
Secure Kernel Code Integrity                      Security Policy Document 

© 2020 Microsoft. All Rights Reserved     Page 1 of 21 
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision). 
 

 

Microsoft Windows 

FIPS 140 Validation 
Microsoft Windows 10 (October 2018 Update) 

Microsoft Windows Server 2019 

Microsoft Azure Data Box Edge 

 
 
 

 

 

 

 

 

Non-Proprietary  

Security Policy Document 
 

  
Version Number 1.1 
Updated On April 13, 2020 



Secure Kernel Code Integrity                      Security Policy Document 

© 2020 Microsoft. All Rights Reserved     Page 2 of 21 
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision). 
 

The information contained in this document 
represents the current view of Microsoft Corporation 
on the issues discussed as of the date of publication. 
Because Microsoft must respond to changing market 
conditions, it should not be interpreted to be a 
commitment on the part of Microsoft, and Microsoft 
cannot guarantee the accuracy of any information 
presented after the date of publication. 

This document is for informational purposes only. 
MICROSOFT MAKES NO WARRANTIES, EXPRESS 
OR IMPLIED, AS TO THE INFORMATION IN THIS 
DOCUMENT. 

Complying with all applicable copyright laws is the 
responsibility of the user. This work is licensed under 
the Creative Commons Attribution-NoDerivs-
NonCommercial License (which allows redistribution 
of the work). To view a copy of this license, visit 
http://creativecommons.org/licenses/by-nd-nc/1.0/ or 
send a letter to Creative Commons, 559 Nathan 
Abbott Way, Stanford, California 94305, USA. 

Microsoft may have patents, patent applications, 
trademarks, copyrights, or other intellectual property 
rights covering subject matter in this document. 
Except as expressly provided in any written license 
agreement from Microsoft, the furnishing of this 
document does not give you any license to these 
patents, trademarks, copyrights, or other intellectual 
property. 

© 2020 Microsoft Corporation. All rights reserved. 

Microsoft, Windows, the Windows logo, Windows 
Server, and BitLocker are either registered 
trademarks or trademarks of Microsoft Corporation in 
the United States and/or other countries. 

The names of actual companies and products 
mentioned herein may be the trademarks of their 
respective owners. 

  

http://creativecommons.org/licenses/by-nd-nc/1.0/


Secure Kernel Code Integrity                      Security Policy Document 

© 2020 Microsoft. All Rights Reserved     Page 3 of 21 
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision). 
 

Version History 

Version Date Summary of changes 

1.0  September 17, 2019 Draft sent to NIST CMVP 

1.1 April 13, 2020 Updates in response to comments 

  



Secure Kernel Code Integrity                      Security Policy Document 

© 2020 Microsoft. All Rights Reserved     Page 4 of 21 
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision). 
 

TABLE OF CONTENTS 

SECURITY POLICY DOCUMENT .....................................................................................................1 

VERSION HISTORY ..............................................................................................................................3 

1 INTRODUCTION ...................................................................................................................6 

1.1 LIST OF CRYPTOGRAPHIC MODULE BINARY EXECUTABLES ..................................................................6 

1.2 VALIDATED PLATFORMS ............................................................................................................6 

2 CRYPTOGRAPHIC MODULE SPECIFICATION ...........................................................................8 

2.1 CRYPTOGRAPHIC BOUNDARY ......................................................................................................9 

2.2 FIPS 140-2 APPROVED ALGORITHMS ..........................................................................................9 

2.3 NON-APPROVED ALGORITHMS ...................................................................................................9 

2.4 FIPS 140-2 APPROVED ALGORITHMS FROM BOUNDED MODULES ......................................................9 

2.5 CRYPTOGRAPHIC BYPASS ......................................................................................................... 10 

2.6 HARDWARE COMPONENTS OF THE CRYPTOGRAPHIC MODULE .......................................................... 10 

3 CRYPTOGRAPHIC MODULE PORTS AND INTERFACES .......................................................... 10 

3.1 SKCI EXPORT FUNCTIONS ........................................................................................................ 10 

3.1.1 SKCIINITIALIZE ................................................................................................................................. 11 

3.1.2 SKCICREATECODECATALOG ............................................................................................................... 11 

3.1.3 SKCICREATESECUREIMAGE ................................................................................................................ 11 

