

F5<sup>®</sup> Device Cryptographic Module

FIPS 140-2 Non-Proprietary Security Policy

Hardware Versions:

BIG-IP i4000, BIG-IP i5000, BIG-IP i5820-DF, BIG-IP i7000, BIG-IP i7820-DF, BIG-IP i10800, BIG-IP i11800-DS, BIG-IP i15800, BIG-IP 5250v-F, BIG-IP 7200v-F, BIG-IP 10200v-F, BIG-IP 10350v-F, VIPRION B2250 and VIPRION B4450

**Firmware Version:** 

14.1.0.3 EHF

**FIPS Security Level 2** 

**Document Version 1.2** 

Document Revision: 2020-02-16

Prepared by:

atsec information security corporation

9130 Jollyville Road, Suite 260

Austin, TX 78759

www.atsec.com

© 2020 F5 Networks / atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice.

# **Table of Contents**

| 1. Cry  | ptographic Module Specification        | 5  |  |  |
|---------|----------------------------------------|----|--|--|
| 1.1.    | Module Description                     | 5  |  |  |
| 1.2.    | FIPS 140-2 Validation Level            | 8  |  |  |
| 1.3.    | Description of modes of operation      | 8  |  |  |
| 1.4.    | Cryptographic Module Boundary          | 12 |  |  |
| 1.4.    | 1. Hardware Block Diagram              | 12 |  |  |
| 2. Cry  | ptographic Module Ports and Interfaces | 12 |  |  |
| 3. Role | es, Services and Authentication        | 16 |  |  |
| 3.1.    | Roles                                  | 16 |  |  |
| 3.2.    | Authentication                         | 17 |  |  |
| 3.3.    | Services                               | 19 |  |  |
| 4. Phy  | sical Security                         | 24 |  |  |
| 4.1.    | Tamper Label Placement                 | 24 |  |  |
| 5. Ope  | erational Environment                  |    |  |  |
| 5.1.    | Applicability                          |    |  |  |
| 6. Cry  | ptographic Key Management              | 31 |  |  |
| 6.1.    | Key Generation                         |    |  |  |
| 6.2.    | Key Establishment                      |    |  |  |
| 6.3.    | Key Entry / Output                     |    |  |  |
| 6.4.    | Key / CSP Storage                      |    |  |  |
| 6.5.    | Key / CSP Zeroization                  |    |  |  |
| 6.6.    | Random Number Generation               |    |  |  |
| 7. Self | -Tests                                 | 33 |  |  |
| 7.1.    | Power-Up Tests                         | 33 |  |  |
| 7.1.    | 1. Integrity Tests                     |    |  |  |
| 7.1.    | 2. Cryptographic algorithm tests       |    |  |  |
| 7.2.    | On-Demand self-tests                   | 35 |  |  |
| 7.3.    | Conditional Tests                      | 35 |  |  |
| 8. Gui  | dance                                  | 35 |  |  |
| 8.1.    | Delivery and Operation                 |    |  |  |
| 8.2.    | Crypto Officer Guidance                |    |  |  |
| 8.2.    | 1. Installing Tamper Evident Labels    |    |  |  |
| 8.2.    | 2. Install Device                      |    |  |  |
| 8.2.    | 3. Password Strength Requirement       |    |  |  |
| 8.2.4   | 8.2.4. Additional Guidance             |    |  |  |

© 2020 F5 Networks / atsec information security.

| 8.2.5. Version Configuration                                        |    |
|---------------------------------------------------------------------|----|
| 8.3. User Guidance                                                  |    |
| 9. Mitigation of Other Attacks                                      |    |
|                                                                     |    |
| Figure 1 – Hardware Block Diagram                                   | 12 |
| Figure 2 – BIG-IP i4000                                             | 13 |
| Figure 3 – BIG-IP i5000 / i5820-DF                                  | 13 |
| Figure 4 – BIG-IP i7000 / i7820-DF                                  | 13 |
| Figure 5 – BIG-IP i10800 / i11800-DS                                | 14 |
| Figure 6 – BIG-IP i15800                                            | 14 |
| Figure 7 – BIG-IP 5250v-F                                           | 14 |
| Figure 8 – BIG-IP 7200v-F                                           | 14 |
| Figure 9 – BIG-IP 10200v-F                                          | 15 |
| Figure 10 – BIG-IP 10350v-F                                         | 15 |
| Figure 11 – VIPRION B2250                                           | 15 |
| Figure 12 – VIPRION B4450                                           | 15 |
| Figure 13 – BIG-IP i4000 (3 of 3 tamper labels)                     | 25 |
| Figure 14 – BIG-IP i5000 (3 of 3 tamper labels)                     | 25 |
| Figure 15 – BIG-IP i5820-DF (4 tamper labels shown)                 | 25 |
| Figure 16 – BIG-IP i7000 (6 of 6 tamper labels shown)               |    |
| Figure 17 – BIG-IP i7820-DF (4 tamper labels shown)                 |    |
| Figure 18 – BIG-IP i10800 / i11800-DS (6 tamper labels shown)       | 27 |
| Figure 19 – BIG-IP i10800 / i11800-DS (tamper label 5 & 6)          | 27 |
| Figure 20 – BIG-IP i15800 (Front tamper labels 1-3 labels shown)    | 27 |
| Figure 21 – BIG-IP i15800 (Back tamper labels 4 and 5 labels shown) | 27 |
| Figure 22 – BIG-IP 5250v-F (4 tamper labels shown)                  |    |
| Figure 23 – BIG-IP 7200v-F (5 tamper labels shown)                  |    |
| Figure 24 – BIG-IP 10200v-F (Front tamper labels 1-3 shown)         |    |
| Figure 25 – BIG-IP 10200v-F (Back tamper label 4 shown)             |    |
| Figure 26 – VIPRION B2250 in chassis (1 of 6 tamper labels shown)   |    |
| Figure 27 – VIPRION B2250 top view (5 of 6 tamper labels shown)     |    |
| Figure 28 – VIPRION B4450 in chassis                                |    |
| Figure 29 – VIPRION B4450 front (1 of 5 tamper labels shown)        |    |
| Figure 30 – VIPRION B4450 top-view (4 of 5 tamper labels shown)     |    |

| Table 1 – Tested Modules                                                 | 7  |
|--------------------------------------------------------------------------|----|
| Table 2 – Security Levels                                                | 8  |
| Table 3 – Approved Cryptographic Algorithms                              | 10 |
| Table 4 – Non-Approved but Allowed in FIPS mode Cryptographic Algorithms | 10 |
| Table 5 – Non-Approved and Non-Compliant Cryptographic Algorithms/Modes  | 11 |
| Table 6 – Ports and Interfaces                                           | 13 |
| Table 7 – FIPS 140-2 Roles                                               | 17 |
| Table 8 – Authentication of Roles                                        |    |
| Table 9 – Non-Authenticated Services                                     | 19 |
| Table 10 – Management Services in FIPS mode of operation                 | 21 |
| Table 11 – Crypto Services in FIPS mode of operation                     | 22 |
| Table 12 – Services in non-FIPS mode of operation                        | 23 |
| Table 13 – Inspection of Tamper Evident Labels                           | 24 |
| Table 14 – Number of Tamper Evident Labels per hardware appliance        | 24 |
| Table 15 – Life cycle of CSPs                                            | 31 |
| Table 16 – Self-Tests                                                    | 35 |
| Table 17 – Conditional Tests                                             | 35 |
|                                                                          |    |

# **Copyrights and Trademarks**

F5® and BIG-IP® are registered trademarks of F5 Networks. Intel® and Xeon® are registered trademarks of Intel® Corporation.

#### Introduction

This document is the non-proprietary FIPS 140-2 Security Policy of F5® Device Cryptographic Module with firmware version 14.1.0.3 EHF and hardware version listed in table 1. It contains the security rules under which the module must operate and describes how this module meets the requirements as specified in FIPS PUB 140-2 (Federal Information Processing Standards Publication 140-2) for a Security Level 2 module.

## 1. Cryptographic Module Specification

The following section describes the cryptographic module and how it conforms to the FIPS 140-2 specification in each of the required areas.

#### 1.1. Module Description

The F5® Device Cryptographic Module (hereafter referred to as "the module") is a smart evolution of Application Delivery Controller (ADC) technology. Solutions built on this platform are load balancers. They are full proxies that give visibility into, and the power to control—inspect and encrypt or decrypt—all the traffic that passes through your network.

Underlying all BIG-IP hardware and software is F5's proprietary operating system, TMOS, which provides unified intelligence, flexibility, and programmability. With its application control plane architecture, TMOS gives you control over the acceleration, security, and availability services your applications require. TMOS establishes a virtual, unified pool of highly scalable, resilient, and reusable services that can dynamically adapt to the changing conditions in data centers and virtual and cloud infrastructures.

