

Q

Digital Guardian, LLC

Verdasys Secure Cryptographic Module
Software Version 1.1

Non-Proprietary Security Policy

FIPS Security Level 1 March 20, 2020

© Copyright 2020 Digital Guardian, LLC

TABLE OF CONTENTS

TABLE	OF FIGURES	3
LIST O	PF TABLES	3
1. INT	TRODUCTION	4
	1 PURPOSE	
	2 References	
	3 DOCUMENT ORGANIZATION	
2. VSE	EC MODULE	5
2.1	1 Overview	5
2.2	2 MODULE SPECIFICATION	8
	2.2.1. Physical Cryptographic Boundary	8
	2.2.2. LOGICAL CRYPTOGRAPHIC BOUNDARY	9
2.3	3 MODULE INTERFACES	10
2.4	4 ROLES AND SERVICES	11
2.5	5 Physical Security	13
2.6	6 OPERATIONAL ENVIRONMENT	13
	7 CRYPTOGRAPHIC KEY MANAGEMENT	
2.8	8 SELF-TESTS	18
2.9	9 MITIGATION OF OTHER ATTACKS	18
3. SEC	CURE OPERATION	19
3.1	1 Initial Setup	19
3.2	2 CRYPTO OFFICE GUIDANCE	19
3.3	3 USER GUIDANCE	19
4. ACI	RONYMS	20

TABLE OF FIGURES

Figure 1 – Digital Guardian Architecture	5
Figure 2 – Standard GPC Block Diagram	8
Figure 3 Logical Block Diagram and Cryptographic Boundary	9

LIST OF TABLES

Table 1 – Security Level Per FIPS 140-2 Section	
Table 2 – FIPS Interface Mappings	10
Table 3 Mapping Services to Inputs, Outputs, CSPs, and Type of Access	12
Table 4 – FIPS-Approved Algorithm Implementations	15
Table 5 – List of Cryptographic Keys, Key Components, and CSPs	17

1. Introduction

1.1 PURPOSE

This is a non-proprietary Cryptographic Module Security Policy for the Verdasys Secure Cryptographic Module from Digital Guardian, LLC. This Security Policy describes how the Verdasys Secure Cryptographic Module meets the security requirements of FIPS 140-2 and how to run the module in a secure FIPS 140-2 mode. This policy was prepared as part of the Level 1 FIPS 140-2 validation of the module.

FIPS 140-2 (Federal Information Processing Standards Publication 140-2 – Security Requirements for Cryptographic Modules) details the U.S. and Canadian Government requirements for cryptographic modules. More information about the FIPS 140-2 standard and validation program is available on the Cryptographic Module Validation Program (CMVP) website, which is maintained by the National Institute of Standards and Technology (NIST) and the Canadian Centre for Cyber Security (CCCS): https://csrc.nist.gov/Projects/Cryptographic-Module-Validation-Program.

The Verdasys Secure Cryptographic Module is referred to in this document as VSEC, the cryptographic module, or the module.

1.2 REFERENCES

This document deals only with operations and capabilities of the module in the technical terms of a FIPS 140-2 cryptographic module security policy. More information is available on the module from the following sources:

- The Digital Guardian website (http://www.digitalguardian.com) contains information on the full line of products from Digital Guardian.
- The CMVP website search page (https://csrc.nist.gov/projects/cryptographic-module- validation-program/validated-modules/search) can be used to obtain the validation information on Digital Guardian products, including contact information for individuals to answer technical or sales-related questions for the module.

1.3 DOCUMENT ORGANIZATION

The Security Policy document is one document in a FIPS 140-2 Submission Package. In addition to this document, the Submission Package contains:

- Vendor Evidence document
- Finite State Model document
- Other supporting documentation as additional references

This non-proprietary Security Policy may be freely reproduced and distributed. The rest of the FIPS 140-2 Submission Package is proprietary to Digital Guardian and is releasable only under appropriate non-disclosure agreements. For access to these documents, please contact Digital Guardian.

This Security Policy and the other validation submission documentation were produced by BigR.io, LLC under contract to Digital Guardian.

2. VSEC MODULE

This section describes the Verdasys Secure Cryptographic Module from Digital Guardian, LLC.