3.1.4 SKCIVALIDATEIMAGEDATA ................................................................................................................ 11 

3.1.5 SKCIVALIDATEDYNAMICCODEPAGES ................................................................................................... 11 

3.1.6 SKCIFINALIZESECUREIMAGEHASH ....................................................................................................... 11 

3.1.7 SKCIFINISHIMAGEVALIDATION ........................................................................................................... 11 

3.1.8 SKCIFREEIMAGECONTEXT ................................................................................................................. 12 

3.1.9 SKCITRANSFERVERSIONRESOURCE ..................................................................................................... 12 

3.1.10 SKCIMATCHHOTPATCH .................................................................................................................... 12 

3.2 CONTROL INPUT INTERFACE ..................................................................................................... 12 

3.3 STATUS OUTPUT INTERFACE ..................................................................................................... 12 

3.4 DATA INPUT INTERFACE .......................................................................................................... 12 

3.5 DATA OUTPUT INTERFACE ....................................................................................................... 12 

4 ROLES, SERVICES AND AUTHENTICATION ........................................................................... 12 



Secure Kernel Code Integrity                      Security Policy Document 

© 2020 Microsoft. All Rights Reserved     Page 5 of 21 
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision). 
 

4.1 ROLES ................................................................................................................................. 12 

4.2 SERVICES ............................................................................................................................. 13 

4.3 AUTHENTICATION .................................................................................................................. 15 

5 FINITE STATE MODEL ......................................................................................................... 15 

5.1 SPECIFICATION ...................................................................................................................... 15 

6 OPERATIONAL ENVIRONMENT........................................................................................... 16 

6.1 SINGLE OPERATOR ................................................................................................................. 16 

6.2 CRYPTOGRAPHIC ISOLATION ..................................................................................................... 16 

6.3 INTEGRITY CHAIN OF TRUST ..................................................................................................... 17 

7 CRYPTOGRAPHIC KEY MANAGEMENT ................................................................................ 18 

8 SELF-TESTS ........................................................................................................................ 18 

9 DESIGN ASSURANCE .......................................................................................................... 18 

10 MITIGATION OF OTHER ATTACKS ....................................................................................... 19 

11 SECURITY LEVELS ............................................................................................................... 20 

12 ADDITIONAL DETAILS ........................................................................................................ 20 

13 APPENDIX A – HOW TO VERIFY WINDOWS VERSIONS AND DIGITAL SIGNATURES ............... 21 

13.1 HOW TO VERIFY WINDOWS VERSIONS ....................................................................................... 21 

13.2 HOW TO VERIFY WINDOWS DIGITAL SIGNATURES ......................................................................... 21 

 

  



Secure Kernel Code Integrity                      Security Policy Document 

© 2020 Microsoft. All Rights Reserved     Page 6 of 21 
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision). 
 

1 Introduction 
Secure Kernel Code Integrity (SKCI) is a code integrity mechanism that runs in the Virtual Secure Mode 

(VSM) of the Windows Hyper-V hypervisor.  SKCI is implemented in a Dynamic Link Library (DLL) file, 

SKCI.DLL. 

Code Integrity and Secure Kernel Code Integrity are closely related modules that are used, depending on 

configuration of Windows, to validate system and application binaries. 

Two Windows configuration options dictate whether Code Integrity or Secure Kernel Code Integrity are 

used to verify a binary image: 

 Virtual Secure Mode (VSM), also known as Core Isolation: Windows can use the Hypervisor to 

start an execution environment, called the Secure Kernel, that can enforce additional security 

rules. When VSM is configured, Secure Kernel Code Integrity verifies the integrity of critical user-

mode modules such as BCRYPTPRIMITIVES.DLL instead of the Code Integrity module.  

 Hypervisor Code Integrity (HVCI) , also known as Memory Integrity: This feature depends on 

VSM. When enabled, all drivers loaded into the Windows kernel are integrity verified by Secure 

Kernel Code Integrity.  

This Security Policy Document assumes that the following hardware prerequisites are available: 

 UEFI Secure Boot is available and enabled 

 Trusted Platform Module (TPM) 

 Hardware virtualization support (VT-x or AMD-V) 

Additionally, VSM must be configured for SKCI.DLL to be loaded and used. 