The module has been tested on the following multichip standalone devices with the firmware version 14.1.0.3 EHF

| Hardware         | Processor <sup>1</sup> | Operating System     | Specifications <sup>2</sup>                                                                                                                                 |
|------------------|------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BIG-IP i4000     | Intel® Xeon® D         | TMOS 14.1.0.3<br>EHF | <ul> <li>1 x USB port</li> <li>8 x 1GbE; 4 x 10GbE network ports</li> <li>1 x Console port</li> <li>1 x 1GbE management port</li> <li>4 x LEDs</li> </ul>   |
| BIG-IP i5000     | Intel® Xeon® E5        | TMOS 14.1.0.3<br>EHF | <ul> <li>1 x USB port</li> <li>8 x 1GbE; 4 x 40GbE network ports</li> <li>1 x Console port</li> <li>1 x GbE management port</li> <li>4 x LEDs</li> </ul>    |
| BIG-IP i5820-DF  | Intel® Xeon® E5        | TMOS 14.1.0.3<br>EHF | <ul> <li>1 x USB port</li> <li>8 x 10GbE; 4 x 40GbE network ports</li> <li>1 x Console port</li> <li>1 x 1GbE management port</li> <li>4 x LEDs</li> </ul>  |
| BIG-IP i7000     | Intel® Xeon® E5        | TMOS 14.1.0.3<br>EHF | <ul> <li>1 x USB port</li> <li>8 x 1GbE; 6 x 10GbE network ports</li> <li>1 x Console port</li> <li>1 x 1GbE management port</li> <li>4 x LEDs</li> </ul>   |
| BIG-IP i7820-DF  | Intel® Xeon® E5        | TMOS 14.1.0.3<br>EHF | <ul> <li>1 x USB port</li> <li>8 x 10GbE; 4 x 40GbE network ports</li> <li>1 x Console port</li> <li>1 x 1GbE management port</li> <li>4 x LEDs</li> </ul>  |
| BIG-IP i10800    | Intel® Xeon® E5        | TMOS 14.1.0.3<br>EHF | <ul> <li>1 x USB port</li> <li>8 x 10GbE; 6 x 40GbE network ports</li> <li>1 x Console port</li> <li>1 x 1GbE management port</li> <li>4 x LEDs</li> </ul>  |
| BIG-IP i11800-DS | Intel® Xeon® E5        | TMOS 14.1.0.3<br>EHF | <ul> <li>1 x USB port</li> <li>8 x 10GbE; 6 x 40GbE network ports</li> <li>1 x Console port</li> <li>1 x 1GbE management port</li> <li>4 x LEDs</li> </ul>  |
| BIG-IP i15800    | Intel® Xeon® E5        | TMOS 14.1.0.3<br>EHF | <ul> <li>1 x USB port</li> <li>8 x 40GbE; 4 x 100GbE network ports</li> <li>1 x Console port</li> <li>1 x 1GbE management port</li> <li>4 x LEDs</li> </ul> |
| BIG-IP 5250v-F   | Intel® Xeon® E3        | TMOS 14.1.0.3<br>EHF | <ul> <li>2 x USB port</li> <li>4 x 1GbE; 8 x 10GbE network ports</li> <li>1 x Console port</li> <li>1 x GbE management port</li> <li>4 x LEDs</li> </ul>    |
| BIG-IP 7200v-F   | Intel® Xeon® E3        | TMOS 14.1.0.3<br>EHF | <ul> <li>2 x USB port</li> <li>4 x 1GbE; 8 x 10GbE network ports</li> <li>1 x Console port</li> <li>1 x GbE management port</li> <li>4 x LEDs</li> </ul>    |

© 2020 F5 Networks / atsec information security.

| Hardware        | Processor <sup>1</sup> | Operating System     | Specifications <sup>2</sup>                                                                                                                                  |
|-----------------|------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BIG-IP 10200v-F | Intel® Xeon® E5        | TMOS 14.1.0.3<br>EHF | <ul> <li>1 x USB port</li> <li>16 x 10GbE; 2 x 40GbE network ports</li> <li>1 x Console port</li> <li>1 x GbE management port</li> <li>4 x LEDs</li> </ul>   |
| BIG-IP 10350v-F | Intel® Xeon® E5        | TMOS 14.1.0.3<br>EHF | <ul> <li>1 x USB port</li> <li>16 x 10GbE; 2 x 40GbE network ports</li> <li>1 x Console port</li> <li>1 x GbE management port</li> <li>4 x LEDs</li> </ul>   |
| VIPRION B2250   | Intel® Xeon® E5        | TMOS 14.1.0.3<br>EHF | <ul> <li>1 x USB port</li> <li>4 x 40 GbE network ports</li> <li>1 x Console port</li> <li>1 x GbE management port</li> <li>4 x LEDs</li> </ul>              |
| VIPRION B4450   | Intel® Xeon® E5        | TMOS 14.1.0.3<br>EHF | <ul> <li>1 x USB port</li> <li>4 x 40 GbE; 2 x 100 GbE network ports</li> <li>1 x Console port</li> <li>1 x GbE management port</li> <li>4 x LEDs</li> </ul> |

Table 1 – Tested Modules

© 2020 F5 Networks / atsec information security.

 <sup>&</sup>lt;sup>1</sup> The modules make use of the AES-NI instruction provided by the underlying processor.
 <sup>2</sup> The USB port found on all platforms are specified as used only for exporting of audit logs.

# 1.2. FIPS 140-2 Validation Level

For the purpose of the FIPS 140-2 validation, the F5® Device Cryptographic Module is defined as a multi-chip standalone hardware cryptographic module validated at overall security level 2. The table below shows the security level claimed for each of the eleven sections that comprise the FIPS 140-2 standard:

|     | FIPS 140-2 Section                        |     |  |
|-----|-------------------------------------------|-----|--|
| 1   | Cryptographic Module Specification        | 2   |  |
| 2   | Cryptographic Module Ports and Interfaces | 2   |  |
| 3   | Roles, Services and Authentication        | 2   |  |
| 4   | Finite State Model                        | 2   |  |
| 5   | Physical Security                         | 2   |  |
| 6   | Operational Environment                   | N/A |  |
| 7   | Cryptographic Key Management              | 2   |  |
| 8   | EMI/EMC                                   | 2   |  |
| 9   | Self-Tests                                | 2   |  |
| 10  | Design Assurance                          | 2   |  |
| 11  | Mitigation of Other Attacks               | N/A |  |
| Ove | Overall Level                             |     |  |

Table 2 – Security Levels

# 1.3. Description of modes of operation

The module must be installed in the FIPS validated configuration as stated in Section 8 – Guidance. In the operation mode the module supports two modes of operation:

- in "FIPS mode" (the FIPS Approved mode of operation) only approved or allowed security functions with sufficient security strength can be used.
- in "non-FIPS mode" (the non-Approved mode of operation) only non-approved security functions can be used.

The module enters operational mode after power-up tests succeed. Once the module is operational, the mode of operation is implicitly assumed depending on the security function invoked and the security strength of the cryptographic keys. Critical Security Parameters (CSPs) used or stored in FIPS mode are not used in non-FIPS mode, and vice versa.

In the FIPS Approved Mode, the cryptographic module will provide the following CAVP certified cryptographic algorithms. Here the Control, or Management, plane refers to the connection from an administrator to the BIG-IP for system management. The Data Plane refers to the traffic passed between external entities and internal servers

| A las a sittle sea                                                                                                                             | lloogo                                            | Kawa/CSDa                                                                | Certificate Number         |                         |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------|----------------------------|-------------------------|
| Algorithm                                                                                                                                      | Usage                                             | Keys/CSPs                                                                | Control Plane <sup>3</sup> | Data Plane <sup>4</sup> |
| AES-ECB<br>AES-CBC<br>AES-GCM⁵                                                                                                                 | Encryption and<br>Decryption                      | 128/192/256-bit AES<br>key                                               | C701                       | N/A                     |
| AES-CBC<br>AES-GCM⁵                                                                                                                            |                                                   | 128/256-bit AES key                                                      | N/A                        | C699, C700              |
| SP800-90A<br>CTR_DRBG                                                                                                                          | Random Number<br>Generation                       | Entropy input string,<br>V and Key values                                | C701                       | C699, C700              |
| FIPS 186-4 RSA<br>Key Pair<br>Generation                                                                                                       | RSA Key Generation                                | RSA public and<br>private key pair with<br>2048/3072-bit<br>modulus size | C701                       | N/A                     |
| PKCS#1 v1.5 RSA<br>Signature<br>Generation with<br>SHA-256 and SHA-<br>384 and Signature<br>Verification with<br>SHA-1, SHA-256<br>and SHA-384 | RSA Signature<br>Generation and<br>Verification   | RSA private key with<br>2048/3072-bit<br>modulus                         | C701                       | C699, C700              |
| FIPS 186-4 ECC<br>Key Pair<br>Generation<br>(Appendix B.4.2)                                                                                   | ECDSA Key Pair<br>Generation                      | ECDSA/ECDH<br>public/private key<br>pair for P-256 and P-<br>384 curves  | C701                       | C699, C700              |
| FIPS 186-4<br>ECDSA Signature<br>Generation and<br>Signature<br>Verification                                                                   | ECDSA Signature<br>Generation and<br>Verification | ECDSA private key<br>(P-256 P- 384<br>curves)                            | C701                       | C699, C700              |
| SHA-1<br>SHA-256<br>SHA-384                                                                                                                    | Message Digest                                    | N/A                                                                      | C701                       | C699, C700              |

<sup>&</sup>lt;sup>3</sup> For control plane, the platforms BIG-IP i4000, BIG-IP i5000, BIG-IP i5820-DF, BIG-IP i7000, BIG-IP i7820-DF, BIG-IP i10800, BIG-IP i11800-DS, BIG-IP i15800, BIG-IP 5250v-F, BIG-IP 7200v-F, BIG-IP 10200v-F, BIG-IP 10350v-F, VIPRION B2250, VIPRION B4450 with processors D, E3 and E5 share the same CAVP certificate <sup>4</sup> For data plane, the platforms BIG-IP i11800-DS, BIG-IP 5250v-F, BIG-IP 7200v-F, BIG-IP 10200v-F, BIG-IP 10350v-F and VIPRION B2250 with E3 and E5 processors share the same CAVP certificate. The platforms BIG-IP i4000, BIG-IP i10800, BIG-IP i5000, BIG-IP i5820-DF, BIG-IP i7000, BIG-IP i7820-DF, BIG-IP i15800 and VIPRION B4450, with D and E5 processors share the same CAVP certificate. <sup>5</sup> Not all algorithms/modes tested are used within the module.