2.1 OVERVIEW

Digital Guardian is a pioneer in Enterprise Information Protection (EIP), a data-centric and risk-based approach to security that focuses on information flow and human interaction across an organization. The Digital Guardian product provides the foundation necessary for implementing an EIP platform. Through its unique architecture, the Digital Guardian product reduces the risk of data loss or misuse by its real-time enforcement of corporate security policies, automated encryption of files and emails, and automatic discovery and classification of sensitive data. The Digital Guardian product protects information at rest, in use, and in motion, mitigating both internal and external risks. Its sophisticated tracking and reporting capabilities provide visibility into how information is used and where it is located. This activity data can then be correlated into actionable intelligence. It can also provide powerful forensic support during investigations into fraud, theft, and malicious activity.

Through the enterprise-wide installation of a kernel and user mode component called *DG Agent*, the Digital Guardian product provides data protection at the point of use, where it is most vulnerable. Once installed, *DG Agent* operates invisibly on desktops, laptops, and servers. The integrated framework also consists of a centralized *DG Server* and *DG Management Console*, comprising a Web-based command center for the Digital Guardian platform. Figure 1 below gives an overview of the Digital Guardian architecture.

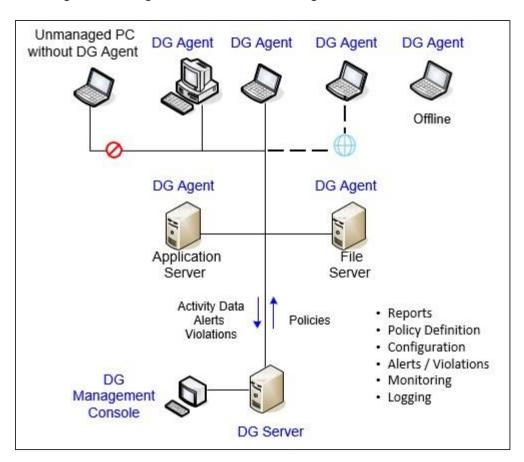


Figure 1 – Digital Guardian Architecture

Digital Guardian's primary use of cryptography is in the following two components: the Adaptive Mail Encryption module (AME) and the Adaptive File Encryption module (AFE). Based on content and security policy rules, AME and AFE encrypt and decrypt files, emails, and attachments selectively and automatically, in most cases without end-user knowledge or action.

The Verdasys Secure Cryptographic Module, VSEC, is a software module that provides cryptographic functionality for Digital Guardian's AME and AFE modules, and other Digital Guardian add-on components. Within the Digital Guardian architecture, it resides in DG Agent. It is custom designed and written by Digital Guardian in the 'C' programming language and is identical, at the source code level, for the supported operating system (OS) platforms as shown.

Verdasys Secure Cryptographic Module has been validated on the following platforms and no claims can be made as to correct operation of the Verdasys Secure Cryptographic Module or the security strengths of the generated keys when operating on a platform that is not listed on the validation certificate:

Microsoft Windows 10 (64-bit) running on a Dell Latitude E6330 with an Intel Core i7 (single-user mode)

In addition to the validation, the Verdasys Secure Cryptographic Module has been tested by Digital Guardian on the following platforms:

- Windows Server 2016 R2 running on VMware ESXi v5.5 on Dell PowerEdge R720 on Intel Xeon E5-2670v2
- Windows Server 2016 R2 running on VMware ESXi v5.5 on Dell PowerEdge R930 on Intel Xeon E7-8870v2
- Windows Server 2019 running on VMware ESXi v5.5 on Dell PowerEdge R720 on Intel Xeon E5-2670v2
- Windows Server 2019 running on VMware ESXi v5.5 on Dell PowerEdge R930 on Intel Xeon E7-8870v2

This module includes implementations of the following FIPS-Approved algorithms:

- Advanced Encryption Standard (AES)
- Secure Hash Algorithm (SHA)
- Keyed-Hash Message Authentication Code (HMAC)
- RSA¹ encryption and decryption
- RSA signature generation and verification
- SP 800-90A Deterministic Random Bit Generator (DRBG)

¹ RSA: Rivest, Shamir, Adleman

The Verdasys Secure Cryptographic Module always operates in a FIPS-Approved mode of operation and is validated at the following FIPS 140-2 Section levels:

Section	Section Title	Level
I	Cryptographic Module Specification	I
2	Cryptographic Module Ports and Interfaces	I
3	Roles, Services, and Authentication	I
4	Finite State Model	I
5	Physical Security	N/A
6	Operational Environment	I
7	Cryptographic Key Management	I
8	EMI/EMC ²	I
9	Self-tests	I
10	Design Assurance	ı
11	Mitigation of Other Attacks	N/A

Table 1 – Security Level Per FIPS 140-2 Section

² EMI/EMC: Electromagnetic Interference / Electromagnetic Compatibility

2.2 MODULE SPECIFICATION

The Verdasys Secure Cryptographic Module is a software module with a multi-chip standalone embodiment. The overall security level of the module is 1. The following sections will define the physical and logical boundary of the VSEC module.

