authentica- tion. The strength of the mechanism is exactly the same as Certificate- based authentication.

Table 4.3: Strengths a	of Additional	Authentication	Mechanisms

5 ACCESS CONTROL POLICY

5.1 Supported Roles

The following roles are supported by this module:

- Physical HSM Cryptographic Officer (PCO)
- Virtual HSM Cryptographic Officer (VCO)
- User

Unauthenticated operators are able to use some of the services. The module distinguishes between operators with and without physical access. Physical access implies access to the frontal board and/or serial interfaces.

5.2 Services Provided

Tables 5.1, 5.2, 5.3, 5.4 and 5.5 list all the services provided by the module, according to which roles they are authorized.

Service	Description					
Initialize HSM	Initialize the HSM; create first PCO with provisory					
	password (PIN)					
Configure Network	Configure network settings (IP, netmask, gate-					
	way)					
Get Network Configuration	Get network settings					
Reset HSM	Reset HSM to factory state					
Set Date Time	Set the current date and time					
Get Date Time	Get the current date and time					
Get HSM Usage	Get CPU, RAM and disk usage					
Create User	Create a PCO					
Destroy User	Destroy a PCO					
List Users	List PCOs					
Change Password	Change a PCO password					
Reset Password	Reset a PCO password					
Register Certificate	Sign a CSR and register the certificate for PCO					
	authentication					
Activate Quorum Authentication	Activates quorum authentication for the PHSM					
Deactivate Quorum Authentication	Deactivates quorum authentication for the					
	PHSM					
	Check the quorum authentication state of the					
Get Quorum Authentication State	PHSM (i.e. activated or not, the minimum quo-					
	rum)					
Get Quorum Authentication Status	Check the quorum authentication status of the					
	PHSM (i.e. number of operations or time left)					

Table 5.1: Services Authorized for PCO Role.

[
Vote Quorum Authentication	Inform the operator's verdict for quorum authen-				
	tication operations (allow or deny)				
Start Quorum Authentication	Request that operators vote to start quorum au-				
	thentication votes to allow critical operations				
	Stop quorum authentication, blocking critical				
Stop Quorum Authentication	operations when quorum authentication is acti-				
	vated (a new start is required)				
Create Virtual HSM	Create a Virtual HSM along with its first VCO with				
	provisory password (PIN)				
List Virtual HSMs	List all Virtual HSMs				
Activate Virtual HSM	Activate a Virtual HSM				
Deactivate Virtual HSM	Deactivate a Virtual HSM				
Delete Virtual HSM	Delete a Virtual HSM and all of its objects				
Edit Virtual HSM	Edit a VHSM configuration				
Export VHSM	Export an entire Virtual HSM; its users and objects				
Import VHSM	Import an entire Virtual HSM				
Export PHSM	Export an entire Physical HSM, its users and VHMs				
Import PHSM	Import an entire Physical HSM				
Get Requester Type	Get the role of the requester				
	Update the module firmware. Any firmware				
	loaded into this module that is not shown on				
Update Firmware	the module certificate, is out of the scope of				
	this validation and requires a separate FIPS 140-2				
	validation.				
Get Log Level	Get the current log level				
Set Log Level	Set the current log level				
Get System Log	Retrieve the PHSM log				
Show Status	Get the status of the HSM				
Shutdown	Shutdown the HSM				
	Restart the HSM and Perform self-tests on de-				
Restart	mand				
	Get device version, status, serial number and				
Get Device Information	other information				
	Get the TLS certificate of the PHSM server and				
Get TLS Certificate	the correspoding CA				
Renew Server Certificate	Renew the PHSM server TLS certificate				
Activate OTP	Activate OTP for the PCO				
Manual Activate OTP	Manually activate OTP for the PCO, informing				
	the OTP key				
Deactivate OTP	Deactivates OTP for the PCO				
Register Authentication Certificate	Register a certificate to be used during PCO				
	authentication				

Table 5.1: Services Authorized for PCO Role (continued).

Table 5.1: Services Authorized for PCO Role (continued).

Remove Authentication Certificate	Delete a certificate used for authentication			
List Authentication Certificates	List the registered certificates for the PCO			
Start Token Authentication	Return a token that the PCO signs to authenti-			
	cate using one of the registered certificates			
Get Session Credential	Retrieves a session token used for further authen-			
Gersesson Credernidi	tications			

Service	Description			
Service	Description			
Get VHSM Usage	Get VHSM CPU, RAM and disk usage			
Create User	Create a VCO or User			
Destroy User	Destroy a VCO or User along with all its objects			
Reset Password	Reset a VCO's or User's password			
Pagistar Cartificata	Sign a CSR and register the certificate for VCO			
Register Certificate	authentication			
Activate Quorum Authentication	Activates quorum authentication for the VHSM			
Deactivate Quorum Authentication	Deactivates quorum authentication for the			
	VHSM			
	Check the quorum authentication state of the			
Get Quorum Authentication State	VHSM (i.e. activated or not, the minimum quo-			
	rum)			
Get Quorum Authentication Status	Check the quorum authentication status of the			
	VHSM (i.e. number of operations or time left)			
Vote Quorum Authentication	Inform the operator's verdict for quorum authen-			
	tication operations (allow or deny)			
Start Quorum Authentication	Request that operators vote to start quorum au-			
	thentication votes to allow critical operations			
	Stop quorum authentication, blocking critical			
Stop Quorum Authentication	operations when quorum authentication is acti-			
	vated (a new start is required)			
Activate User	Activate a User			
Deactivate User	Deactivate a User			
Get Requester Type	Get the role of the requester			
Get Log Level	Get the current log level			
Set Log Level	Set the current log level			
Get System Log	Retrieve the VHSM log			
Get Device Information	Get device version, status, serial number and			
	other information			
Get TLS Certificate	Get the TLS certificate of the VHSM server and			
	the correspoding CA			
Renew Server Certificate	Renew the VHSM server TLS certificate			

Table 5.2: Services Authorized for VCO Role.