© 2020 F5 Networks / atsec information security.

| HMAC-SHA-1<br>HMAC-SHA-256<br>HMAC-SHA-384                              | Message<br>Authentication                                             | HMAC key<br>(>=112-bit)                        | C701          | C699, C700          |
|-------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------|---------------|---------------------|
| SP800-56A<br>Ephemeral Unified,<br>Section 5.7.1.2<br>ECC CDH Primitive | Shared Secret<br>Computation used in<br>Key Agreement<br>Scheme (KAS) | private Key with P-<br>256 and P-384<br>curves | C701<br>(CVL) | C699, C700<br>(CVL) |
| SP800-135 Key<br>Derivation in SSH                                      | Key Derivation                                                        | Session encryption and data                    | C701          | N/A                 |
| TLS <sup>6</sup> 1.0/1.1/1.2<br>with SHA-256 and<br>SHA-384             |                                                                       | authentication keys                            | C701          | N/A                 |

Table 3 – Approved Cryptographic Algorithms

The following table lists the non-Approved algorithms that are allowed in FIPS approved mode along with their usage:

| Algorithm                       | Usage                                      | Keys/CSPs                                   | Certificate Number          |                             |
|---------------------------------|--------------------------------------------|---------------------------------------------|-----------------------------|-----------------------------|
| Algorithm                       |                                            |                                             | Control Plane               | Data Plane                  |
| EC Diffie-Hellman               | Key Agreement                              | private key with P-<br>256 and P-384 curves | Non-Approved<br>but Allowed | Non-Approved<br>but Allowed |
| PKCS#1 v1.5 RSA<br>Key Wrapping | Asymmetric<br>Encryption and<br>Decryption | RSA key pair                                | Non-Approved<br>but Allowed | Non-Approved<br>but Allowed |
| NDRNG                           | Seeding DRBG                               | seed                                        | Non-Approved<br>but Allowed | Non-Approved<br>but Allowed |

Table 4 – Non-Approved but Allowed in FIPS mode Cryptographic Algorithms

The following table lists the non-FIPS Approved algorithms along with their usage:

| Algorithm  | Usage                                  | Notes                                     |
|------------|----------------------------------------|-------------------------------------------|
| AES        | Symmetric Encryption and<br>Decryption | using OFB, CFB, CTR, $XTS^7$ and KW modes |
| DES        |                                        | n/a                                       |
| RC4        |                                        |                                           |
| Triple-DES |                                        |                                           |
| SM2        |                                        |                                           |
| SM4        |                                        |                                           |

<sup>&</sup>lt;sup>6</sup> No parts of the TLS protocol except the KDF has been reviewed or tested by the CAVP and CMVP

<sup>&</sup>lt;sup>7</sup> The AES-XTS mode shall only be used for the cryptographic protection of data on storage devices. The AES-XTS shall not be used for other purposes, such as the encryption of data in transit.

 $<sup>\</sup>ensuremath{\textcircled{\sc 0}}$  2020 F5 Networks / atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

| RSA                                                         | Asymmetric Encryption and Decryption          | using modulus sizes less than 2048-bits or greater than 3072 bits             |
|-------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------|
| RSA                                                         | Asymmetric Key Generation                     | FIPS 186-4 less than 2048-bit<br>modulus size or greater than 3072<br>bits    |
| DSA                                                         |                                               | using any key size                                                            |
| ECDSA<br>ECDH                                               |                                               | using public/private key pair for<br>curves other than P-256 and P-<br>384    |
| RSA                                                         | Digital Signature Generation and Verification | PKCS#1 v1.5 using key sizes other than 2048 and 3072 bits                     |
|                                                             |                                               | PKCS#1 v1.5 using SHA-1, SHA-<br>224 and SHA-512                              |
|                                                             |                                               | using X9.31 standard                                                          |
|                                                             |                                               | using Probabilistic Signature<br>Scheme (PSS)                                 |
| DSA                                                         |                                               | using any key size and SHA variant                                            |
| ECDSA                                                       |                                               | FIPS 186-4 using curves other than P-256 and P-384                            |
|                                                             |                                               | FIPS 186-4 using curves P-256<br>and P-384 with SHA-1, SHA-224<br>and SHA-512 |
| SHA-224<br>SHA-512<br>MD5<br>SM3                            | Message Digest                                | N/A                                                                           |
| HMAC-SHA-224<br>HMAC-SHA-512<br>AES-CMAC<br>Triple-DES-CMAC | Message Authentication                        | N/A                                                                           |
| Diffie-Hellman                                              | Key Agreement Scheme (KAS)                    | N/A                                                                           |
| ECDH                                                        |                                               | using curves other than P-256<br>and P-384                                    |
| TLS KDF                                                     | Key Derivation function                       | Using SHA-1/SHA-224/SHA-512                                                   |
| SSH KDF                                                     | 1                                             |                                                                               |
| SNMP KDF                                                    | -                                             | using any SHA variant                                                         |
| IKEv1 and IKEv2 KDF                                         |                                               |                                                                               |

Table 5 – Non-Approved and Non-Compliant Cryptographic Algorithms/Modes

© 2020 F5 Networks / atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice.

# 1.4. Cryptographic Module Boundary

The cryptographic boundary of the module is defined by the exterior surface of the appliance (red dotted line). The block diagram below shows the module, its interfaces with the operational environment and the delimitation of its logical boundary.

## 1.4.1. Hardware Block Diagram

The block diagram below depicts the flow of status output (SO), control input (CI), data input (DI) and data output (DO). Description of the ports and interfaces can be found in *Table 5 – Ports and Interfaces* below.

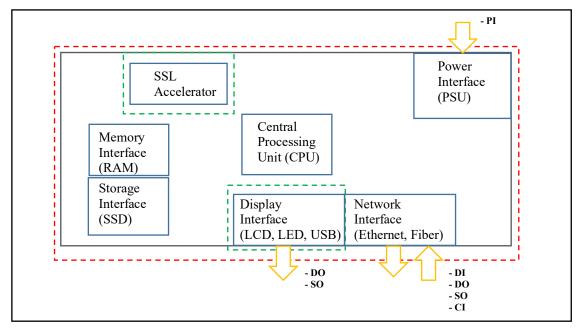



Figure 1 – Hardware Block Diagram

# 2. Cryptographic Module Ports and Interfaces

For the purpose of the FIPS 140-2 validation, the physical ports are interpreted to be the physical ports of the hardware platform on which it runs.

The logical interfaces are the commands through which users of the module request services. The following table summarizes the four physical interfaces with details of the FIPS 140-2 logical interfaces they correspond to:

| Logical Interface | Physical Interface                                            | Description                                                                                                                                                                                                                                                |
|-------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data Input        | Network Interface                                             | Depending on module, the network interface consists<br>SFP, SFP+, and/or QSFP+ ports (Ethernet and/or Fiber<br>Optic) which allow transfer speeds from 1Gbps to up to<br>100Gbps.                                                                          |
| Data Output       | <ul><li>Network Interface</li><li>Display Interface</li></ul> | Depending on module, the network interface consists<br>SFP, SFP+, and/or QSFP+ ports (Ethernet and/or Fiber<br>Optic) which allow transfer speeds from 1Gbps to up to<br>100Gbps. In addition, Status logs may be output to USB<br>found in the interface. |

© 2020 F5 Networks / atsec information security.

| Logical Interface | Physical Interface                                            | Description                                                                                                                                                                                                                               |
|-------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Control Input     | <ul><li>Display Interface</li><li>Network Interface</li></ul> | The control input found in the display interface includes<br>the power button and reset button. The control input found<br>in the network interface includes the API which control<br>system state (e.g. reset system, power-off system). |
| Status Output     | Display Interface                                             | Depending on model, the display interface can consist of a LCD display, LEDs, and/or output to STDOUT which provides system status information.                                                                                           |
| Power Input       | Power Interface                                               | Removable PSU (x2)                                                                                                                                                                                                                        |

Table 6 – Ports and Interfaces

The pictures below show the various modules that were tested. Please use the images to familiarize yourself with the devices.