2.2.1. PHYSICAL CRYPTOGRAPHIC BOUNDARY

As a software cryptographic module, there are no physical protection mechanisms implemented. The module must rely on the physical characteristics of the host system. The physical boundary of the cryptographic module is defined by the hard enclosure around the host system on which it runs. The module supports the physical interfaces of a General Purpose Computer (GPC). See Figure 2 below for a standard GPC block diagram.

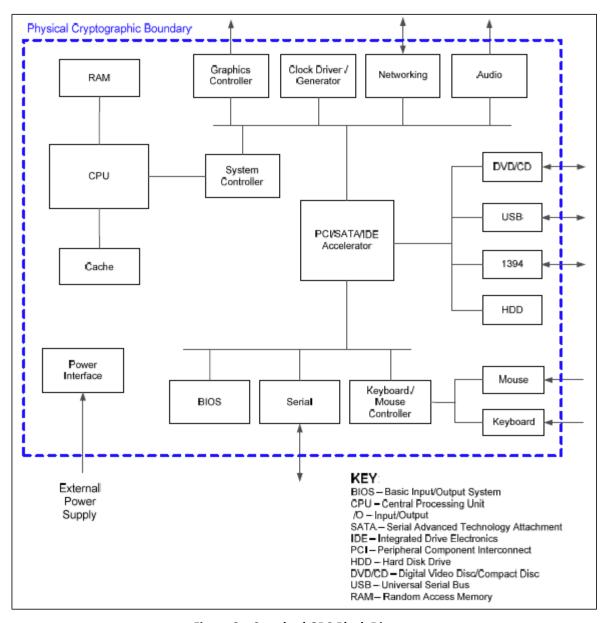


Figure 2 – Standard GPC Block Diagram

2.2.2. LOGICAL CRYPTOGRAPHIC BOUNDARY

Figure 3 shows a logical block diagram of the module executing in memory and its interactions with surrounding components, as well as the module's logical cryptographic boundary. The module's services (or exported functions) are designed to be called by other Digital Guardian kernel mode drivers, with which it has active sessions. For clarity, the diagram only depicts one active session with the module.

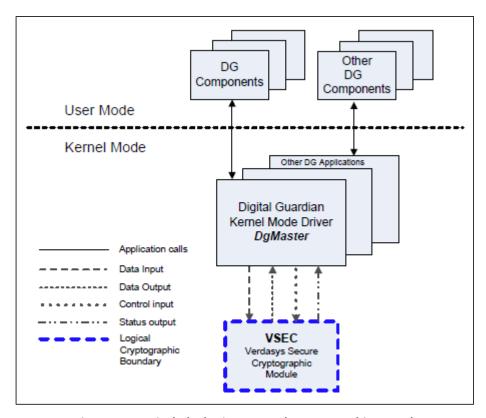


Figure 3 -- Logical Block Diagram and Cryptographic Boundary

2.3 MODULE INTERFACES

The module's logical interfaces exist in the software as an Application Programming Interface (API). Physically, ports and interfaces are considered to be those of the GPC. Both the API and physical interfaces can be categorized into following interfaces defined by FIPS 140-2:

- Data Input Interface
- Data Output Interface
- Control Input Interface
- Status Output Interface
- Power Interface

A mapping of the FIPS 140-2 logical interfaces, the physical interfaces, and the module interfaces can be found in the following table:

FIPS 140-2 Interface	Physical Interface	Module Interface (API)
Data Input	Keyboard, mouse, serial/USB/network ports, DVD/CD drive	Function calls that accept, as their arguments, data or pointers to data to be processed by the module
Data Output	Monitor, DVD/CD drive, serial/USB/network/audio ports	Arguments for a function that specify where the result of the function is stored
Control Input	Keyboard, mouse, network port, power switch	Function calls and arguments that initiate and control the operation of the module.
Status Output	Serial/USB/network ports, monitor	Return values from function calls and error messages
Power Input	Power Interface	N/A

Table 2 - FIPS Interface Mappings

2.4 **ROLES AND SERVICES**

The module supports the following roles: Crypto-Officer (CO) and User. Both roles are implicitly assumed when services are executed. All services offered by the module are available to both the CO and User and are itemized below in Table 3.