Activate OTP	Activate OTP for the VCO		
Manual Activate OTP	Manually activate OTP for the VCO, informing		
	the OTP key		
Deactivate OTP	Deactivates OTP for the VCO		
Register Authentication Certificate	Register a certificate to be used during VCO		
	authentication		
Remove Authentication Certificate	Delete a certificate used for authentication		
List Authentication Certificates	List the registered certificates for the VCO		
Start Token Authentication	Return a token that the VCO signs to authenti-		
	cate using one of the registered certificates		
Get Session Credential	Retrieves a session token used for further authen-		
	tications		

Table 5.2: Services Authorized for VCO Role (continued).

Table 5.3: Services Authorized for User Role

Service	Description			
Change Password	Change the User password			
Register Certificate	Sign a CSR and register the certificate for User			
	authentication			
Activate Quorum Authentica-	Activates quorum authentication for the usage			
tion	of an object			
Deactivate Quorum Authenti-	Deactivates quorum authentication for the us-			
cation	age of an object			
Get Quorum Authentication	Check the quorum authentication state of the			
State	usage of an object (i.e. activated or not, the			
	minimum quorum)			
Get Quorum Authentication	Check the quorum authentication status of the			
Status	usage of an object (i.e. number of operations			
	or time left)			
Vote Quorum Authentication	Inform the operator's verdict for quorum authen-			
	tication operations (allow or deny)			
Start Quorum Authentication	Request that operators vote to start quorum au-			
	thentication votes to allow critical operations			
Stop Quorum Authentication	Stop quorum authentication, blocking critical			
	operations when quorum authentication is acti-			
	vated (a new start is required)			
Get System Log	Retrieve the log of operations performed by the			
	user			
List Certificates	List certificates registered for User authentication			
Delete Certificate	Delete certificate registered for User authentica-			
	tion			
Set User Object Permission	Set object permissions for a specific user			
Get User Object Permission	Get object permissions for a specific user			

Service	Description		
Get Requester Type	Get the role of the requester		
Create	KMIP: Create symmetric key		
CreateKeyPair	KMIP: Create asymmetric key pair		
Register	KMIP: Register an object		
Locate	KMIP: Locate a object given its attributes		
Check	KMIP: Check usage quota of a object		
Get	KMIP: Get an object		
GetAttributes	KMIP: Get attribute values of an object		
GetAttributeList	KMIP: Get attributes of an object		
AddAttribute	KMIP: Add attribute value to an object		
ModifyAttribute	KMIP: Modify an attribute value		
DeleteAttribute	KMIP: Delete an attribute value from an object		
Activate	KMIP: Activate object		
Revoke	KMIP: Revoke object		
Destroy	KMIP: Destroy object		
Query	KMIP: Query for information about the module		
DiscoverVersions	KMIP: Query for supported KMIP versions		
Encrypt	KMIP: Encrypt data		
Decrypt	KMIP: Decrypt data		
Sign	KMIP: Sign data		
SignVerify	KMIP: Verify signature		
Sign XML	Sign data according to XMLDSig standard		
Verify XML	Verify XML signature according to XMLDSig stan-		
	dard		
MAC	KMIP: Generate MAC of data		
MACVerify	KMIP: Verify a MAC		
RNGRetrieve	KMIP: Retrieve randomness		
RNGSeed	KMIP: Seed RNG		
Hash	KMIP: Compute hash		
Load Key	Load key in cache		
Fast Sign	Faster sign operation with cached key		
Validate	KMIP: Validates a digital certificate or certificate		
	chain		
Get Session Credential	Retrieves a session token used for further authen-		
	tications		
Get TLS Certificate	Get the TLS certificate of the VHSM server and		
	the correspoding CA		
Activate OTP	Activate OTP for the User		
Manual Activate OTP	Manually activate OTP for the User, informing the		
	OTP key		
Deactivate OTP	Deactivates OTP for the User		

Table 5.3: Services Authorized for User Role (continued)

Service	Description			
Register Authentication Certifi-	Register a certificate to be used during User au-			
cate	thentication			
Remove Authentication Cer-	Delete a certificate used for authentication			
tificate				
List Authentication Certifi-	List the registered certificates for the User			
cates				
Start Token Authentication	Return a token that the User signs to authenti-			
	cate using one of the registered certificates			
Get Session Credential	Retrieves a session token used for further authen-			
	tications			

 Table 5.3: Services Authorized for User Role (continued)

Table 5.4: Services Authorized for Unauthenticated Operator without Physical Access

Service	Description
Query	KMIP: Query for information about the module
DiscoverVersions	KMIP: Query for supported KMIP versions

Table 5.5: Services Authorized for Unauthenticated Operator with Physical Access

Service	Description
Initialize HSM	Initialize the HSM; create first PCO with provisory
	password (PIN)
Configure Network	Configure network settings (IP, netmask, gate-
	way)
Get Network Configuration	Get network settings
Reset HSM	Reset HSM to factory state
Get Date Time	Get the current date and time
Shutdown	Shutdown the HSM
Restart	Restart the HSM

5.3 Cryptographic Keys and Critical Security Parameters (CSPs)

Table 5.6 lists all cryptographic keys and CSPs stored in the module. In this table, "Password" refers to 8 or more alphanumeric characters, which may include both upper and lower case letters, punctuation marks, and symbols (such as @, &, and *).