Figure 2 – BIG-IP i4000



Figure 3 – BIG-IP i5000 / i5820-DF



Figure 4 - BIG-IP i7000 / i7820-DF



#### Figure 5 – BIG-IP i10800 / i11800-DS



Figure 6 – BIG-IP i15800



Figure 7 – BIG-IP 5250v-F



Figure 8 – BIG-IP 7200v-F



Figure 9 – BIG-IP 10200v-F



Figure 10 – BIG-IP 10350v-F



Figure 11 – VIPRION B2250



#### Figure 12 - VIPRION B4450

# 3. Roles, Services and Authentication

#### 3.1. Roles

The module supports roles-based authentication and the following FIPS 140-2 roles defined:

- User role: Performs cryptographic services (in both FIPS mode and non-FIPS mode), key zeroization, module status requests, and on-demand self-tests. The FIPS140-2 role of User is mapped to multiple BIG-IP roles which are responsible for different components of the system (e.g. auditing, certificate management, user management, etc.). The user can access the module through CLI or Web Interface described below. However, the CO can restrict User Role access to the CLI interface. In that case the User will have access through web interface only.
- Crypto Officer (CO) role: Crypto officer is represented by the administrator of the BIG-IP. This entity performs module installation and initialization. This role has full access to the system and has the ability to create, delete, and manage other user roles on the system.

The module supports concurrent operators belonging to different roles: one CO and one User role, which creates two different authenticated sessions, achieving the separation between the concurrent operators.

Two interfaces can be used to access the module:

- 1. CLI: The module offers a CLI called traffic management shell (tmsh) which can be accessed remotely using the SSHv2 secured session over the Ethernet ports.
- 2. Web Interface: The Web interface consists of HTTPS over TLS interface which provides a graphical interface for system management tools. The web interface can be accessed from a TLS-enabled web browser.

Note: The module does not maintain authenticated sessions upon power cycling. Power-cycling the system requires the authentication credentials to be re-entered. Authentication data is protected against unauthorized disclosure, modification and substitution by the Operating System. Additionally, when entering authentication data through the Web interface, any character entered will be obfuscated (i.e. replace the character entered with a dot on the entry box). When entering authentication data through the CLI, the module does not display any character entered by the operator in stdin (e.g. keyboard).

| FIPS 140-2<br>Role | BIG-IP Role            | Purpose of Role                                                                                                                                                                                                                                                             |
|--------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Crypto Officer     | Administrator          | Main administrator of the of the BIG-IP system. This role has complete access to all objects on the system. Entities with this role cannot have other roles on the system.                                                                                                  |
|                    |                        | Entity who can view all configuration data on the system, including logs and archives.                                                                                                                                                                                      |
|                    | Certificate<br>Manager | Entity who manages digital certificates and keys.                                                                                                                                                                                                                           |
|                    | Firewall<br>Manager    | Grants a user permission to manage all firewall rules and supporting objects.<br>Notably, the Firewall Manager role has no permission to create, update, or<br>delete non-network firewall configurations, including Application Security or<br>Protocol Security policies. |

© 2020 F5 Networks / atsec information security.

|                                                                                   | FIPS 140-2<br>Role | BIG-IP Role         | Purpose of Role                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------|--------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                   |                    | iRule Manager       | Grants a user permission to create, modify, view, and delete iRules. Users with this role cannot affect the way that an iRule is deployed.                                                                                                                                                                                                               |
| Operator Grants a user permission to enable or d<br>When granted terminal access. |                    | Operator            | Grants a user permission to enable or disable nodes and pool members.<br>When granted terminal access.                                                                                                                                                                                                                                                   |
|                                                                                   |                    | Resource<br>Manager | Grants a user access to all objects on the system except BIG-IP user<br>accounts. With respect to user accounts, a user with this role can view a list of<br>all user accounts on the system but cannot view or change user account<br>properties except for their own user account. Users with this role cannot have<br>other user roles on the system. |
|                                                                                   |                    | User Manager        | Entity who manages BIG-IP crypto officer accounts.                                                                                                                                                                                                                                                                                                       |

Table 7 – FIPS 140-2 Roles

# 3.2. Authentication

| FIPS 140-2<br>Role | Authentication type and data                | Strength of Authentication<br>(Single-Attempt)                                                                                                                                                                                                                                                                                                                                                                                                                                      | Strength of Authentication<br>(Multiple-Attempt)                                                                                                                                                                                                                                     |
|--------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Crypto<br>Officer  | Password based<br>(CLI or Web<br>Interface) | The password must consist of minimum of 6 characters with at least one from each of the three character classes. Character classes are defined as: digits (0-9), ASCII lowercase letters (a-z), ASCII uppercase letters (A-Z)<br>Assuming a worst-case scenario where the password contains four digits, one ASCII lowercase letter. The probability to guess every character successfully is (1/10) ^4 * (1/26)^1 * (1/26)^1 = 1/6,760,000 which is much smaller than 1/1,000,000. | The maximum number of login<br>attempts is limited to 6 after<br>which the account is locked.<br>This means that at worst case<br>an attacker has the probability<br>of guessing the password in one<br>minute as 6/6,760,000 which is<br>less than the requirement of<br>1/100,000. |
|                    | Signature<br>Verification<br>(CLI only)     | The public key used for authentication can<br>either be ECDSA or RSA, yielding at least<br>112 bits of strength, assuming the smallest<br>curve size P-224 or modulus size 2048 bit.<br>The chance of a random authentication<br>attempt falsely succeeding is:1/(2 <sup>112</sup> ) which<br>is less than 1/1,000,000.                                                                                                                                                             | The maximum number of login attempts is limited to 6 after which the account is locked. This means that at worst case an attacker has the probability of guessing the password in one minute as $6/(2^{112})$ which is less than the requirement of $1/100,000$ .                    |

| FIPS 140-2<br>Role | Authentication type and data                 | Strength of Authentication<br>(Single-Attempt)                                                                                                                                                                                                                                                                                                                                                                                                                                      | Strength of Authentication<br>(Multiple-Attempt)                                                                                                                                                                                                                                     |
|--------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| User               | Password based<br>(CLI and Web<br>Interface) | The password must consist of minimum of 6 characters with at least one from each of the three character classes. Character classes are defined as: digits (0-9), ASCII lowercase letters (a-z), ASCII uppercase letters (A-Z)<br>Assuming a worst-case scenario where the password contains four digits, one ASCII lowercase letter. The probability to guess every character successfully is (1/10) ^4 * (1/26)^1 * (1/26)^1 = 1/6,760,000 which is much smaller than 1/1,000,000. | The maximum number of login<br>attempts is limited to 6 after<br>which the account is locked.<br>This means that at worst case<br>an attacker has the probability<br>of guessing the password in one<br>minute as 6/6,760,000 which is<br>less than the requirement of<br>1/100,000. |
|                    | Signature<br>Verification<br>(CLI only)      | The public key used for authentication can<br>either be ECDSA or RSA, yielding at least<br>112 bits of strength, assuming the smallest<br>curve size P-224 or modulus size 2048 bit.<br>The chance of a random authentication<br>attempt falsely succeeding is:1/(2 <sup>112</sup> ) which<br>is less than 1/1,000,000.                                                                                                                                                             | The maximum number of login attempts is limited to 6 after which the account is locked. This means that at worst case an attacker has the probability of guessing the password in one minute as $6/(2^{112})$ which is less than the requirement of $1/100,000$ .                    |

Table 8 – Authentication of Roles

#### 3.3. Services

The module provides services to users that assume one of the available roles. All services are described in detail in the user documentation.

The first table lists the module's services that can be performed without authentication. Subsequent tables list the Approved services and the non-Approved but allowed services in FIPS mode of operation, the roles that can request the service, the algorithms involved with their corresponding CAVS certificate numbers (if applicable), the CSPs involved and how they are accessed. The final set of tables show the non-FIPS Approved services that only can be executed in the non-FIPS mode.

| Service     | Access Type<br>(R, W, Z) | Usage/Notes                                                                                                                                                                                                        |
|-------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Show Status |                          | Displays system status information over LCD screen (e.g. network info, system operational status, etc.).                                                                                                           |
| Self-Tests  |                          | When the BIG-IP system has been started, the Self-Tests are<br>performed. This includes the integrity check and Known<br>Answer Tests. On-Demand self-tests are initiated by manually<br>power cycling the system. |

#### Table 9 – Non-Authenticated Services

Table 10 lists the Management Services available in FIPS mode of operation which are only available after authentication has succeeded. Use of any of the following services using non-approve algorithms will place the module in non-approved mode.