Note 1: The following definitions are used in the "CSP³ and Type of Access" column in Table 3.

R – Read: The plaintext CSP is read by the service.

W – **Write:** The CSP is established, generated, modified, or zeroized by the service.

X - Execute: The CSP is used within an Approved (or allowed) security function

Note 2: Input parameters of an API call that are not specifically plaintext, ciphertext, or a key are NOT itemized in the "Input" column, since it is assumed that most API calls will have such parameters. Note 3: The "Input" and "Output" columns are with respect to the module's logical boundary.

Service	Input	Output	CSP and Type of Access
Run self-tests on-demand	Manually reset host	Status	None
Get operational state	API call parameters	Status	None
Get operational mode	API call parameters	Status	None
Create session with application	API call parameters	Status	None
Get session state	API call parameters	Status	None
Check session is valid	API call parameters	Status	None
Close session with application	API call parameters	Status	None
Generate random number	API call parameters	Status, random bits	None
Generate Hash (SHA-1, SHA-224, SHA- 256, SHA-384, SHA-512)	API call parameters, plaintext	Status, hash	None
Generate Keyed Hash (SHA-1, SHA-224, SHA- 256, SHA-384, SHA-512)	API call parameters, key, plaintext	Status, hash	HMAC key – RX
Generate key	API call parameters	Status, key	AES, HMAC key – W
Delete key	API call parameters Manually reset host	Status	AES, HMAC, DRBG, RSA private key, RSA public key – W

³ CSP: Critical Security Parameter

Import plaintext key	API call parameters, key	Status	AES, HMAC, RSA private key, RSA public key – W
Import key	API call parameters, key	Status	AES, HMAC, RSA private key, RSA public key – W
Export key	API call parameters	Status, key	AES, HMAC, RSA private key, RSA public key – R
Create crypto contexts	API call parameters	Status	None
Reset crypto context	API call parameters	Status	None
Delete crypto contexts	API call parameters	Status	None
Symmetric encryption	API call parameters, plaintext	Status, ciphertext	AES key – RX
Symmetric decryption	API call parameters, ciphertext	Status, plaintext	AES key – RX
Key Wrap (internal)	Internal call parameters, wrap key, data key	Status, ciphertext	AES key – RX
Key Unwrap (internal)	Internal call parameters, wrap key, ciphertext	Status, data key	AES key – RX
Check RSA key	API call parameters	Status	RSA private key – R
RSA encryption	API call parameters, plaintext	Status, ciphertext	RSA public key – RX
RSA decryption	API call parameters, ciphertext	Status, plaintext	RSA private key – RX
RSA Decryption Primitive (RSADP) (internal)	Internal call parameters, ciphertext	Status, plaintext	RSA private key – RX
Signature Generation	API call parameters, key, plaintext	Status, signed data	RSA private key – RX
Signature Verification	API call parameters signed data	Status, result	RSA public key – RX

Table 3 -- Mapping Services to Inputs, Outputs, CSPs, and Type of Access

2.5 PHYSICAL SECURITY

The Verdasys Secure Cryptographic Module is a software module only and does not include physical security mechanisms. Thus, the FIPS 140-2 requirements for physical security are not applicable.

2.6 OPERATIONAL ENVIRONMENT

The module, intended for use on a GPC, was tested and found to be compliant with FIPS 140-2 requirements on commercially available GPCs with Intel Core i7 Dual-core processor running Windows 10 64-bit operating system. For FIPS 140-2 compliance, these are considered to be single user operating systems when configured as such by the CO.

2.7 CRYPTOGRAPHIC KEY MANAGEMENT

The module implements the following FIPS-Approved algorithms:

CAVP Cert	Algorithm	Standard	Mode/Method	Key Length, Curves, or Moduli	Use
5322	AES	FIPS 197	СВС	128, 192, 256	Data Encryption/Decryption
			ECB, CTR	256	
		SP800-38F	Key Wrap	256	
4274	SHS	FIPS 180-4	SHA-1, SHA-224, SHA- 256, SHA- 384, SHA-512		Message Digest
3520	НМАС	FIPS 198-4	HMAC-SHA-1, HMAC-SHA-224 HMAC-SHA-256, HMAC-SHA-384, HMAC-SHA-512	>= 112 bits	Message Authentication
2850	RSA	FIPS 186-2	SHA-1 ⁴ , SHA-224, SHA-256, SHA-384, SHA-512; PKCS ⁵ #1 v1.5	4096-bits for Signature Generation; 1024-, 1536-, 2048-, 3072-, 4096- for Signature Verification	Signature Generation, Signature Verification
		FIPS 186-4	SHA-1 ⁴ , SHA-224, SHA-256, SHA-384, SHA-512; PKCS ⁶ #1 v1.5	2048-, 3072- bits for Signature Generation; 1024-, 2048-, 3072- bits for Signature Verification	Signature Generation, Signature Verification
2052	DRBG	SP ⁷ 800-90A	Hash -based	256	Deterministic Random Bit Generator
1789	RSADP CVL	SP 800-56B		2048	Data Decryption