Key Name	Туре	Generation / Input	Output	Storage	Zeroization	Description
Super Root Key Hash	SHA-256 hash of four RSA Public Keys with at least 2048 bits	Entered during manufactur- ing	Never	One- time pro- grammable memory	Never	Used to verify boot image (secure boot)
Job Descriptor Key Encryption Key	256-bit AES Key	Generated internally on boot	Never	Temporarily in secure processor memory	Reboot	Encrypts keys in memory while they are being used
PHSM Module Key	3072-bit RSA Pri- vate Key	Entered during manufactur- ing	Never	Obfuscated in disk	Never	Identifies the module; decrypts firmware updates
PHSM Module Cer- tificate	Certificate	Entered during manufactur- ing	Never	Disk	Never	Certificate of the module; matches PHSM Module Key
Kryptus kNET CA Certificate	Certificate	Entered during manufactur- ing	Never	Disk	Never	Certificate used to verify firmware updates
PHSM Server CA Key	3072-bit RSA Pri- vate Key	Generated in- ternally during setup	Encrypted in backups	Obfuscated in disk	Return to fac- tory state	Key of the PHSM TLS Server CA
PHSM Server CA Certificate	Certificate	Generated in- ternally during setup	Get TLS Cer- tificate op- eration, en- crypted in backups	Disk	Return to fac- tory state	Certificate of the PHSM TLS Server CA; matches PSHM Server CA Key

Table 5.6: Cryptographic Keys and CSPs

Key Name	Туре	Generation / Input	Output	Storage	Zeroization	Description
PHSM Server Key	2048-bit RSA Pri-	Generated in-	Never	Obfuscated	Return to fac-	Authentication during TLS key nego-
	vate Key and/or	ternally during		in disk	tory state	tiation
	256-bit ECC Pri-	setup				
	vate Key					
PHSM Server Cer-	Certificate	Generated in-	Get TLS Cer-	Disk	Return to fac-	Authentication during TLS key nego-
tificate		ternally during	tificate op-		tory state	tiation; matches PSHM Server Key
		setup	eration			
PHSM Client CA	3072-bit RSA Pri-	Generated in-	Encrypted	Obfuscated	Return to fac-	Key of the PHSM TLS Client CA
Кеу	vate Key	ternally during	in backups	in disk	tory state	
		setup				
PHSM Client CA	Certificate	Generated in-	Get TLS Cer-	Disk	Return to fac-	Certificate of the PHSM TLS Client
Certificate		ternally during	tificate op-		tory state	CA; matches PHSM Client CA Key
		setup	eration, en-			
			crypted in			
			backups			
PCOs' Passwords	Password	Generated in-	Provisory	Volatile	After obfusca-	PCOs' passwords
		ternally / Pro-	password	memory	tion, reboot	
		vided by user	in Initial-			
			ize HSM			
			operation			
PCOs' Obfus-	Obfuscated pass-	Derived from	Encrypted	Disk	When PCO	Obfuscated passwords of PCOs
cated Passwords	word	PCOs's Pass-	in backups		deleted	
		words				
PCOs' Certificate	SHA-256 hashes	Generated in-	Encrypted	Disk	When PCO	Hashes of certificates authorized for
Fingerprints		ternally	in backups		deleted	each PCO

KRYPTUS

*	
KRYPTUS shaping trusted bonds	

Key Name	Туре	Generation / Input	Output	Storage	Zeroization	Description
PCO's OTP Key	160-bit HMAC- SHA1 key	Generated in- ternally	Activate OTP op- eration, encrypted in backups	Obfuscated in disk	When PCO deleted or OTP deactivated	Key used for OTP generation
VHSM Server CA Keys	3072-bit RSA Pri- vate Key	Generated in- ternally during VHSM creation	Encrypted in backups	Obfuscated in disk	Delete VHSM, return to fac- tory state	Key of the VHSMs TLS Server CAs
VHSM Server CA Certificates	Certificates	Generated in- ternally during VHSM creation	Get TLS Cer- tificate op- eration, en- crypted in backups	Disk	Delete VHSM, return to fac- tory state	Certificates of the VHSMs TLS Server CAs; matches VHSM Server CA Keys
VHSM Server Keys	2048-bit RSA Pri- vate Key and/or 256-bit ECC Pri- vate Key	Generated in- ternally during VHSM creation	Never	Obfuscated in disk	Delete VHSM, return to fac- tory state	Authentication during TLS key nego tiation
VHSM Server Cer- tificates	Certificates	Generated in- ternally during VHSM creation	Get TLS Cer- tificate op- eration	Disk	Delete VHSM, return to fac- tory state	Authentication during TLS key nego- tiation; matches VHSM Server Keys
VHSM Client CA Keys	3072-bit RSA Pri- vate Key	Generated in- ternally during VHSM creation	Encrypted in backups	Obfuscated in disk	Delete VHSM, return to fac- tory state	Key of the VHSMs TLS Client CAs
VHSM Client CA Certificates	Certificate	Generated in- ternally during VHSM creation	Get TLS Cer- tificate op- eration, en- crypted in backups	Disk	Delete VHSM, return to fac- tory state	Certificates of the TLS Client CAs, matches VHSM Client CA Keys

*
KRYPTUS shaping trusted bonds

	Table 5.6: Cryptographic Keys and CSPs (continued)							
Key Name	Туре	Generation /	Output	Storage	Zeroization	Description		
		Input						
VCOs' Passwords	Password	Generated in-	Provisory	Volatile	After obfusca-	VCOs' Passwords		
		ternally / Pro-	password	memory	tion, reboot			
		vided by user	in Initial-					
			ize HSM					
			operation					
VCOs' Obfus-	Obfuscated pass-	Derived from	Encrypted	Disk	When VCO	Obfuscated passwords of VCOs		
cated Passwords	word	VCOs's Pass-	in backups		deleted			
		words						
VCOs' Certificate	SHA-256 hashes	Generated in-	Encrypted	Disk	When VCO	Hashes of certificates authorized for		
Fingerprints		ternally	in backups		deleted	each VCO		
VCO's OTP Key	160-bit HMAC-	Generated in-	Activate	Obfuscated	When VCO	Key used for OTP generation		
	SHA1 key	ternally	OTP op-	in disk	deleted or OTP			
			eration,		deactivated			
			encrypted					
			in backups					
Users' Passwords	Password	Generated in-	Provisory	Volatile	After obfusca-	Users' Passwords		
		ternally / Pro-	password in	memory	tion, reboot			
		vided by user	Create User					
			operation					
Users' Obfus-	Obfuscated pass-	Derived from	Encrypted	Disk	When User	Obfuscated passwords of Users		
cated Passwords	word	Users' Pass-	in backups		deleted			
		words						
Users' Certificate	SHA-256 hashes	Generated in-	Encrypted	Disk	When User	Hashes of certificates authorized for		
Fingerprints		ternally	in backups		deleted	each User		