| Service                | Description                                                    | Access Type                     |                | Authorization     |                                     |  |
|------------------------|----------------------------------------------------------------|---------------------------------|----------------|-------------------|-------------------------------------|--|
|                        |                                                                | (R, W, Z)<br>Read/Write/Zeroize |                | Crypto<br>Officer | User                                |  |
|                        |                                                                | User Manage                     | ement Services |                   |                                     |  |
| List Users             | Display list of users                                          | R                               | None           | ~                 | User Manager<br>Resource<br>Manager |  |
| Create User            | Create additional users                                        | W                               | None           | √                 | User Manager                        |  |
| View Users             | View users                                                     | R                               | None           | ✓                 | User Manager                        |  |
| Delete User            | Delete users from module                                       | W                               | None           | ✓                 | User Manager                        |  |
| Unlock User            | Remove Lock from<br>user who has<br>exceeded login<br>attempts | W, R                            | None           | ✓                 | User Manager                        |  |
| Update own<br>password | Update own password                                            | W                               | User Password  | AI                | l Roles                             |  |

© 2020 F5 Networks / atsec information security.

| Service                           | vice Description Access Type Keys and CSP<br>(R, W, Z)                                      |                                  | Keys and CSP                                     | Aut               | norization             |
|-----------------------------------|---------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------|-------------------|------------------------|
|                                   |                                                                                             | (₨, ٧٧, ∠)<br>Read/Write/Zeroize |                                                  | Crypto<br>Officer | User                   |
| Update others<br>password         | Update password for<br>user that is not self                                                | W                                | User Password                                    | ✓                 | User Manager           |
| Configure<br>Password<br>Policy   | Set password policy<br>features                                                             | W                                | None                                             | $\checkmark$      | None                   |
|                                   | C                                                                                           | ertificate Man                   | agement Services                                 |                   |                        |
| Create SSL<br>Certificate         | Generate a self-signed certificate                                                          | W                                | TLS RSA/ECDSA Key Pair,<br>DRBG V and Key values | $\checkmark$      | Certificate<br>Manager |
| Create SSL<br>Key                 | Generate SSL<br>Certificate key file                                                        | W                                | TLS RSA/ECDSA Key Pair,<br>DRBG V and Key values | ~                 | Certificate<br>Manager |
| Check-Cert                        | Examines certificate<br>and display or logs<br>expiration date of<br>installed certificates | R, W                             | None                                             | ~                 | Certificate<br>Manager |
| List<br>Certificates              | Display certificates<br>installed                                                           | R                                | None                                             | ✓                 | Certificate<br>Manager |
| Import SSL<br>Certificate         | Import SSL certificate<br>into module                                                       | R                                | None                                             | ✓                 | Certificate<br>Manager |
| Delete SSL<br>Certificate         | Delete a certificate from the module.                                                       | Z                                | None                                             | ✓                 | Certificate<br>Manager |
| Export<br>Certificate File        | Export SSL certificate into module                                                          | W                                | None                                             | ✓                 | Certificate<br>Manager |
| ssh-keyswap<br>utility service    | Use ssh-keyswap<br>utility to create or<br>delete ssh keys                                  | R, W                             | SSH RSA/ECDSA Key Pair                           | $\checkmark$      | Certificate<br>Manager |
|                                   |                                                                                             | Firewall Mana                    | gement Services                                  |                   |                        |
| Configure<br>firewall<br>settings | Configure firewall<br>policy rules, and<br>address-lists for use<br>by firewall rules.      | R, W                             | None                                             | ✓                 | Firewall<br>Manager    |
| Show firewall state               | Display the current<br>system-wide state of<br>firewall rules                               | R                                | None                                             | $\checkmark$      | Firewall<br>Manager    |
| Show statistics                   | Displays statistics of<br>firewall rules on the<br>BIG-IP system                            | R                                | None                                             | $\checkmark$      | Firewall<br>Manager    |
|                                   |                                                                                             | Audit Manag                      | ement Services                                   |                   |                        |
| View System<br>Audit Logs         | Display various service logs                                                                | R                                | None                                             | $\checkmark$      | Auditor                |

© 2020 F5 Networks / atsec information security.

| Service                                | Description                                                     | Access Type                     | Keys and CSP           | Authorization     |                                     |  |
|----------------------------------------|-----------------------------------------------------------------|---------------------------------|------------------------|-------------------|-------------------------------------|--|
|                                        |                                                                 | (R, W, Z)<br>Read/Write/Zeroize |                        | Crypto<br>Officer | User                                |  |
| Export<br>Analytics Logs               | Export system<br>analytics logs                                 | W                               | None                   | $\checkmark$      | Auditor                             |  |
| Enable/Disable<br>audition             | Enables/Disables<br>system auditing                             | R                               | None                   | $\checkmark$      | Auditor                             |  |
|                                        |                                                                 | System Mana                     | gement Services        |                   |                                     |  |
| Configure Boot<br>Options              | Enable Quit boot,<br>manage boot locations                      | R, W                            | None                   | ✓                 | Resource<br>Manager                 |  |
|                                        | Enable/Disable SSH<br>access, Configure IP<br>address whitelist | R, W                            | None                   | ✓                 | Resource<br>Manager                 |  |
|                                        | Update private key for user authentication                      | R, W                            | SSH RSA/ECDSA Key Pair | ✓                 | User Manager<br>Resource<br>Manager |  |
| Configure<br>Firewall Users            | Manage firewall rules                                           | R, W                            | None                   | √                 | Firewall<br>Manager                 |  |
| Configure<br>nodes and<br>pool members | Enable/Disable nodes<br>and pool members                        | R, W                            | None                   | ✓                 | Operator                            |  |
| Configure<br>iRules                    | create, modify, view,<br>and delete iRules                      | R, W                            | None                   | √                 | iRule Manager                       |  |
| Reboot<br>System                       | Restart cryptographic module                                    | W, Z                            | None                   | √                 | Resource<br>Manager                 |  |
| Secure Erase                           | Full system zeroization                                         | W, Z                            | All CSPs               | ✓                 | None                                |  |

Table 10 – Management Services in FIPS mode of operation

Table 11 lists the crypto services available in FIPS mode of operation, the roles that can request the service, the algorithms involved, the CSPs involved and how they are accessed.

| Service | Algorithms / Key Sizes | Role | Keys/CSPs | Inte          | rface            |
|---------|------------------------|------|-----------|---------------|------------------|
|         | SSH Services           |      |           | Data<br>Plane | Control<br>Plane |

| Service                    | Algorithms / Key Sizes                                                                                                                                             | Role       | Keys/CSPs                                                         | Inte             | rface |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------|------------------|-------|
| Establish SSH Session      | Signature generation and<br>verification:<br>ECDSA with SHA-<br>256/SHA-384 and curve<br>P-256/P-384<br>RSA with SHA-<br>256/SHA-384 and<br>2048/3072-bit key size | User<br>CO | RSA/ECDSA Key Pair                                                |                  | Yes   |
|                            | Key Exchange:<br>EC Diffie-Hellman                                                                                                                                 |            | EC Diffie-Hellman key<br>pair, shared secret                      |                  |       |
|                            | Key Derivation:<br>SP800-135 SSH KDF                                                                                                                               |            | Session encryption keys<br>EC Diffie-Hellman shared<br>secret     |                  |       |
| Maintain SSH Session       | Data Encryption and<br>Decryption:<br>AES (CBC mode)                                                                                                               | User<br>CO | Session encryption keys                                           |                  | Yes   |
|                            | Data Integrity (MAC):<br>HMAC with SHA-1                                                                                                                           |            | Session data<br>authentication keys                               |                  |       |
| Close SSH Session          | N/A                                                                                                                                                                | User<br>CO | Zeroize session keys and shared secret                            |                  | Yes   |
|                            | TLS Services                                                                                                                                                       |            | Data<br>Plane                                                     | Control<br>Plane |       |
| Establish TLS session      | Signature Generation and<br>Verification:<br>RSA or ECDSA with<br>SHA-256/SHA-384                                                                                  | User<br>CO | RSA, ECDSA key pairs                                              | Yes              | Yes   |
|                            | Key Exchange:<br>ECDH with SP800-135<br>TLS KDF, RSA Key<br>wrapping (allowed)                                                                                     |            | RSA, ECDH Key pair,<br>TLS pre-master secret<br>and master secret | Yes              | Yes   |
| Maintaining TLS<br>session | Data Encryption: AES<br>CBC, GCM<br>Data Authentication:<br>HMAC SHA-1/SHA-<br>256/SHA-384                                                                         | User<br>CO | AES and HMAC Keys                                                 | Yes              | Yes   |
| Closing TLS session        | N/A                                                                                                                                                                | User<br>CO | Session keys, shared secret                                       | Yes              | Yes   |

Table 11 – Crypto Services in FIPS mode of operation

© 2020 F5 Networks / atsec information security.

Table 12 lists all of the non-approved services available in the non-FIPS-Approved mode of operation.