1.1 List of Cryptographic Module Binary Executables 
Secure Kernel Code Integrity cryptographic module contains the following binary: 

 skci.dll 

The Windows builds covered by this validation are: 

 Windows 10 version 1809 and Windows Server 2019 build 10.0.17763 

 Microsoft Azure Data Box Edge build 10.0.17763 

1.2 Validated Platforms 
The Windows editions covered by this validation are: 

 Microsoft Windows 10 Pro Edition (64-bit version) 

 Microsoft Windows 10 Enterprise Edition (64-bit version) 

 Microsoft Windows 10 Education Edition (64-bit version) 

 Microsoft Windows 10 S Edition (64-bit version) 



Secure Kernel Code Integrity                      Security Policy Document 

© 2020 Microsoft. All Rights Reserved     Page 7 of 21 
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision). 
 

 Windows Server Standard Core 

 Windows Server Datacenter Core 

 Microsoft Azure Data Box Edge 

SKCI was validated using the combination of computers and Windows operating system editions 

specified in the table below. 

All the computers for Windows 10 and Windows Server listed in the table below are all 64-bit Intel 

architecture and implement the AES-NI instruction set but not the SHA Extensions. The exceptions are: 

 Dell Inspiron 660s - Intel Core i3 without AES-NI and SHA Extensions 

 HP Slimline Desktop - Intel Pentium with AES-NI and SHA Extensions  

Table 1 Validated Platforms for Windows 10 and Windows Server version 1809 and Azure Data Box Edge 

Computer Windows 
10 Home 

Windows 
10 Pro 

Windows 
10 
Enterprise 

Windows 
10 
Education 

Windows 
Server 
2019 

Windows 
Server 
2019 
Datacenter 

Azure 
Data Box 
Edge 

Microsoft 
Surface Go – 
Intel Pentium 

 √     
 

Microsoft 
Surface Book 2 
– Intel Core i7 

 √ √    
 

Microsoft 
Surface Pro 
LTE – Intel 
Core i5 

 √ √    

 

Microsoft 
Surface Laptop 
– Intel Core i5 

 √ √ √   
 

Microsoft 
Surface Studio 
– Intel Core i7 

  √    
 

Microsoft 
Windows 
Server 2019 
Hyper-V1 

    √ √ 

 

Microsoft 
Windows 
Server 2016 
Hyper-V2 

    √  

 

                                                           
1 Hardware Platform: Dell Precision Tower 5810MT – Intel Xeon E5 
2 Hardware Platform: Dell PowerEdge R740 Server – Intel Xeon Gold 



Secure Kernel Code Integrity                      Security Policy Document 

© 2020 Microsoft. All Rights Reserved     Page 8 of 21 
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision). 
 

Dell Latitude 
12 Rugged 
Tablet – Intel 
Core i5 

 √     

 

Dell Latitude 
5290 – Intel 
Core i7 

 √     
 

Dell 
PowerEdge 
R740 – Intel 
Xeon Gold 

    √ √ 

 

Dell Inspiron 
660s [with x86 
Windows] – 
Intel Core i3 

      

 

HP Slimline 
Desktop – Intel 
Pentium 

 √     
 

HP Elite x2 
1013 G3 Tablet 
– Intel Core i7 

 √     
 

HP EliteBook 
x360 1030 G2 – 
Intel Core i7 

  √    
 

Samsung 
Galaxy Book 
10.6” – Intel 
Core m3 

 √     

 

Samsung 
Galaxy Book 
12” – Intel 
Core i5 

  √     

Microsoft 
Azure Data 
Box Edge – 
Intel Xeon 
Silver 

      √ 

2 Cryptographic Module Specification 
Secure Kernel Code Integrity is a multi-chip standalone module that operates in FIPS-approved mode 

during normal operation of the computer and Windows operating system.  

The following configurations and modes of operation will cause Secure Kernel Code Integrity to operate 

in a non-approved mode of operation: 



Secure Kernel Code Integrity                      Security Policy Document 

© 2020 Microsoft. All Rights Reserved     Page 9 of 21 
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision). 
 

 Boot Windows in Debug mode 

 Boot Windows with Driver Signing disabled 

 Windows enters the ACPI S4 power state 

2.1 Cryptographic Boundary 
The software binary that comprises the cryptographic boundary for Secure Kernel Code Integrity is 

SKCI.DLL. 