Key Name	Туре	Generation /	Output	Storage	Zeroization	Description
		Input				
Users' Objects	RSA, DSA, ECDSA,	Generated	Wrapped	Obfuscated	When object	A cryptographic object generated
	AES or HMAC Key;	internally or	(en-	in disk	is deleted; re-	or imported by a User
	Certificate	registered	crypted)		turn to factory	
		encrypted	if allowed,		state	
		(wrapped)	encrypted			
			in backups			
User's OTP Key	160-bit HMAC-	Generated in-	Activate	Obfuscated	When User	Key used for OTP generation
	SHA1 key	ternally	OTP op-	in disk	deleted or OTP	
			eration,		deactivated	
			encrypted			
			in backups			
ECDH Private	Private compo-	Generated in-	Never exits	Plaintext in	Upon mod-	Establishment of TLS session keys
Component	nent of ECDH	ternally	the module	RAM	ule reboot;	
	protocol				Upon session	
					termination	
ECDH Public Com-	Public compo-	(for the mod-	(for the	Plaintext in	Upon mod-	Establishment of TLS session keys
ponent	nent of ECDH	ule) Gener-	module)	RAM	ule reboot;	
	protocol	ated internally;	Exits the		Upon session	
		(for a peer)	module in		termination	
		Generated	plaintext			
		externally, en-	form; (for a			
		tered into the	peer) Never			
		module (in cer-	exits the			
		tificate form) in	module			
		plaintext				

KRYPTUS shaping trusted bonds

24

Key Name	Туре	Generation / Input	Output	Storage	Zeroization	Description
TLS Peer Public	2048-bit RSA pub-	Generated	Never exits	Plaintext in	Upon mod-	Certificate-based authentication
Key	lic key	externally,	the module	RAM	ule reboot;	during TLS key negotiation
		imported in			Upon session	
		certificate			termination	
		form in plain-				
		text				
TLS Pre-Master Se-	(for RSA cipher	(for RSA ci-	(for RSA ci-	Plaintext in	Upon module	Derivation of the TLS Master Secret
cret	suites) 384-bit	pher suites)	pher suites)	RAM	reboot; Upon	
	random value;	Generated	Never exits		completion of	
	(for ECDH cipher	externally,	the module;		TLS Master Se-	
	suites) ECDH	imported in	(for ECDH ci-		cret computa-	
	shared secret	encrypted	pher suites)		tion	
		form via RSA	Never exits			
		key transport;	the module			
		(for ECDH				
		cipher suites)				
		Derived inter-				
		nally via ECDH				
		shared secret				
		computation				
TLS Master Secret	384-bit shared se-	Derived inter-	Never exits	Plaintext in	Upon mod-	Derivation of the TLS Session Key and
	cret	nally using the	the module	RAM	ule reboot;	TLS Authentication Key
		TLS Pre-Master			Upon session	
		Secret via TLS			termination	
		KDF				

Shaping trusted bonds

Key Name	Туре	Generation /	Output	Storage	Zeroization	Description
		Input				
TLS Session Key	128/256-bit AES	Derived in-	Never exits	Plaintext in	Upon mod-	Encryption and decryption of TLS
	key	ternally using	the module	RAM	ule reboot;	session packets
		the TLS Master			Upon session	
		Secret via TLS			termination	
		KDF				
TLS Authentica-	160-bit (minimum)	Derived in-	Never exits	Plaintext in	Upon mod-	Authentication of TLS session pack-
tion Key	HMAC key	ternally using	the module	RAM	ule reboot;	ets
		the TLS Master			Upon session	
		Secret via the			termination	
		TLS KDF				
DRBG C and V	Internal DRBG	Generated in-	Never exits	Plaintext in	Upon module	Generation of random number
values	state value	ternally	the module	secure pro-	reboot	
				cessor regis-		
				ter		

Shaping trusted bonds

GCM IVs can be generated randomly, where an IV is not generated randomly the module supports the importing of GCM IVs. In approved mode, when a GCM IV is generated randomly, the module enforces the use of an approved DRBG in line with Section 8.2.2 of SP 800-38D. In approved mode, importing a GCM IV is non-conformant unless the source of the IV is also FIPS approved for GCM IV generation. Per IG A.5, in case the module's power is lost and then restored, the key used for the AES GCM encryption or decryption shall be redistributed.

The kNET HSM keep a counter of how many bytes a Triple-DES key may be able to encrypt. The kNET HSM does not allow the usage of a key to encrypt more than 2¹⁶ times. When the counter reaches zero, or when a user tries to protect more bytes than stored in this counter, the kNET HSM blocks the operation. The counter is stored in non-volatile memory, therefore rebooting the HSM won't reset the counter.

5.4 Access Rights

Table 5.7 lists all access rights granted over CSPs in each service. The "Type of Access" column uses letter to specify the following types of access:

- R: Read access—the service reads the CSP;
- W: Write access—the service writes to the CSP;
- G: Generate access—the service generates the CSP;
- E: Execute access—the service uses the CSP for a cryptographic operation;
- Z: Zeroize access-the service zeorizes the CSP.

Some accesses are common between a all services for a particular role; this is indicated in the table. These access are related to the authentication of the TLS channel between the module and the client.

Some CSPs do not appear in the table. This is because they are accessed either by setup operations (before the module is ready for use) or by autonomous operations (e.g. on boot).