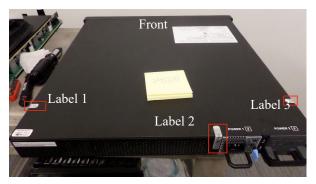
| Service                  | Role       | Usage/Notes                                                                                                                                                                                |
|--------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | TLS        | S Services                                                                                                                                                                                 |
| Establishing TLS session |            | Signature generation and verification using<br>DSA or RSA/ECDSA with SHA-1/SHA-224/SHA-512<br>RSA with keys less than 2048                                                                 |
|                          |            | Key Exchange using:<br>Diffie-Hellman<br>RSA Key wrapping with keys less than 2048                                                                                                         |
| Maintain TLS session     |            | Data encryption using Triple-DES, AES-CTR, AES-GCM<br>Data authentication using HMAC SHA-224/SHA-512                                                                                       |
|                          | SS         | H Services                                                                                                                                                                                 |
| Establish SSH session    | User<br>CO | Signature generation and verification using:<br>DSA, Ed25519<br>RSA/ECDSA with SHA-1/SHA-224/SHA-512<br>RSA with key size less than 2048-bit<br>Key exchange using Diffie-Hellman, Ed25519 |
| Maintain SSH session     |            | Data encryption using Triple-DES<br>Data authentication using HMAC SHA-1/SHA-224/SHA-<br>512                                                                                               |
|                          | Oth        | er Services                                                                                                                                                                                |
| IPsec                    | User       | The configuration and usage of IPsec is not approved                                                                                                                                       |
| iControl REST access     | CO         | Access to the system through REST using non-approved crypto from BouncyCastle                                                                                                              |
| Configuration using SNMP |            | Management of the module via SNMP is not approved.                                                                                                                                         |

Table 12 - Services in non-FIPS mode of operation

# 4. Physical Security

All of the modules listed in *Table 1: Tested Modules* are enclosed in a hard-metallic production grade case that provides obscurity from visual inspection of internal components. Each module is fitted with tamper evident labels to provide physical evidence of attempts to gain access inside the case. The tamper evident labels shall be installed for the module to operate in approved mode of operation. The Crypto Officer is responsible for inspecting the quality of the tamper labels on a regular basis to confirm the modules have not been tampered with. In the event that the tamper evident labels require replacement, a kit providing 25 tamper labels is available for purchase (P/N: F5-ADD-BIG-FIPS140). The Crypto Officer shall be responsible for the storage of the label kits.

| Physical Security<br>Mechanism | Recommended Inspection<br>Frequency | Guidance                                                                                                                                                                                                        |
|--------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tamper Evident Labels          | Once per month                      | Check the quality of the tamper<br>evident labels for any sign of removal,<br>replacement, tearing, etc. If any label<br>is found to be damaged or missing,<br>contact the system administrator<br>immediately. |


Table 13 – Inspection of Tamper Evident Labels

#### 4.1. Tamper Label Placement

The details below show the location of all tamper evident labels for each hardware appliances. Label application instructions are provided in the *F5 Platforms: FIPS Kit Installation* guide delivered with each hardware appliances.

| Hardware Appliance | # of Tamper Labels | Hardware Appliance | # of Tamper Labels |
|--------------------|--------------------|--------------------|--------------------|
| BIG-IP i4000       | 3                  | BIG-IP i15800      | 5                  |
| BIG-IP i5000       | 3                  | BIG-IP 5250v-F     | 4                  |
| BIG-IP i5820-DF    | 4                  | BIG-IP 7200v-F     | 5                  |
| BIG-IP i7000       | 6                  | BIG-IP 10200v-F    | 4                  |
| BIG-IP i7820-DF    | 4                  | BIG-IP 10350v-F    | 4                  |
| BIG-IP i10800      | 6                  | VIPRION B2250      | 6                  |
| BIG-IP i11800-DS   | 6                  | VIPRION B4450      | 5                  |

Table 14 – Number of Tamper Evident Labels per hardware appliance



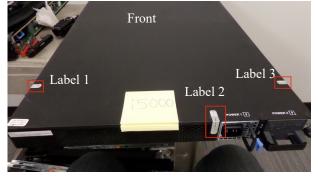



Figure 13 – BIG-IP i4000 (3 of 3 tamper labels)

Figure 14 – BIG-IP i5000 (3 of 3 tamper labels)



Figure 15 – BIG-IP i5820-DF (4 tamper labels shown)



Figure 16 – BIG-IP i7000 (6 of 6 tamper labels shown)



Figure 17 – BIG-IP i7820-DF (4 tamper labels shown)

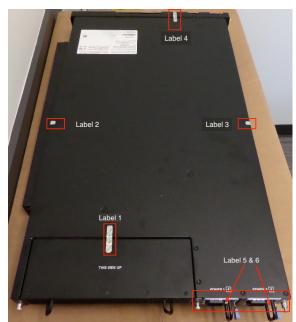



Figure 18 – BIG-IP i10800 / i11800-DS (6 tamper labels shown)



Figure 19 – BIG-IP i10800 / i11800-DS (tamper label 5 & 6)



Figure 20 – BIG-IP i15800 (Front tamper labels 1-3 labels shown)



Figure 21 – BIG-IP i15800 (Back tamper labels 4 and 5 labels shown)



Figure 22 – BIG-IP 5250v-F (4 tamper labels shown)

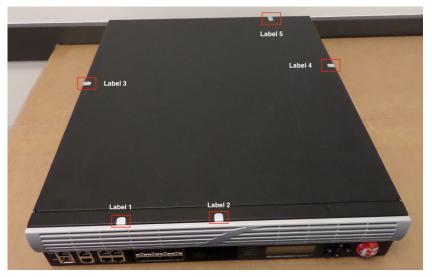



Figure 23 – BIG-IP 7200v-F (5 tamper labels shown)



Figure 24 – BIG-IP 10200v-F (Front tamper labels 1-3 shown)



Figure 25 – BIG-IP 10200v-F (Back tamper label 4 shown)



Figure 26 – VIPRION B2250 in chassis (1 of 6 tamper labels shown)

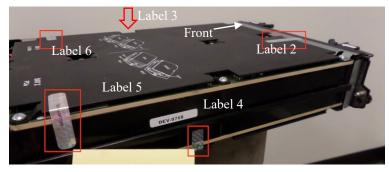



Figure 27 – VIPRION B2250 top view (5 of 6 tamper labels shown)



Figure 28 - VIPRION B4450 in chassis

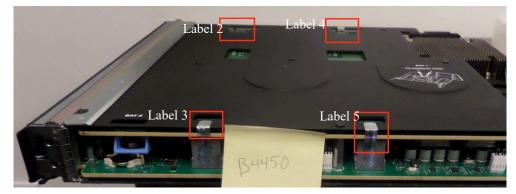



Figure 30 – VIPRION B4450 top-view (4 of 5 tamper labels shown)

# 5. Operational Environment

## 5.1. Applicability

The module operates in a non-modifiable operational environment per FIPS 140-2 level 2 specifications and as such the operational environment requirements do not apply.

# 6. Cryptographic Key Management

The following table summarizes the CSPs that are used by the cryptographic services implemented in the module. Table 11 lists the services and the corresponding CSPs used in each service. Table 10 provides a list of services for the management of the module where, CSPs involved in User Management Services include user password. CSPs involved in Certificate Management Services are listed in TLS Services of Table 11. CSPs involved in System Management Services are listed in SSH Services of Table 11.

| Name                                       | Generation                                                                       | Storage | Zeroization                                                                                       |  |
|--------------------------------------------|----------------------------------------------------------------------------------|---------|---------------------------------------------------------------------------------------------------|--|
| DRBG entropy input string                  | Obtained from NDRNG.                                                             | RAM     | Zeroized by device reboot                                                                         |  |
| DRBG V and Key values                      | Derived from entropy string as defined by [SP800-90A]                            | RAM     |                                                                                                   |  |
| TLS RSA private key                        | Generated using FIPS 186-4 Key                                                   | Disk    | Zeroized when key file is deleted                                                                 |  |
| TLS RSA public key                         | generation method and the random value used in the key                           |         | or by secure erase option at boot.                                                                |  |
| TLS ECDSA private key                      | generation is generated using                                                    |         |                                                                                                   |  |
| TLS ECDSA public key                       | SP800-90A DRBG.                                                                  |         |                                                                                                   |  |
| TLS EC Diffie-Hellman<br>private Key       |                                                                                  | RAM     | Zeroized by closing TLS session or by or rebooting the device.                                    |  |
| TLS EC Diffie-Hellman<br>public Key        |                                                                                  |         |                                                                                                   |  |
| TLS Pre-Master Secret<br>and Master Secret | Established during the TLS handshake                                             |         | Zeroized by closing TLS session or by or rebooting the device.                                    |  |
| Derived TLS session key<br>(AES, HMAC)     | Derived from the master secret via<br>SP800-135 TLS KDF                          |         |                                                                                                   |  |
| SSH Shared Secret                          | Established during the SSH handshake                                             | RAM     | Zeroized by closing SSH session<br>or terminating the SSH application<br>or rebooting the device. |  |
| Derived SSH session key<br>(AES, HMAC)     | Derived from the shared secret via<br>SP800-135 SSH KDF                          | RAM     |                                                                                                   |  |
| SSH EC Diffie-Hellman<br>private Key       | Generated using FIPS 186-4 Key generation method and the                         | RAM     |                                                                                                   |  |
| SSH EC Diffie-Hellman<br>public Key        | random value used in the key<br>generation is generated using<br>SP800-90A DRBG. |         |                                                                                                   |  |
| SSH RSA private Key                        |                                                                                  | Disk    | Zeroized using ssh-keyswap utility                                                                |  |
| SSH RSA public Key                         |                                                                                  |         | or by secure erase option at boot.                                                                |  |
| SSH ECDSA private Key                      |                                                                                  |         |                                                                                                   |  |
| SSH ECDSA public Key                       |                                                                                  |         |                                                                                                   |  |
| User Password                              | Entered by the user                                                              | Disk    | Zeroized by secure erase option<br>at boot or overwritten when<br>password is changed             |  |

Table 15 – Life cycle of CSPs

 $\ensuremath{\mathbb{C}}$  2020 F5 Networks / atsec information security.