2.2 FIPS 140-2 Approved Algorithms 
SKCI implements the following FIPS 140-2 Approved algorithms:3  
 

Algorithm Windows 10 and Windows 
Server version 1809 

Azure Data Box Edge 

FIPS 186-4 RSA PKCS#1 (v1.5) digital 
signature verification with 1024, 
2048, and 3072 moduli; supporting 
SHA-1, SHA-256, SHA-384, and SHA-
512 

#C211 #C211 

FIPS 180-4 SHS SHA-1, SHA-256, 
SHA-384, and SHA-512 #C211 #C211 

 

2.3 Non-Approved Algorithms 
Secure Kernel Code Integrity only implements approved algorithms. 

2.4 FIPS 140-2 Approved Algorithms from Bounded Modules 
A bounded module is a FIPS 140 module which provides cryptographic functionality that is relied on by a 

downstream module. As described in the Integrity Chain of Trust section, Secure Kernel Code Integrity 

depends on the following modules and algorithms:  

The Windows OS Loader version 1809 (module certificate #3615) provides: 

 CAVP certificate #C 349 (Windows 10 and Windows Server) for FIPS 186-4 RSA PKCS#1 (v1.5) 

digital signature verification with 2048 moduli; supporting SHA-256 

 CAVP certificate #C 211 (Windows 10 and Windows Server) for FIPS 180-4 SHS SHA-256 

                                                           
3 This module may not use some of the capabilities described in each CAVP certificate. 



Secure Kernel Code Integrity                      Security Policy Document 

© 2020 Microsoft. All Rights Reserved     Page 10 of 21 
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision). 
 

Note that the validated platforms listed in section 1.2 include processors that support AES-NI. This 

module does not implement AES, but the bounded modules may implement AES and, therefore, use 

AES-NI.  

2.5 Cryptographic Bypass 
Cryptographic bypass is not supported by SKCI. 

2.6 Hardware Components of the Cryptographic Module 
The physical boundary of the module is the physical boundary of the computer that contains the 

module. The following diagram illustrates the hardware components used by the Secure Kernel Code 

Integrity module: 

 

 

3 Cryptographic Module Ports and Interfaces 

3.1 SKCI Export Functions 
The following list contains all the functions exported by SKCI that are imported by the Secure Kernel. 

Note that SKCI is not callable outside the Secure Kernel. These functions are also explained in the 

subsequent subsections.  

 SkciInitialize 

 SkciCreateCodeCatalog 

 SkciCreateSecureImage 



Secure Kernel Code Integrity                      Security Policy Document 

© 2020 Microsoft. All Rights Reserved     Page 11 of 21 
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision). 
 

 SkciValidateImageData 

 SkciValidateDynamicCodePages 

 SkciFinalizeSecureImageHash 

 SkciFinishImageValidation 

 SkciFreeImageContext 

 SkciTransferVersionResource 

 SkciMatchHotPatch 

3.1.1  SkciInitialize 
SkciInitialize is the function exported by SKCI for initializing the Secure Kernel version of Code Integrity. 

During this call, SKCI will get its configuration data from the Secure Kernel loader. 

See Self-Tests for information regarding cryptographic self-tests.  

If a self-test fails, SkciInitialize returns STATUS_INVALID_IMAGE_HASH.  

3.1.2 SkciCreateCodeCatalog 

This function is called to create a code catalog object. The specified address range corresponds to a 

secure allocation object. It returns a catalog object. The secure allocation must be freed by SKCI when 

the catalog object is deleted. 

3.1.3 SkciCreateSecureImage 

This function is called when a new secure image section is created. It creates a context for validating an 

image. The caller specifies the type of hash algorithm that should be used to validate the image. It 

returns a pointer to the validation context, which is a state block. 

3.1.4 SkciValidateImageData 

This function is called to validate image data. When called for a file-hashed file that is still in the loading 

state, it is expected to generate the contents of page hashes. When in this mode, it will return 

STATUS_SUCCESS upon success. When page hashes are no-longer being generated and instead, page 

hashes have been used to verify the supplied pages, STATUS_VALID_IMAGE_HASH will be returned upon 

success. 

3.1.5 SkciValidateDynamicCodePages 

This function is called to validate dynamic code pages that were not part of a signed image. 