Service	Role	Type of	CSPs
		Access	
(All PCO Services)	PCO	E	PHSM Server Key
		R	PHSM Server Certificate
		E	PHSM Client CA Certificate
		R	PCO's Certificate Fingerprint
		R	PCO's Password
		R	PCO's Obfuscated Password
		E	Job Descriptor Key Encryption Key
		G,E	TLS Session Keys
Initialize HSM	PCO	G,R	PCO's Password
		W	PCO's Obfuscated Password
Configure Network	PCO		None
Get Network Configuration	PCO		None
Reset HSM	PCO	Z	PHSM Server CA Key
		Z	PHSM Server CA Certificate
		Z	PHSM Server Key
		Z	PHSM Server Certificate

Service	Role	Type of	CSPs
		Access	
		Z	PHSM Client CA Key
		Z	PHSM Client CA Certificate
		Z	PCOs' Passwords
		Z	PCOs' Obfuscated Passwords
		Z	PCOs' Certificate Fingerprints
		Z	VHSM Server CA Keys
		Z	VHSM Server CA Certificates
		Z	VHSM Server Keys
		Z	VHSM Server Certificates
		Z	VHSM Client CA Keys
		Z	VHSM Client CA Certificates
		Z	VHSM RNG Seed
		Z	VCOs' Passwords
		Z	VCOs' Obfuscated Passwords
		Z	VCOs' Certificate Fingerprints
		Z	Users' Passwords
		Z	Users' Obfuscated Passwords
		Z	Users' Certificate Fingerprints
		Z	Users' Objects
		Z	TLS Session Keys
Remove from Error State	PCO	R	PCOs' Passwords
Set Date Time	PCO		None
Get Date Time	PCO		None
Get HSM Usage	PCO		None
Create User	PCO	G,R	PCO's Password
	PCO	W	PCO's Obfsucated Password
Destroy User	PCO	Z	PCO's Obfuscated Password
		Z	PCO's Certificate Fingerprints
List Users	PCO		None
Change Password	PCO	R	PCO's Password
		W	PCO's Obfsucated Password
Reset Password	PCO	G,R	PCO's Password
		W	PCO's Obfuscated Password
Register Certificate	PCO	W	PCO's Certificate Fingerprint
List Certificates	PCO	R	PCO's Certificate Fingerprints
Delete Certificate	PCO	Z	PCO's Certificate Fingerprint
Activate Quorum Authentication	PCO		None
Deactivate Quorum Authentication	PCO		None
Get Quorum Authentication State	PCO		None
Get Quorum Authentication Status	PCO		None
Vote Quorum Authentication	PCO		None

Service	Role	Type of	CSPs
		Access	
Start Quorum Authentication	PCO		None
Stop Quorum Authentication	PCO		None
Create Virtual HSM	PCO	G	VHSM Server CA Key
		W	VHSM Server CA Certificate
		G	VHSM Server Key
		W	VHSM Server Certificate
		G	VHSM Client CA Key
		W	VHSM Client CA Certificate
		G,R	VCO's Password
		W	VCO's Obfuscated Password
Edit Virtual HSM	PCO		None
List Virtual HSMs	PCO		None
Activate Virtual HSM	PCO		None
Deactivate Virtual HSM	PCO		None
Export VHSM	PCO	R	VHSM Server CA Key
		R	VHSM Server CA Certificate
		R	VHSM Client CA Key
		R	VHSM Client CA Certificate
		R	VCOs' Obfuscated Passwords
		R	VCOs' Certificate Fingerprints
		R	Users' Obfuscated Passwords
		R	Users' Certificate Fingerprints
		R	Users' Objects (Exportable)
Import VHSM	PCO	W	VHSM Server CA Key
		W	VHSM Server CA Certificate
		G	VHSM Server Key
		W	VHSM Server Certificate
		W	VHSM Client CA Key
		W	VHSM Client CA Certificate
		W	VCOs' Obfuscated Passwords
		W	VCOs' Certificate Fingerprints
		W	Users' Obfuscated Passwords
		W	Users' Certificate Fingerprints
		W	Users' Objects

Service	Role	Type of	CSPs
		Access	
Export PHSM	PCO	R	PHSM Server CA Key
		R	PHSM Server CA Certificate
		R	PHSM Client CA Key
		R	PHSM Client CA Certificate
		R	PCOs' Obfuscated Passwords
		R	PCOs' Certificate Fingerprints
		R	VHSMs Server CA Keys
		R	VHSMs Server CA Certificates
		R	VHSMs Client CA Keys
		R	VHSMs Client CA Certificates
		R	VCOs' Obfuscated Passwords
		R	VCOs' Certificate Fingerprints
		R	Users' Obfuscated Passwords
		R	Users' Certificate Fingerprints
		R	Users' Objects (Exportable)
Import PHSM	PCO	W	PHSM Server CA Key
		W	PHSM Server CA Certificate
		G	PHSM Server Key
		W	PHSM Server Certificate
		W	PHSM Client CA Key
		W	PHSM Client CA Certificate
		W	PCOs' Obfuscated Passwords
		W	PCOs' Certificate Fingerprints
		W	VHSM Server CA Key
		W	VHSM Server CA Certificate
		G	VHSM Server Key
		W	VHSM Server Certificate
		W	VHSM Client CA Key
		W	VHSM Client CA Certificate
		W	VCOs' Obfuscated Passwords
		W	VCOs' Certificate Fingerprints
		W	Users' Obfuscated Passwords
		W	Users' Certificate Fingerprints
		W	Users' Objects
Update Firmware	PCO	E	PHSM Module Key
		E	Kryptus kNET CA Certificate
Get Log Level	PCO		None
Set Log Level	PCO		None
Get System Log	PCO		None
Show Status	PCO		None
Perform Self-Tests	PCO		None
Shutdown	PCO		None

Service	Role	Type of Access	CSPs
Restart	PCO		None
Get Device Information	PCO		None
Get TLS Certificate	PCO	R	PHSM Server CA Certificate
		R	PHSM Server Certificate
Renew Server Certificate	PCO	G	PHSM Server Certificate
Activate OTP	PCO	G,R,E	PCO's OTP Key
Manual Activate OTP	PCO	R,E	PCO's OTP Key
Deactivate OTP	PCO	Z	PCO's OTP Key
Register Authentication Certificate	PCO	R	PCOs' Certificate Fingerprints
Remove Authentication Certificate	PCO	Z	PCOs' Certificate Fingerprints
List Authentication Certificates	PCO	R	PCOs' Certificate Fingerprints
Start Token Authentication	PCO	R	PCOs' Certificate Fingerprints
Get Session Credential	PCO		None
(All VCO Services)	VCO	E	VHSM Server Key
		R	VHSM Server Certificate
		E	VHSM Client CA Certificate
		R	VCO's Certificate Fingerprint
		R	VCO's Password
		R	VCO's Obfuscated Password
		E	Job Descriptor Key Encryption Key
		G,E	TLS Session Keys
Get VHSM Usage	VCO		None
Create User (VCO)	VCO	G,R	VCO's Password
	VCO	W	VCO's Obfuscated Password
Create User (User)	VCO	G,R	User's Password
	VCO	W	User's Obfuscated Password
Destroy User (VCO)	VCO	Z	VCO's Obfuscated Password
		Z	VCO's Certificate Fingerprints
Destroy User (User)	VCO	Z	User's Obfuscated Password
		Z	User's Certificate Fingerprints
Reset Password (VCO)	PCO	G,R	VCO's Password
		W	VCO's Obfuscated Password
Reset Password (User)	PCO	G,R	User's Password
		W	User's Obfuscated Password
List Users	VCO		None
Change Password	VCO	R	VCO's Password
		W	VCO's Obfuscated Password
Register Certificate	VCO	W	VCO's Certificate Fingerprint
List Certificates	VCO	R	VCO's Certificate Fingerprints
Delete Certificate	VCO	Z	VCO's Certificate Fingerprint
Activate Quorum Authentication	VCO		None

Service	Role	Type of Access	CSPs
Deactivate Quorum Authentication	VCO		None
Get Quorum Authentication State	VCO		None
Get Quorum Authentication Status	VCO		None
Vote Quorum Authentication	VCO		None
Start Quorum Authentication	VCO		None
Stop Quorum Authentication	VCO		None
Activate User	VCO		None
Deactivate User	VCO		None
Get Requester Type	VCO		None
Get Log Level	VCO		None
Set Log Level	VCO		None
Get System Log	VCO		None
Get TLS Certificate	VCO	R	VHSM Server CA Certificate
		R	VHSM Server Certificate
Renew Server Certificate	VCO	G	VHSM Server Certificate
Activate OTP	VCO	G,R,E	VCO's OTP Key
Manual Activate OTP	VCO	R,E	VCO's OTP Key
Deactivate OTP	VCO	Z	VCO's OTP Key
Register Authentication Certificate	VCO	R	VCOs' Certificate Fingerprints
Remove Authentication Certificate	VCO	Z	VCOs' Certificate Fingerprints
List Authentication Certificates	VCO	R	VCOs' Certificate Fingerprints
Start Token Authentication	VCO	R	VCOs' Certificate Fingerprints
Get Session Credential	VCO		None
(All User Services)	User	E	VHSM Server Key
		R	VHSM Server Certificate
		E	VHSM Client CA Certificate
		R	User's Certificate Fingerprint
		R	User's Password
		R	User's Obfuscated Password
		E	Job Descriptor Key Encryption Key
		G,E	TLS Session Keys
Change Password	User	R	User's Password
		W	User's Obfuscated Password
Register Certificate	User	W	User's Certificate Fingerprint
List Certificates	User	R	User's Certificate Fingerprints
Activate Quorum Authentication	User		None
Deactivate Quorum Authentication	User		None
Get Quorum Authentication State	User		None
Get Quorum Authentication Status	User		None
Vote Quorum Authentication	User		None
Start Quorum Authentication	User		None

Service	Role	Type of Access	CSPs
Stop Quorum Authentication	User		None
Get System Log	User		None
Delete Certificate	User	Z	User's Certificate Fingerprint
Set User Object Permission	User		None
Get User Object Permission	User		None
Get Requester Type	User		None
Create	User	G	User's Object
CreateKeyPair	User	G	User's Object
Register	User	W	User's Object
Locate	User		None
Check	User		None
Get	User	R	User's Object (Exportable)
GetAttributes	User		None
GetAttributeList	User		None
AddAttribute	User		None
ModifyAttribute	User		None
DeleteAttribute	User		None
Activate	User		None
Revoke	User		None
Destroy	User	Z	User's Object
Query	User		None
Discover Versions	User		None
Encrypt	User	E	User's Object
Decrypt	User	E	User's Object
Sign	User	E	User's Object
SignVerify	User	E	User's Object
SignXML	User	E	User's Object
VerifyXML	User	E	User's Object
MAC	User	E	User's Object
MACVerify	User	E	User's Object
RNGRetrieve	User		None
RNGSeed	User		None
Hash	User		None
Load Key	User		None
Fast Sign	User	E	User's Object
Validate	User	R,E	User's Object
Activate OTP	User	G,R,E	User's OTP Key
Manual Activate OTP	User	R,E	User's OTP Key
Deactivate OTP	User	Z	User's OTP Key
Register Authentication Certificate	User	R	User's Certificate Fingerprints
Remove Authentication Certificate	User	Z	User's Certificate Fingerprints

Service	Role	Type of Access	CSPs
List Authentication Certificates	User	R	User's Certificate Fingerprints
Start Token Authentication	User	R	User's Certificate Fingerprints
Get Session Credential	User		None
(All Non-Auth Services)	None	E	VHSM Server Key
		R	VHSM Server Certificate
		G,E	TLS Session Keys
Query	None		None
Discover Versions	None		None

6 OPERATIONAL ENVIRONMENT

The module implements a limited operational environment, hence Section 4.6 of FIPS 140-2 does not apply to the module.

7 PHYSICAL SECURITY

7.1 Physical Security Mechanisms

To prevent physical access to the components of the module, an opaque epoxy resin is applied over its PCB components. The epoxy coating completely conceals the internal components of the cryptographic boundary. Any attempt to physically access the components leads to the destruction of the module. An aluminum frame is used to delimit the resin coating over the PCB, which can be seen on Figure 7.1. Figure 7.2 shows how the resin is spread over the PCB of the module.

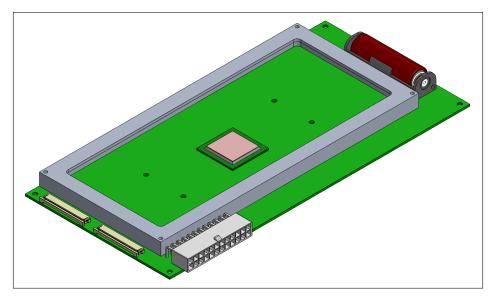


Figure 7.1: Module board with aluminum potting frame.

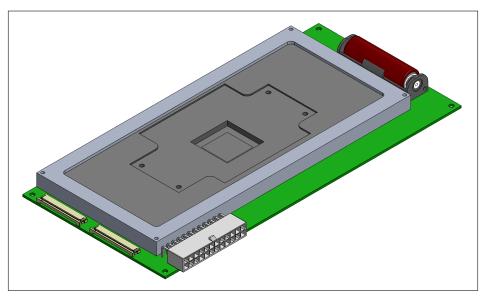


Figure 7.2: Epoxy resin potting of the module.

To allow heat dissipation of the main processor, an aluminum heatsink adapter is placed on top of it and is locked on the resin. This adapter can be seen within the complete module assembly on 7.3 and alone on Figure 7.4.

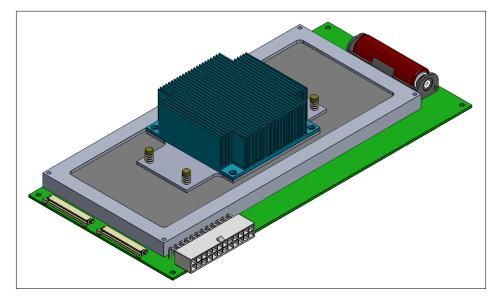


Figure 7.3: Complete assembly of the module.

Besides the use of the epoxy potting, the module monitors environmental parameters to prevent some attacks. An ultra-low-power microcontroller is used to control, sample and analyze the data from the sensors around the PCB. It is also capable of, optionally, holding critical system parameters for the CPU, as it is able to exchange data with it through an internal bus. It is also connected to the real time clock and a dedicated Random Number Generator. A non-removable battery, along with voltage conditioning and a supercapacitor, is used to ensure that all the sensors and the sensors monitor have non-interruptible power at all times.

7.2 Cryptographic Boundary and Interfaces

All the hardware components that will execute security functions are contained in the Cryptographic Boundary, which is completely covered by the epoxy resin potting explained on the Physical Security Mechanisms section. Figure 7.5 illustrates the module's cryptographic boundary and the external interfaces.

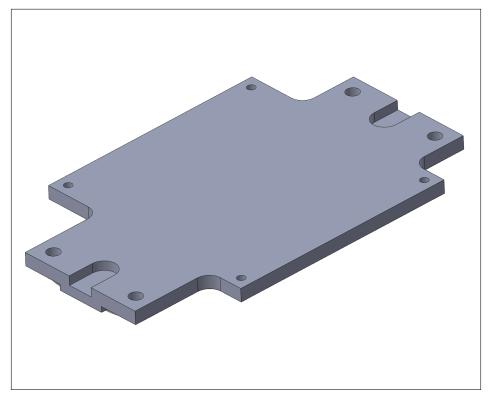


Figure 7.4: Aluminum heatsink adapter.

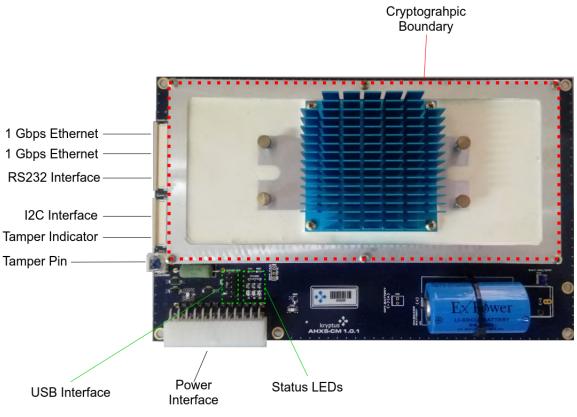
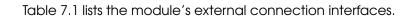



Figure 7.5: Cryptographic Boundary and Interfaces.

Interface	Description	FIPS 140-2 Logical Interface
Power Interface	Powers the module.	Power
Status LEDs	Set of pins used to output sta- tus.	Status Output
USB Interface	Currently with no function. It will be used in the future to connect external USB de- vices. No sensitive informa- tion is transmitted through this channel.	_
Tamper Pin	Receives a control signal that can be connected to a tamper-evidence device (e.g. tamper switch)	Control Input
Tamper Indicator	Logical part of the I2C inter- face, indicates if tampering has been detected (either by the Tamper PIN or by the volt- age/temperature monitoring)	Status Output
I2C Interface	Used to connect to external devices for module control (e.g. turn off the module). No sensitive information is trans- mitted through this channel*. Also used to output module status to the frontal board.	Control Input, Status Output
RS232 Interface	Serial interface used for mod- ule control (e.g. configure network interface). No sensi- tive information is transmitted through this channel*. Also used to output module status.	Control Input, Status Output
1 Gbps Ethernet Interfaces	Two sets of pins for Ethernet connection. These interfaces are the main communication channel for the cryptographic module. Sensitive data is al- ways encrypted when trans- mitted through these pins.	Control Input, Data Input and Output

Table 7.1: Cryptographic module interfaces.

* When the module is initialized, it outputs the temporary PIN of the crypto officer through the RS232 and I2C interfaces. However, at this moment the module does not contain sensitive user data and once the crypto officer's password is changed, it cannot be obtained via those interfaces anymore.

The tamper indicator and tamper pin interfaces are used for automatic determination by the

module that an attempt has been made to compromise its physical security. Once the attempt is detected, the module reboots and initilizes in an error state, effectively erasing all its sensitive data. To remove the module from this error state, either the Reset HSM or the Remove from Error State services must be used.

7.3 Physical Security Maintenance

The module does not require any physical maintenance.

7.4 EMC/EMI

The module conforms to FCC Part 15 Class B requirements for home use.

8 SELF TESTS

The module performs self-tests according to FIPS140-2. The tests are divided into power-on self-tests and conditional self-tests, explained below.

8.1 Power-On Self-Tests

The power-on self-test are executed when the module initializes, with no operator intervention. If any of the tests fail, the module will not initialize. The power-on self tests are listed in Table 8.1.

Test	Description
	Encryption and decryption in ECB, CBC and CTR modes.
AES	Key size: 128 bits.
AES GCM	Encryption and decryption. Key size: 128 bits.
SHA	SHA-1 and SHA-2 message digest generation with SHA-1,
SПА	SHA-224, SHA-256, SHA-384, SHA-512.
HMAC	Generation and verification with SHA-1, SHA-224, SHA-256,
	SHA-384, SHA-512
RSA	Key Pair Generation, Digital Signature Generation and Digital
KOA	Signature Verification. Key size: 2048 bit.
FCDSA	Key Pair Generation, Digital Signature Generation and Digital
LCDJA	Signature Verification. Curve: NIST P-521.
DSA	Key Pair Generation, Digital Signature Generation and Digital
DJA	Signature Verification. Key size: 256 bits
DRBG	Known answer test and health tests (instantiate, generate
	and reseed)
Triple-DES	Encryption and decryption in ECB and CBC modes. Key size:
	168 bits.
Firmware Integrity Test	Digital Signature Verification with RSA 2048 bits and SHA-256

Table 8.1: Power-On Self Tests performed.

8.2 Conditional Self-Tests

The module performs conditional self-tests during its operation. The self tests are listed in Table 8.2.

Test	Description	
Pair-wise Consistency	RSA, ECDSA and DSA Key Pair Generation	
Tests		
Continuous RNG test	Continuous DRBG test	
Firmware Load Test	Digital Signature Verification with RSA 2048 bits and SHA-256	

Table 8.2: Conditional Self Tests performed.

8.3 Indicators

When the power-on self-tests are run, the frontal board shows the results of each test, as illustrated in Figure 8.1. The same results can be viewed after boot through the frontal board menu.

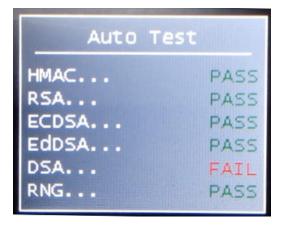


Figure 8.1: Power-on self-test results in frontal board.

Using the frontal board menu, through Settings \rightarrow Info, it's possible to check if the module is in FIPS mode or not, as illustrated in Figure 8.2.

Figure 8.2: FIPS mode indicator in frontal board.

9 MITIGATIONS OF OTHER ATTACKS POLICY

No mitigation of other attacks are implemented on the module.

10 GUIDANCE AND SECURE OPERATION

The module supports FIPS and non-FIPS modes of operation. The mode must be chosen during the module initialization. The initialization is performed by the PCO using the Initialize HSM service (see section 5.2), which will generate the PHSM's CSPs (see section 5.3). All VHSMs created in a FIPS mode PHSM will also operate on FIPS mode.

The mode of operation of the module can only be changed if a factory reset is performed. The Reset HSM service is used for this intent. After a factory reset, all sensitive data of the module's operators will be zeroized. Similarly, if the module is initializes in non-FIPS mode, it can only be changed to FIPS-mode after a factory reset.

10.1 Initial Configuration

- 1. Turn on the HSM.
- 2. Configure the network settings (IP, mask, gateway, etc.) through the serial console or the frontal panel. The HSM will reboot. After rebooting, a temporary 6-digit PIN will be shown by the HSM via serial console and frontal panel.
- 3. Call the Initialize HSM command via the network through a safe connection (e.g. an ethernet cable connected directly to the HSM) in order to initialize the HSM. Use the PIN to authenticate. A new password must be specified along with whether to activate FIPS Mode or not. The HSM creates the first physical officer (PCO) with the given password and returns the Physical HSM (PHSM) certificate which can then be used to authenticate the network connection.
- 4. Call the Create VHSM command via the network (authenticate with the PCO password and the PHSM certificate) specifying a port number. The HSM creates the VHSM in a uninitialized state and creates its first virtual officer (VCO) with a temporary PIN. The PIN is returned along with a temporary VHSM certificate.
- 5. Call the Initialize VHSM command via the network on the VHSM port (authenticate with the temporary VCO password and the temporary VHSM certificate), specifying a new password. The HSM changes the VCO password and returns the final VHSM certificate.
- 6. Call the Create User command via the network on the VHSM port (authenticate with the VCO password and VHSM certificate). The HSM creates the user and returns a temporary password.
- 7. Call the Change Password command via the network on the VHSM port (authenticate with the temporary user password and the VHSM certificate). The HSM changes the user's password.
- 8. The user can now create objects and carry out operations using them.

In FIPS Mode the SNMP feature shall not be enabled. Non-approved algorithms listed in Table 3.3 are automatically disabled.