The following sections describe how CSPs, in particular cryptographic keys, are managed during its life cycle.

#### 6.1. Key Generation

The HMAC and AES keys are generated as part of the TLS/SSH protocol when deriving session keys. For generation of RSA and EC keys, the module implements asymmetric key generation services compliant with [FIPS186-4] and using DRBG compliant with [SP800-90A]. A seed (i.e. the random value) used in asymmetric key generation is obtained from [SP800-90A] DRBG. The module does not implement symmetric key generation as an explicit service. The symmetric keys used are derived from shared secret by applying SP 800-135 as part of the TLS/SSH protocol. This scenario maps to the section 7.3 of the SP 800-133 symmetric keys generated using Key agreement scheme. In accordance with FIPS 140-2 IG D.12, the cryptographic module performs Cryptographic Key Generation (CKG) for the seed used in the generation of asymmetric keys as per SP800-133 (vendor affirmed).

#### 6.2. Key Establishment

The module provides RSA Key wrapping scheme which is used as part of TLS protocol and EC Diffie-Hellman key agreement scheme which is used as part of the TLS and SSH Protocol with the key derivation implemented by SP 800-135 TLS and SSH KDF. The module also includes a SP 800-38F key wrapping in the context of TLS and SSH protocol where a key may be within a packet or message that is encrypted and authenticated using approved authenticated encryption mode i.e. AES GCM or a combination method which includes approved symmetric encryption algorithm i.e. AES together with approved authentication method i.e. HMAC-SHA. These schemes provide the following security strength in FIPS mode:

- RSA key wrapping provides between 112 or 128-bits of encryption strength
- EC Diffie-Hellman key agreement provides 128 or 192-bits of encryption strength
- SP 800-38F key wrapping using approved authenticated encryption mode i.e. AES GCM provides between 128 and 256 bits of encryption strength
- SP 800-38F key wrapping using a combination of approved AES encryption and HMAC authentication method provides between 128 and 256 bits of encryption strength
- SP 800-38F key wrapping using approved authenticated encryption mode i.e. AES GCM provides 128 or 256 bits of encryption strength
- SP 800-38F key wrapping using a combination of approved AES encryption and HMAC authentication method provides 128 or 256 bits of encryption strength

## 6.3. Key Entry / Output

The module does not support manual key entry or intermediate key generation key output. During the TLS/SSH handshake, the keys that are entered or output to the module over the network, includes RSA/ECDSA public keys and the TLS pre-master secret encrypted with RSA key only when using the RSA key exchange with TLS. For TLS with ECDH key exchange, the TLS pre-master secret is established during key agreement and is not output from the module. Once the TLS/SSH session is established, any key or data transfer performed thereafter is protected by AES encryption.

## 6.4. Key / CSP Storage

As shown in the above table most of the keys are stored in the non-volatile memory in plaintext form and are destroyed when released by the appropriate zeroization calls or the system is rebooted. The keys stored in plaintext in non-volatile memory are static and will remain on the system across power cycle and are only accessible to the authenticated administrator.

## 6.5. Key / CSP Zeroization

The zeroization methods listed in the above Table, overwrites the memory occupied by keys with "zeros". Additionally, the user can enforce it by performing procedural zeroization. For keys present in volatile memory, calling reboot command will clear the RAM memory. For keys present in non-volatile memory, using secure erase option (can only be triggered by the administrator during reboot of the device) will perform single pass zero write erasing the disk contents.

#### 6.6. Random Number Generation

The module employs a Deterministic Random Bit Generator (DRBG) based on [SP800-90A] for the generation of random value used in asymmetric keys, and for providing an RNG service to calling applications. The Approved DRBG provided by the module is the CTR\_DRBG with AES-256. The DRBG is initialized during module initialization. The module performs the health tests for the SP800-90A DRBG as defined per section 11.3 of SP800-90A.

The module uses a Non-Deterministic Random Number Generator (NDRNG) to seed the DRBG. A Continuous Random Number Generation Test (CRNGT) is performed on the output of the NDRNG prior to seeding the DRBG and also on the DRBG output. The NDRNG provides at least 256- bits of entropy to the DRBG during initialization (seed) and reseeding (reseed). The NDRNG is within its physical boundary.

## 7. Self-Tests

#### 7.1. Power-Up Tests

The module performs power-up tests automatically during initialization when the device is booted without requiring any operator intervention; power-up tests ensure that the module's firmware is not corrupted and that the cryptographic algorithms work as expected.

During the execution of power-up tests, services are not available and input and output are inhibited. Upon successful completion of the power-up tests, the module is initialized and enters operational mode where it is accessible for use. If the module fails any of the power-up tests, it enters into the 'Halt Error' state and halts the system. In this state, the module will prohibit any data outputs and cryptographic operations and will not be available for use. The module will be marked unusable and the administrator will need to reinstall the module to continue.

## 7.1.1. Integrity Tests

The integrity of the module is verified by comparing the MD5 checksum value of the installed binaries calculated at run time with the stored value computed at build time. If the values do not match the system enters halt error state and the device will not be accessible. In order to recover from this state, the module needs to be reinstalled.

# 7.1.2. Cryptographic algorithm tests

The module performs self-tests on all FIPS-Approved cryptographic algorithms supported in the approved mode of operation and is done on the Data Plane as well as Control Plane side, using the Known Answer Test (KAT) and Pair-wise Consistency Test (PCT) as listed in the following table:

| Algorithm                                 | Test                                                                                                                                                                                       |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Control Plane Self-tests                  |                                                                                                                                                                                            |
| CTR_DRBG                                  | KAT using AES 256-bit with and without derivation function                                                                                                                                 |
| AES                                       | <ul> <li>KAT of AES encryption with GCM mode and 128-bit key</li> <li>KAT of AES encryption/decryption<sup>8</sup> with ECB mode and 128-bit key</li> </ul>                                |
| RSA                                       | <ul> <li>KAT of RSA PKCS#1 v1.5 signature generation with 2048 bit key and<br/>SHA-256</li> <li>KAT of RSA PKCS#1 v1.5 signature verification with 2048 bit key and<br/>SHA-256</li> </ul> |
| ECDSA                                     | • PCT of ECDSA signature generation and verification with P-256 curve                                                                                                                      |
| EC Diffie-Hellman                         | primitive "Z" computation KAT with P-256 curve                                                                                                                                             |
| HMAC-SHA-1, HMAC-SHA-256,<br>HMAC-SHA-384 | <ul><li>KAT of HMAC-SHA-1</li><li>KAT of HMAC-SHA-256</li><li>KAT of HMAC-SHA-384</li></ul>                                                                                                |
| SHA-1, SHA-256, SHA-384                   | Covered by respective HMAC KATs                                                                                                                                                            |
| Data Plane Self-Tests                     |                                                                                                                                                                                            |
| AES                                       | <ul> <li>KAT of AES encryption with GCM mode and 128-bit key</li> <li>KAT of AES decryption with CBC mode and 128-bit key</li> </ul>                                                       |
| RSA                                       | <ul> <li>KAT of RSA PKCS#1 v1.5 signature generation with 2048 bit key and<br/>SHA-256</li> <li>KAT of RSA PKCS#1 v1.5 signature verification with 2048 bit key and<br/>SHA-256</li> </ul> |
| ECDSA                                     | • PCT of ECDSA signature generation and verification with P-256 curve                                                                                                                      |
| EC Diffie-Hellman                         | primitive "Z" computation KAT with P-256 curve                                                                                                                                             |
| CTR_DRBG                                  | Covered by Control Plane Self-Tests. (Data Plane makes use of the same DRBG implementation provided by Control Plane)                                                                      |
| HMAC-SHA-1, HMAC-SHA-256,<br>HMAC-SHA-384 | <ul><li>KAT of HMAC-SHA-1</li><li>KAT of HMAC-SHA-256</li><li>KAT of HMAC-SHA-384</li></ul>                                                                                                |
| SHA-1, SHA-256, SHA-384                   | Covered by respective HMAC KATs                                                                                                                                                            |

<sup>&</sup>lt;sup>8</sup> Encryption and Decryption known answer tests are performed separately

<sup>© 2020</sup> F5 Networks / atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

#### Table 16 – Self-Tests

## 7.2. On-Demand self-tests

The module does not explicitly provide the Self-Test service to perform on demand self-tests. On demand self-tests can be invoked by powering-off and powering-on the system in order to initiate the same cryptographic algorithm tests executed during power-up. During the execution of the on-demand self-tests, crypto services are not available and no data output or input is possible.