3.1.6 SkciFinalizeSecureImageHash 

This function is called to finalize (complete) the hash of a secure image. It returns the file or page hash of 

the image. 

3.1.7 SkciFinishImageValidation 

This function is called when initial validation of the image is complete. It completes the image validation 

process. The function is responsible to verify that the contents of the image header and/or file hash are 

correct, and, if successful, should update the image state to enable subsequent validation using page 



Secure Kernel Code Integrity                      Security Policy Document 

© 2020 Microsoft. All Rights Reserved     Page 12 of 21 
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision). 
 

hashes. It is responsible for verifying that the data is verified by the page hashes for the resource section 

only. It returns information about the signing level; how the image is signed; the catalog ID used to 

validate the image; the algorithm with which a hash must be recalculated, if necessary; and the type of 

image the pages may be mapped into. 

3.1.8 SkciFreeImageContext 

This function is called when a secure image is unloaded and the context is to be freed. 

3.1.9 SkciTransferVersionResource 

This function is called to process the supplied version resource for an image, so that version data can be 

used during SkciFinishImageValidation. 

3.1.10 SkciMatchHotPatch 

This routine compares an image hash with the CI data embedded in a hot patch to determine whether 

the image matches the expected hash. 

3.2  Control Input Interface 
The Control Input Interface for SKCI consists of the export functions. Options for control operations are 

passed as input parameters to the CI export functions. 

3.3 Status Output Interface 
The Status Output Interface for SKCI consists of the exported functions listed in SKCI Export Functions. 

The status information is returned to the caller as the return value of each function (e.g. 

STATUS_SUCCESS, STATUS_UNSUCCESSFUL, STATUS_INVALID_IMAGE_HASH).  

3.4 Data Input Interface 
The Data Input Interface for SKCI consists of the exported functions listed in SKCI Export Functions. Data 

and options are passed to the interface as input parameters to the export functions. Data Input is kept 

separate from Control Input by passing Data Input in separate parameters from Control Input.  

3.5 Data Output Interface 
The Data Output Interface for SKCI also consists of the export functions listed in SKCI Export Functions 

with the exception of the initialization and status functions. Data is returned to the function’s caller via 

output parameters. 

4 Roles, Services and Authentication 

4.1 Roles 
Secure Kernel Code Integrity is a library used solely by the Windows Secure Kernel and does not interact 

with the user through any service. The module’s functions are fully automatic and not configurable. FIPS 

140 validations define formal “User” and “Cryptographic Officer” roles. Both roles can use any Secure 

Kernel Code Integrity service. 



Secure Kernel Code Integrity                      Security Policy Document 

© 2020 Microsoft. All Rights Reserved     Page 13 of 21 
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision). 
 

4.2 Services 
Secure Kernel Code Integrity’s services are:  
 

1. Verify the integrity of binary executable code – This service is called by Secure Windows 
Kernel to verify the integrity of digitally signed drivers and other critical binary components 
of the operating system.  

2. Show Status – The module does not provide an explicit status interface. Operational status 

is indicated by successfully initializing the module using SkciInitialize and success status 

messages using the binary integrity verification functions. 

3. Self-Tests - The module provides a power-up self-tests service that is automatically 

executed when the module is loaded into memory.  

  



Secure Kernel Code Integrity                      Security Policy Document 

© 2020 Microsoft. All Rights Reserved     Page 14 of 21 
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision). 
 

The following table maps the services to their corresponding algorithms, critical security parameters 

(CSPs), and how they are invoked. 

Service / Function Algorithms CSPs Invocation 

Verify the integrity 
of binary executable 
code 

FIPS 186-4 RSA PKCS#1 
(v1.5) verify with public key 
 
FIPS 180-4 SHS:  
SHA-1 hash  
SHA-256 hash 
SHA-384 hash  
SHA-512 hash 

RSA public 
key 

This service is fully automatic. 
This service is executed 
whenever a binary executable is 
loaded. 

Show Status None None This service is fully automatic. 
This service is executed upon 
completion of an integrity check 
function. 

Self-Tests FIPS 186-4 RSA PKCS#1 
(v1.5) verify with public key 
and known signature 
FIPS 180-4 SHS:  
SHA-1 KAT  
SHA-256 KAT 
SHA-512 KAT 

None This service is fully automatic.  

 

  



Secure Kernel Code Integrity                      Security Policy Document 

© 2020 Microsoft. All Rights Reserved     Page 15 of 21 
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision). 
 

The following table maps SKCI services and export functions. 

Service Export Functions 

Verify the integrity of binary executable 
code 

SkciCreateCodeCatalog 
SkciCreateSecureImage 
SkciValidateImageDataSkciValidateDynamicCodePages 
SkciFinalizeSecureImageHash 
SkciFinishImageValidation 
SkciFreeImageContext 
SkciTransferVersionResource 
SkciMatchHotPatch 

Show Status SkciInitialize 
All exported functions 

Self-Tests SkciInitialize 

4.3 Authentication 
The module does not provide authentication. Roles are implicitly assumed based on the services that are 

executed. 

5 Finite State Model 

5.1 Specification 
The following diagram shows the finite state model for Secure Kernel Code Integrity: 



Secure Kernel Code Integrity                      Security Policy Document 

© 2020 Microsoft. All Rights Reserved     Page 16 of 21 
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision). 
 

 

  

6 Operational Environment 
The operational environment for SKCI is the Windows 10 operating system running on a supported 

hardware platform.  

6.1 Single Operator 
Secure Kernel Code Integrity is invoked by the Windows Secure Kernel as a fully automatic service with 

no user interaction. 

6.2 Cryptographic Isolation 
In the Windows operating system, all secure kernel-mode modules, including SKCI.DLL, are loaded into 

the Windows Secure Kernel which executes as a single process. The Windows operating system 



Secure Kernel Code Integrity                      Security Policy Document 

© 2020 Microsoft. All Rights Reserved     Page 17 of 21 
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision). 
 

environment enforces process isolation from user-mode processes including memory and processor 

scheduling between the kernel and user-mode processes. 

6.3 Integrity Chain of Trust 
Windows uses several mechanisms to provide integrity verification depending on the stage in the OS 

boot sequence and also on the hardware and OS configuration. The following diagram describes the 

Integrity Chain of trust for each supported configuration for the following versions: 

 Windows 10 and Windows Server 2019 

 Microsoft Azure Data Box Edge 

 



Secure Kernel Code Integrity                      Security Policy Document 

© 2020 Microsoft. All Rights Reserved     Page 18 of 21 
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision). 
 

 

The integrity of the Secure Kernel Code Integrity module is checked by the Windows OS Loader. If VSM is 

enabled, then the Secure Kernel Code Integrity module is then invoked by the Code Integrity module to 

check the integrity of user mode binaries (including BCRYPTPRIMITIVES.DLL) as they are loaded. If HVCI 

is enabled, the Secure Kernel Code Integrity module is then invoked by the Code Integrity module to 

check the integrity of kernel mode binaries (including DUMPFVE.SYS) as they are loaded. 

Refer to the Introduction for information on the relationship between Code Integrity and Secure Kernel 

Code Integrity. 

7 Cryptographic Key Management 
Secure Kernel Code Integrity does not generate or store any persistent cryptographic keys; and uses RSA 

public keys for validating file integrity.  

8 Self-Tests 
The Secure Kernel Code Integrity module implements Known Answer Test (KAT) functions each time the 

module is loaded by the Windows kernel. 

 Secure Kernel Code Integrity performs the following power-on (startup) self-tests: 

 SHS (SHA-1) Known Answer Test 

 SHS (SHA-256) Known Answer Test 

 SHS (SHA-512) Known Answer Test 

 RSA verify using a verify test with a Known Signature of the PKCS#1 v1.5 format with both 1024-

bit keys with SHA1 digest and 2048-bit keys with SHA-256 digest. 

If the self-test fails, the module will not load and status will be returned. If the status is 

STATUS_INVALID_IMAGE_HASH, then a self-test failed. Otherwise, STATUS_SUCCESS is returned. 

9 Design Assurance 
The secure installation, generation, and startup procedures of this cryptographic module are part of the 

overall operating system secure installation, configuration, and startup procedures for Windows 10 

operating system.  

The Windows 10 operating system must be pre-installed on a computer by an OEM, installed by the 

end-user, by an organization’s IT administrator, or updated from a previous Windows 10 version 

downloaded from Windows Update. 

An inspection of authenticity of the physical medium can be made by following the guidance at this 

Microsoft web site: https://www.microsoft.com/en-us/howtotell/default.aspx  

https://www.microsoft.com/en-us/howtotell/default.aspx


Secure Kernel Code Integrity                      Security Policy Document 

© 2020 Microsoft. All Rights Reserved     Page 19 of 21 
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision). 
 

The installed version of Windows 10 OEs must be verified to match the version that was validated. See 

Appendix A for details on how to do this. 

For Windows Updates, the client only accepts binaries signed by Microsoft certificates. The Windows 

Update client only accepts content whose SHA-2 hash matches the SHA-2 hash specified in the 

metadata. All metadata communication is done over a Secure Sockets Layer (SSL) port. Using SSL 

ensures that the client is communicating with the real server and so prevents a spoof server from 

sending the client harmful requests. The version and digital signature of new cryptographic module 

releases must be verified to match the version that was validated. See Appendix A for details on how to 

do this. 

10 Mitigation of Other Attacks 
The following table lists the mitigations of other attacks for this cryptographic module: 

Algorithm Protected Against Mitigation 

SHA1 
  

Timing Analysis Attack Constant time implementation 

Cache Attack Memory access pattern is independent of any confidential 
data 

SHA2 
  

Timing Analysis Attack Constant time implementation 

Cache Attack Memory access pattern is independent of any confidential 
data 

 

  



Secure Kernel Code Integrity                      Security Policy Document 

© 2020 Microsoft. All Rights Reserved     Page 20 of 21 
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision). 
 

11 Security Levels 
The security level for each FIPS 140-2 security requirement is given in the following table. 

Security Requirement Security Level 

Cryptographic Module Specification 1 

Cryptographic Module Ports and Interfaces 1 

Roles, Services, and Authentication 1 

Finite State Model 1 

Physical Security NA 

Operational Environment 1 

Cryptographic Key Management 1 

EMI/EMC 1 

Self-Tests 1 

Design Assurance 2 

Mitigation of Other Attacks 1 

 

12 Additional Details 
For the latest information on Microsoft Windows, check out the Microsoft web site at: 

https://www.microsoft.com/en-us/windows   

For more information about FIPS 140 validations of Microsoft products, please see: 

https://docs.microsoft.com/en-us/windows/security/threat-protection/fips-140-validation  

https://www.microsoft.com/en-us/windows
https://docs.microsoft.com/en-us/windows/security/threat-protection/fips-140-validation


Secure Kernel Code Integrity                      Security Policy Document 

© 2020 Microsoft. All Rights Reserved     Page 21 of 21 
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision). 
 

13 Appendix A – How to Verify Windows Versions and Digital Signatures 

13.1 How to Verify Windows Versions 
The installed version of Windows 10 OEs must be verified to match the version that was validated using 

the following method: 

1. In the Search box type "cmd" and open the Command Prompt desktop app. 
2. The command window will open. 
3. At the prompt, enter "ver”. 
4. The version information will be displayed in a format like this: 

Microsoft Windows [Version 10.0.xxxxx] 

If the version number reported by the utility matches the expected output, then the installed version 
has been validated to be correct. 

13.2 How to Verify Windows Digital Signatures 
After performing a Windows Update that includes changes to a cryptographic module, the digital 

signature and file version of the binary executable file must be verified. This is done like so: 

1. Open a new window in Windows Explorer. 
2. Type “C:\Windows\” in the file path field at the top of the window. 
3. Type the cryptographic module binary executable file name (for example, “CNG.SYS”) in the 

search field at the top right of the window, then press the Enter key. 
4. The file will appear in the window. 
5. Right click on the file’s icon. 
6. Select Properties from the menu and the Properties window opens. 
7. Select the Details tab. 
8. Note the File version Property and its value, which has a number in this format: xx.x.xxxxx.xxxx. 
9. If the file version number matches one of the version numbers that appear at the start of this 

security policy document, then the version number has been verified. 
10. Select the Digital Signatures tab. 
11. In the Signature list, select the Microsoft Windows signer. 
12. Click the Details button. 
13. Under the Digital Signature Information, you should see: “This digital signature is OK.” If that 

condition is true, then the digital signature has been verified. 
 