⁴ SHA-1 may only be used for signature verification

⁷ SP: Special Publications

⁵ PKCS: Public-Key Cryptography Standard

⁶ PKCS: Public-Key Cryptography Standard

N/A	KTS		AES Cert# 5322	256-bit	AES Key Wrap
N/A	CKG	Vendor			Symmetric key generation
		Affirmed to			from DRBG output ⁸
		SP 800-133			

Table 4 – FIPS-Approved Algorithm Implementations

Non-Approved Cryptographic Algorithms

The module supports the following non-approved cryptographic algorithms that shall not be used in FIPS mode of operation:

- RSA (non-compliant less than 112 bits of encryption strength)
- HMAC (non-compliant less than 112 bits of security strength)

Additionally, the module utilizes the following allowed algorithms used in an Approved mode of operation:

- RSA PKCS#1 2048, 3072, 4096-bit keys (Key wrapping, key establishment methodology provides between 112 and 150 bits of encryption strength)
- A non-Approved NDRNG⁹ used for gathering entropy as input to the Approved SP 800-90A Hash-based DRBG. Each request for entropy returns a minimum of 256-bits of entropy.

⁹ NDRNG: Non-Deterministic Random Number Generator

⁸ In accordance with FIPS 140-2 IG D.12, the cryptographic module performs Cryptographic Key Generation as per scenario 1 of section 5 in SP 800-133. The resulting generated symmetric key is the unmodified output from the SP800-90A DRBG.

The CSPs supported by the module are shown in Table 5 below.

Note: The "Input" and "Output" columns in Table 5 are in reference to the module's physical boundary. In reference to its logical boundary, all keys can be input to and output from the module using API calls.

CSP/Key	CSP/Key Type	Generation / Input	Output	Storage	Zeroization	Use
AES key	AES 128-, 192-, and 256-bit	Input: Via API call, in plaintext or encrypted form; Internally: Generated	Via API call	Plaintext in volatile memory	By API call, power cycle	Encryption, decryption
		by output of DRBG				
HMAC key	HMAC-SHA-1 HMAC-SHA- 224 HMAC- SHA-256 HMAC-SHA- 384 HMAC- SHA-512	Input: Via API call, in plaintext or encrypted form; Internally: Generated by output of DRBG	Via API call	Plaintext in volatile memory	By API call, power cycle	Message Authentication
RSA private key	RSA 2048, 3072, 4096-bit	Input: Via API call, in plaintext or encrypted form	Via API call	Plaintext in volatile memory	By API call, power cycle	Signature generation
RSA public key	RSA 1024, 1536, 2048, 3072, 4096-bit	Input: Via API call, in plaintext or encrypted form	Via API call	Plaintext in volatile memory	By API call, power cycle	Signature verification
DRBG entropy input	Entropy (256-bits)	Generated internally	None	Plaintext in volatile memory	By API call, power cycle	Instantiate DRBG
DRBG seed	Seed (440-bits)	Generated by DRBG mechanisms	None	Plaintext in volatile memory	By API call, power cycle	Instantiate DRBG

DRBG C Value	Internal State Value (440-	Generated by	None	Plaintext in	By API call,	Random Number
	bits)	DRBG		volatile	power cycle	Generation
		mechanisms		memory		
DRBG V Value	Internal State Value (440-	Generated by	None	Plaintext in	By API call,	Random Number
	bits)	DRBG		volatile	power cycle	Generation
		mechanisms		memory		

Table 5 – List of Cryptographic Keys, Key Components, and CSPs

2.8 SELF-TESTS

The Verdasys Secure Cryptographic Module performs the following self-tests and known-answer tests (KATs) at power-up:

- Software integrity check using HMAC-SHA-256
- Known Answer Tests (KATs)
 - AES-CBC 256-bit key encrypt/decrypt
 - AES-ECB 256-bit key encrypt/decrypt
 - AES 256-bit key Wrap/Unwrap
 - □ HMAC-SHA-1
 - □ HMAC-SHA-256
 - □ HMAC-SHA-512
 - RSA signature generation/verification
 - RSA encryption/decryption
 - □ SP 800-90A Hash-DRBG

The Verdasys Secure Cryptographic Module performs the following conditional self-tests:

- Continuous DRBG test
- Continuous RNG test on the non-Approved NDRNG
- SP800-90A Hash-DRBG Health Tests

If a self-test fails, the module will enter an error state and be unloaded. While in an error state, the module inhibits all data output and does not provide any cryptographic functionality until the error state is cleared.

2.9 MITIGATION OF OTHER ATTACKS

This section is not applicable. The module does not claim to mitigate any attacks beyond the FIPS 140-2 Level 1 requirements for this validation.

3. SECURE OPERATION

The Verdasys Secure Cryptographic Module meets Level 1 requirements for FIPS 140-2. The sections below describe how to place and keep the module in the FIPS-Approved mode of operation.

3.1 INITIAL SETUP

The cryptographic module is included with the Digital Guardian application with which it will be used. With Digital Guardian, the VSEC module can be installed by following the installation procedures found in the *Digital Guardian Installation and Upgrade Guide*. This will install the VSEC 64-bit driver.

At installation, the module is configured to execute in a FIPS-Approved mode of operation. When the module is powered up, it runs the power-on self-tests. If the power-up self-tests pass, the module is prepared to operate in FIPS mode when the security rules imposed by the Security Policy are adhered to. If these rules aren't followed, the module will operate in the non-FIPS Approved mode. All of the services and algorithms available in FIPS mode are also available in non-FIPS mode. Non-compliant security strengths for HMAC and RSA (less than 112 bits) are also available in non-FIPS mode.

3.2 CRYPTO OFFICER GUIDANCE

VSEC is designed for use by and within the products from Digital Guardian. In addition to providing for the persistent storage, secure transport, and management of cryptographic keys and CSPs, these applications request cryptographic services to be performed by the module, such as data encryption. They instantiate the data types required by the cryptographic module's API, pass data references to the module so that cryptographic operations can be performed, and access the results of the API calls. VSEC does not input, output, or persistently store CSPs with respect to the physical boundary. It is the responsibility of the calling application to provide persistent storage of cryptographic keys and CSPs, and to ensure that keys are transmitted in a secure manner.

When in use, the VSEC driver is loaded into the Windows 10 kernel, which operates as a single process. The Windows 10 operating system enforces isolation of CPU and memory access between the kernel process and the processes running in user-mode.

The CO is required to use HMAC key lengths ≥ 112 bits to ensure the security strength of the keyed hash function.

3.3 USER GUIDANCE

Digital Guardian applications, such as the Digital Guardian product, employ the services of VSEC to provide information protection to their customers using FIPS Approved cryptographic services. These applications are designed to use their kernel mode components to make function calls to the VSEC export driver via the module's API. Digital Guardian applications manage use of the module on behalf of the end user, who does not directly interface with the module.

4. ACRONYMS

Acronym	Definition			
AES	Advanced Encryption Standard			
AFE	Adaptive File Encryption			
AME	Adaptive Mail Encryption			
API	Application Programming Interface			
СВС	Cipher Block Chaining			
CMVP	Cryptographic Module Validation Program			
СО	Crypto Officer			
CSEC	Communications Security Establishment Canada			
CSP	Critical Security Parameter			
CTR	Counter			
DG	Digital Guardian			
DRBG	Deterministic Random Bit Generator			
ECB	Electronic Code Book			
EIP	Enterprise Information Protection			
EMC	Electromagnetic Compatibility			
EMI	Electromagnetic Interference			
FIPS	Federal Information Processing Standard			
GPC	General Purpose Computer			
HMAC	(Keyed-) Hash Message Authentication Code			
KAT	Known Answer Test			
NDRNG	Non-Deterministic Random Number Generator			
NIST	National Institute of Standards and Technology			
NVLAP	National Voluntary Laboratory Accreditation Program			
OS	Operating System			
PKCS	Public-Key Cryptography Standards			
PRNG	Pseudo Random Number Generator			
RNG	Random Number Generator			
RSA	Rivest, Shamir, and Adleman			
SHA	Secure Hash Algorithm			
SP	Special Publication			