#### 7.3. Conditional Tests

The module performs conditional tests on the cryptographic algorithms shown in the following table. If the module fails any of these tests, the device reboots and enters into the Halt Error state prohibiting any data output or cryptographic operations and the module will be inoperable. The module must be re-installed in order to clear the error condition.

| Algorithm            | Test                                                           |
|----------------------|----------------------------------------------------------------|
| DRBG                 | CRNGT on the output of the DRBG                                |
| NDRNG                | CRNGT on the output of the NDRNG prior to seeding the CTR_DRBG |
| RSA key generation   | PCT using SHA-256                                              |
| ECDSA key generation | PCT using SHA-256                                              |

Table 17 – Conditional Tests

## 8. Guidance

## 8.1. Delivery and Operation

The module is distributed as a part of a BIG-IP product which includes the hardware and an installed copy of 14.1.0.3 EHF. The hardware devices are shipped directly from the hardware manufacturer/authorized subcontractor via trusted carrier and tracked by that carrier. The hardware is shipped in a sealed box that includes a packing slip with a list of components inside, and with labels outside printed with the product nomenclature, sales order number, and product serial number. Upon receipt of the hardware, the customer is required to perform the following verifications:

- Ensure that the shipping label exactly identifies the correct customer name and address as well as the hardware model.
- Inspect the packaging for tampering or other issues.
- Ensure that the external labels match the expected delivery and the shipped product.
- Ensure that the components in the box match those on the documentation shipped with the product.
- The hardware model can be verified by the model number given on the shipping label as well as on the hardware device itself.

For FIPS compliance, the following steps defined in section 8.2 should be completed by the Crypto Officer prior to access to the device is allowed.

#### 8.2. Crypto Officer Guidance

#### 8.2.1. Installing Tamper Evident Labels

Before the device is installed in the production environment, tamper-evident labels must be installed in the location identified for each module in section 4.1. The following steps should be taken when installing or replacing the tamper evident labels on the module. The instructions are also included in *F5 Platforms: FIPS Kit Installation* provided with each module.

- Use the provided alcohol wipes to clean the chassis cover and components of dirt, grease, or oil before you apply the tamper evidence seals.
- After applying the seal, run your finger over the seal multiple times using extra high pressure.
- The seals completely cure within 24 hours.

It is the responsibility of the Crypto Officer to inspect the tamper evident labels for damage or any missing labels as specified in Section 4.

#### 8.2.2. Install Device

- Follow the instructions in the "*BIG-IP System: Initial Configuration*" guide for the initial setup and configuration of the device.
- Add the FIPS license when prompted during the GUI setup wizard. Guidance on Licensing the BIG-IP system can be found in <u>https://support.f5.com/csp/article/K7752</u>.

#### 8.2.3. Password Strength Requirement

The Crypto officer must modify the BIG-IP password policy to meet or exceed the requirements defined in Table 7 – Authentication of Roles. Instructions for this can be found in the "*BIG-IP System: User Account Administration*" guide. After assuming the role for the first time, the Crypto Officer shall replace the default password with one matching the password policy.

#### 8.2.4. Additional Guidance

The Crypto Officer should verify that the following specific configuration rules are followed in order to operate the module in the FIPS validated configuration:

- All command shells other than tmsh are not allowed. For example, bash and other userserviceable shells are excluded.
- Management of the module via the appliance's LCD display is not allowed.
- Usage of f5-rest-node and iAppLX and provisioning of iRulesLX is not allowed.
- Only the provisioning of AFM and LTM is included.
- Remote access to the Lights Out / Always On Management capabilities of the system are not allowed.
- Serial port console should be disabled after the initial power on and communications setup of the hardware.
- On the i11800-DS device, the Cavium Nitrox-V must be disabled using lspci | grep -i encryption | awk `{print ``device exclude `` \$1;}' > tmm\_init.tcl command since full support is not available:

## 8.2.5. Version Configuration

Once the device is installed, licensed and configured, the Crypto Officer should confirm that the system is installed and licensed correctly.

#### 8.2.5.1. Version Confirmation

The Crypto Officer should run the command "tmsh show sys version", then verify the version shown with the approved version from Table 1 - Tested Modules. Any firmware loaded into the module other than version 14.1.0.3 EHF is out of the scope of this validation and will mean that the module is not operating as a FIPS validated module.

#### 8.2.5.2. License Confirmation

The FIPS validated module activation requires installation of the license referred as 'FIPS license'. The Crypto Officer should run the command "tmsh show sys license", then verify that the list of license flags includes the "FIPS 140-2 Compliant Mode".

#### 8.3. User Guidance

- The module supports two modes of operation. Table 11 Crypto Services in FIPS mode of
  operation list the FIPS approved services and Table 12 Services in non-FIPS mode of operation
  lists the non-FIPS approved services. Using the services in Table 5 Non-Approved and NonCompliant Cryptographic Algorithms/Modes means that the module operates in non-FIPS
  Approved mode for the particular session of a particular service, where the non-FIPS approved
  algorithm or mode was selected.
- AES-GCM IV is constructed in accordance with SP800-38D in compliance with IG A.5 scenario

   The implementation of the nonce\_explicit management logic inside the module ensure that
  when the IV exhausts the maximum number of possible values for a given session key, the
  module triggers a new handshake request to establish a new key. In case the module's power
  is lost and then restored, the key used for the AES GCM encryption or decryption shall be redistributed. The AES GCM IV generation is follows [RFC5288] and shall only be used for the
  TLS protocol version 1.2 to be compliant with [FIPS140-2\_IG] IG A.5; thus, the module is
  compliant with [SP800-52].

# 9. Mitigation of Other Attacks

The module does not implement security mechanisms to mitigate other attacks.

| AES   | Advanced Encryption Standard                              |
|-------|-----------------------------------------------------------|
| СВС   | Cipher Block Chaining                                     |
| CFB   | Cipher Feedback                                           |
| CSP   | Critical Security Parameter                               |
| CTR   | Counter Mode                                              |
| CVL   | Component Validation List                                 |
| DES   | Data Encryption Standard                                  |
| DSA   | Digital Signature Algorithm                               |
| DRBG  | Deterministic Random Bit Generator                        |
| ECB   | Electronic Code Book                                      |
| ECC   | Elliptic Curve Cryptography                               |
| FIPS  | Federal Information Processing Standards Publication      |
| GCM   | Galois Counter Mode                                       |
| НМАС  | Hash Message Authentication Code                          |
| KAS   | Key Agreement Scheme                                      |
| КАТ   | Known Answer Test                                         |
| MAC   | Message Authentication Code                               |
| NIST  | National Institute of Science and Technology              |
| NDRNG | Non-Deterministic Random Number Generator                 |
| OFB   | Output Feedback                                           |
| RNG   | Random Number Generator                                   |
| RSA   | Rivest, Shamir, Adleman                                   |
| SHA   | Secure Hash Algorithm                                     |
| XTS   | XEX-based Tweaked-codebook mode with cipher text stealing |
|       |                                                           |

# Appendix A. Glossary and Abbreviations

# Appendix B. References

| FIPS140-2    | FIPS PUB 140-2 - Security Requirements For Cryptographic Modules<br>May 2001                                                                               |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf                                                                                              |
| FIPS140-2_IG | Implementation Guidance for FIPS PUB 140-2 and the Cryptographic Module Validation Program                                                                 |
|              | May 2019                                                                                                                                                   |
|              | http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf                                                                                    |
| FIPS180-4    | Secure Hash Standard (SHS)<br>March 2012                                                                                                                   |
|              | http://csrc.nist.gov/publications/fips/fips180-4/fips 180-4.pdf                                                                                            |
| FIPS186-4    | Digital Signature Standard (DSS)<br>July 2013                                                                                                              |
|              | http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf                                                                                                  |
| FIPS197      | Advanced Encryption Standard                                                                                                                               |
|              | November 2001<br>http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf                                                                               |
| FIPS198-1    | The Keyed Hash Message Authentication Code (HMAC)<br>July 2008                                                                                             |
|              | http://csrc.nist.gov/publications/fips/fips198 1/FIPS-198 1_final.pdf                                                                                      |
| PKCS#1       | Public Key Cryptography Standards (PKCS) #1: RSA Cryptography<br>Specifications Version 2.1<br>February 2003                                               |
|              | http://www.ietf.org/rfc/rfc3447.txt                                                                                                                        |
| SP800-38A    | NIST Special Publication 800-38A - Recommendation for Block Cipher Modes of<br>Operation Methods and Techniques<br>December 2001                           |
|              | http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf                                                                                           |
| SP800-38D    | NIST Special Publication 800-38D - Recommendation for Block Cipher Modes of<br>Operation: Galois/Counter Mode (GCM) and GMAC                               |
|              | November 2007                                                                                                                                              |
|              | http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf                                                                                          |
| SP800-56A    | NIST Special Publication 800-56A - Recommendation for Pair-Wise Key<br>Establishment Schemes Using Discrete Logarithm Cryptography (Revised)<br>March 2007 |
|              | http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf                                                                      |
| SP800-90A    | NIST Special Publication 800-90A - Recommendation for Random Number<br>Generation Using Deterministic Random Bit Generators<br>January 2012                |
|              | http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf                                                                                           |

#### SP800-131A NIST Special Publication 800-131A - Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms and Key Lengths November 2015 http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar1.pdf

© 2020 F5 Networks / atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice.