

GigaVUE-HC2 Visibility Appliance by Gigamon Inc. FIPS 140-2 Non-Proprietary Security Policy

Hardware Versions: GVS-HC201 and GVS-HC202 (Chassis) with SMT-HC0-X16

(GigaSMART), SMT-HC0-R (GigaSMART) and CTL-HC0-002 (Controller); FIPS Tamper Label SKU: ACC-HC0-FIPS

Firmware Version: 5.4.00.01

Multi-chip Standalone, Level 2 Validation 24 February 2020

1	Int	roduction	3
	Tab	ole 1 – GigaVUE-HC2 Module Configurations	3
		ole 2 – Security Level of Security Requirements	
1	.1 Figu	Hardware and Physical Cryptographic Boundaryure 1 - GVS-HC201 and GVS-HC202 (Front of Module Chassis)	5
		ole 3 – Ports and Interfaces	
1	.2	Mode of Operation	
1	.3	Zeroization	
2	Cry	yptographic Functionality	9
2	.1	Approved Algorithms	
	Tab	ole 4 – Approved Algorithms – Gigamon Linux-Based Cryptographic Library	9
	Tab	ble 4a – Vendor Affirmed Security Functions – Gigamon Linux-Based Cryptographic Library	14
		ole 5 – Approved Algorithms – Cavium Hardware Library	
_			
2	. 2	Allowed Algorithms	
		ole 7 – Allowed Cryptographic Functions ole 7a – Entropy Sources	
2	.3		
		Protocols	18
2	.4	No Security Claimed but allowed protocols	
2	.5	Disallowed Algorithms	19
2	.6	Critical Security Parameters	20
	Tab	ole 9 – Critical Security Parameters (CSPs)	20
3	Ro	les, Authentication and Services	26
3	.1	Roles and Authentication of Operators to Roles	26
3	.2	Authentication Methods	26
3	.3	Services	27
	Tab	ole 10 – Approved Services	27
3	.4	Non-Approved Services	28
		ole 11 – non-Approved Services	28
	lab	ole 12 – CSP Access Rights within Services	31
4		lf-tests	32
	Tab	ole 13 – Module Self-Tests	32
5	Phy	ysical Security Policy	34
	Tab	ole 14 – Physical Security Inspection Guidelines	34
5	.1	General Tamper Evident Label Placement and Application Instructions	34
6	Sec	curity Rules and Guidance	35
7	Rej	ferences and Definitions	35
		ble 15 – References	
	Tab	ole 16 – Acronyms and Definitions	36
8	Ap	pendix A – Tamper Seal Preparation and Placement	37

1 Introduction

The GigaVUE-HC2 visibility appliance provides intelligent traffic visibility in a modular, mid-sized form factor, to address complex network visibility requirements for both enterprise and service provider networks. With a broad spectrum of traffic management capabilities and a versatile, high-performance, multi-purpose design, GigaVUE-HC2 helps to future-proof IT.

There are two hardware models represented under this validation, which are specified by their respective unique hardware versions, stated below. Both hardware versions are validated with the same firmware version, share the same physical appearance, and only differ in terms of their power supplies. The firmware image applied to both hardware versions originates from the factory and the firmware status service identifies the module as version **5.4.00.01**.

The cryptographic module is defined as a multiple-chip standalone module with the following details:

Table 1 - GigaVUE-HC2 Module Configurations

Model	Hardware Versions	Firmware	Tested Configuration
1	GVS-HC201 (Chassis) SMT-HC0-X16 (GigaSMART) SMT-HC0-R (GigaSMART) CTL-HC0-002 (Controller)	5.4.00.01	Slot 1: GigaSMART PN: SMT-HC0-X16 Slot 2: Blank (Faceplate Affixed) Slot 3: Blank (Faceplate Affixed) Slot 4: Blank (Faceplate Affixed) Rear Slot: GigaSMART PN: SMT-HC0-R Internal: Controller PN: CTL-HC0-002 Power Supply: AC
2	GVS-HC202 (Chassis) SMT-HC0-X16 (GigaSMART) SMT-HC0-R (GigaSMART) CTL-HC0-002 (Controller)	5.4.00.01	Slot 1: GigaSMART PN: SMT-HC0-X16 Slot 2: Blank (Faceplate Affixed) Slot 3: Blank (Faceplate Affixed) Slot 4: Blank (Faceplate Affixed) Rear Slot: GigaSMART PN: SMT-HC0-R Internal: Controller PN: CTL-HC0-002 Power Supply: DC
All	FIPS Tamper Labels SKU: ACC-HC0-FIPS	N/A	Tamper-Evident Seals

^{*} Note: The Controller (PN: CTL-HC0-002) is inserted into the chassis by Gigamon and is not physically accessible by operators.

The modules are designed to meet FIPS 140-2 Level 2 overall:

Table 2 – Security Level of Security Requirements

Area	Description	Level
1	Module Specification	2
2	Ports and Interfaces	2
3	Roles and Services	3
4	Finite State Model	2
5	Physical Security	2
6	Operational Environment	N/A
7	Key Management	2
8	EMI/EMC	2
9	Self-test	2
10	Design Assurance	3
11	Mitigation of Other Attacks	N/A
	Overall	2

The modules have a non-modifiable operational environment as per the FIPS 140-2 definition. They include a firmware load service to support necessary updates. New firmware versions within the scope of this validation must be validated through the FIPS 140-2 CMVP. Any other firmware loaded into these modules is out of the scope of this validation and require a separate FIPS 140-2 validation.

The modules do not implement any mitigations of other attacks as defined by FIPS 140-2.

1.1 Hardware and Physical Cryptographic Boundary

The physical forms of the two models are depicted in the figures below. For both models, the cryptographic boundary is defined as the outer edge of the chassis. The modules do not rely on external devices for input and output.

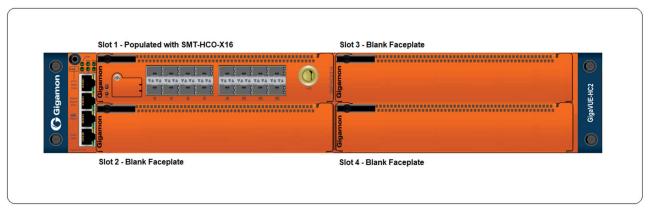


Figure 1 - GVS-HC201 and GVS-HC202 (Front of Module Chassis)

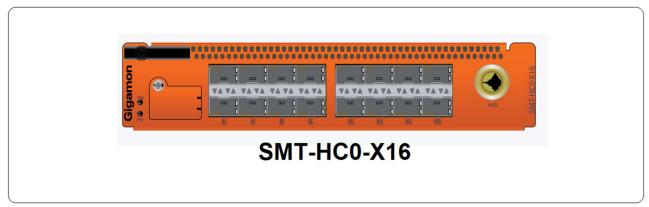


Figure 2 – SMT-HC0-X16 (Populated in Slot 1 of Module Chassis)

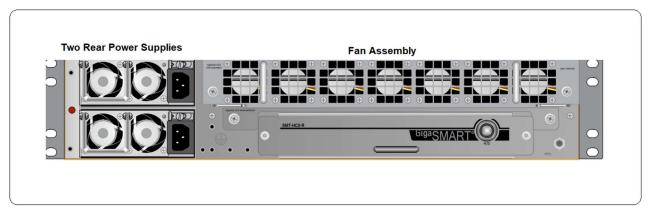


Figure 3 - GVS-HC201 and GVS-HC202 (Rear Chassis)

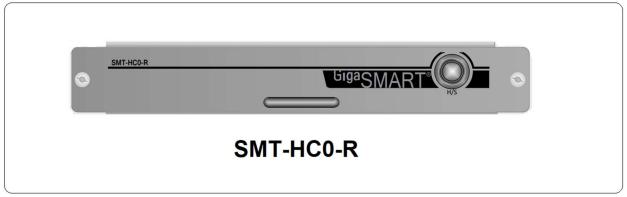


Figure 4 – SMT-HCO-R (Populated Rear Chassis)

Table 3 – Ports and Interfaces

Port	Device (# of ports)	Description	Logical Interface Type
Power Switch	GVS-HC201 and GVS-HC202	On/Off Switch	Control Input
LEDs	GVS-HC201 and GVS-HC202 Power, Rdy, M/S, PPS, Fan, Rear SMT-HC0-X16 Power, Rdy	Status LEDs	Status Output
RJ45	 GVS-HC201 and GVS-HC202 PTP IEEE1588 (Precision Time Protocol) Stack Management Port Management Port 	Chassis Management Ports	 Data Input Data Output Control Input Status Output
Serial	GVS-HC201 and GVS-HC202 Console	Chassis Console Port	Data InputData OutputControl InputStatus Output
SFP+/SFP	 SMT-HC0-X16 GigaSMART front module with 16 x 10Gb/1Gb (SFP+/SFP) ports 	LAN Communications	Data InputData Output

	GVS-HC201 and GVS-HC202	Power Supply	• Power
Power	The chassis is powered by two separate power modules,	GVS-HC201 (AC)	
	providing redundant, load sharing power.	GVS-HC202 (DC)	
	The GVS-HC201 uses an AC power supply configuration with the following specification:		
	100-240V AC, 14-7A, 47-63Hz		
	The GVS-HC202 uses a DC power supply configuration with the following specification:		
	36V DC to -72V DC, 35-16A		

1.2 Mode of Operation

The module implements both exclusive FIPS Approved and non-FIPS Approved modes, however an exception to this are some non-Approved security functions which are available in the exclusive FIPS Approved mode but will cause the module to operate in a non-Approved mode (by policy) if executed. These additional non-Approved security functions are listed accordingly in Table 9 of this security policy.

The Crypto-Officer shall prepare the module for the FIPS Approved mode of operation by performing the following tasks:

- 1. The module will ship using a firmware other than the intended FIPS validated firmware version **5.4.00.01**. The firmware shall first be upgraded to this version by fetching firmware image **5.4.00.01** from Gigamon using either http(s) or ftp(s) as documented in the User Guide.
- 2. The module firmware shall be loaded onto the module in the non-active partition. Once the load process is complete, it is imperative to ensure that the partition holding firmware version 5.4.00.01 is the one being initialized. Switching partitions to enable 5.4.00.01 may be accomplished by specifying "image boot next" from the CLI (or may be selected at power-up from the menu).
- 3. To ensure that no authentication data is carried over from any previous session, the operator shall issue the command "reset factory all" after the "image boot next" command is issued.
- 4. The operator may then login using the default administrator account using the default credentials "admin" with password "admin123A!". The operator will be presented with the option of executing the wizard.
- 5. Once the wizard executes, the operator **shall** change the default password.

- 6. Once the setup configuration is complete, the operator shall ensure that the module is running firmware version **5.4.00.01** by issuing the CLI command "show version". *Failure to execute the firmware version 5.4.00.01 will result in a non-FIPS validated module*.
- 7. To configure the module to use the FIPS Approved mode, the operator is required to perform "system security fips". Once this step has been performed, the operator is required to save the configuration using the command "write memory", after which time the operator is required to reboot the module, which will then enter the Approved mode. For the selection of the non-Approved mode, the operator would use the command "no system security fips". This will result in complete key and CSP zeroization of those keys and CSPs which were generated in the FIPS Approved mode and will also leave the operator in a limited state of operation; whereby only a limited set of non-cryptographic services are available. (Switching from the non-Approved mode to the Approved mode will also zeroize all keys and CSPs.) Tables 11 and 12 of this security policy provides details about the available FIPS Approved and non-FIPS Approved services respectively.
- 8. The Crypto-Officer (CO) shall follow the instructions in Section 5 to apply the tamper seals to the module. The module may be configured to operate in an Approved mode of operation as specified in the instructions below. The module will be operating in the Approved mode once all instructions are completed and the module has successfully passed all power-on self-tests.

1.3 Zeroization

The module has 6 specific methods of zeroizing keys/CSPs as follows:

- 1. System Power Cycle (All ephemeral keys are lost from RAM);
- 2. End of Protocol Session (All ephemeral keys are lost from RAM);
- 3. When operator deletes Key/CSP and saves configuration (persistent keys);
- 4. When FIPS Mode is enabled;
- 5. When FIPS Mode is disabled; and
- 6. When Factory Reset of module is selected.

There are no restrictions when plaintext secret and private cryptographic keys and CSPs can be zeroized, and all keys are capable of being zeroized. The zeroization methods for each key are shown in Table 12. The time it takes to zeroize a key is approximately one second. Keys cannot be recovered after zeroization, since the configuration is saved after the deletion, such that the persistent keys are removed from the disk and there is no means to recover them afterward. Ephemeral keys are lost when power to the module ceases. Using the factory reset service will wipe the entire configuration of the module, including all keys and CSPs. If invoked, an operator will have to begin the configuration process again and create new operator accounts.

Note: The Cryptographic Officer shall retain control of the module while zeroization is in process.

2 Cryptographic Functionality

The module implements FIPS Approved, non-FIPS Approved and Non-Approved but Allowed cryptographic functions listed in Tables 4, 5, 6, 7, 8 and 9 below.

Table 10 summarizes the high-level protocol algorithm support.

2.1 Approved Algorithms

References to standards are given in square bracket []; see the References table.

Table 4 – Approved Algorithms – Gigamon Linux-Based Cryptographic Library

CAVP Cert.	Algorithm	Mode	Description	Functions
5554	AES [197]	CBC [38A]	Key Sizes: 128, 192, 256	Encrypt, Decrypt
		ECB [38A]	Key Sizes: 128, 192, 256	Encrypt, Decrypt
		OFB [38A]	Key Sizes: 128, 192, 256	Encrypt, Decrypt
		CFB1 [38A]	Key Sizes: 128, 192, 256	Encrypt, Decrypt
		CFB8 [38A]	Key Sizes: 128, 192, 256	Encrypt, Decrypt
		CFB128 [38A]	Key Sizes: 128, 192, 256	Encrypt, Decrypt
		CTR [38A]	Key Sizes: 128, 192, 256	Encrypt, Decrypt
		CMAC [38B]	Key Sizes: 128, 192, 256	Generate, Verify
		CCM [38C]	Key Sizes: 128, 192, 256	Encrypt, Decrypt
3702	HMAC [198]	SHA-1	KS < BS KS = BS KS > BS MAC: 10 12 16 20	Message Authentication
		SHA-224	KS < BS KS = BS KS > BS MAC: 14 16 20 24 28	
		SHA-256	KS < BS KS = BS KS > BS MAC: 16 24 32	
		SHA-384	KS < BS KS = BS KS > BS MAC: 24 32 40 48	
		SHA-512	KS < BS KS = BS KS > BS MAC: 32 40 48 56 64	
4457	SHS [180]	SHA-1, SHA-224 512 (All Byte Or	SHA-256, SHA-384, SHA-iented)	Message Digest Generation

2795	Triple-DES [67] ¹	TCBC [38A]	Key Size: 192	Encrypt, Decrypt
		TCFB1 [38A]	Key Size: 192	Encrypt, Decrypt
		TCFB8 [38A]	Key Size: 192	Encrypt, Decrypt
		TCFB64 [38A]	Key Size: 192	Encrypt, Decrypt
		TOFB [38A]	Key Size: 192	Encrypt, Decrypt
		TECB [38A]	Key Size: 192	Encrypt, Decrypt
		CMAC [38B]	Key Size: 192	Verification Using 3-Key
1991	CVL	[56A]	ECC CDH Primitive (Section 5.7.1.2) Component:	Key Agreement
			Curves tested: P-224 P-256 P-384 P-521 K-233 K-283 K-409 K-571 B-233 B-283 B-409 B-571	
			KAS ECC:	
			Domain Parameter Generation, Domain Parameter Validation, Full Public Key Validation, Key Pair Generation	
			EC: Curve: P-256, SHA: SHA-256	
			ED: Curve: P-384, SHA: SHA-384	
			EE: Curve: P-521, SHA: SHA-512	
			KAS FFC:	
			Domain Parameter Generation, Domain Parameter Validation, Full Public Key Validation, Key Pair Generation	
			FC: SHA-256	

¹ As per the SP 800-67rev1 Transition specified in the CMVP Implementation Guidance, please be advised that this module shall not be used to perform more than 2^20 encryptions with the same Triple-DES key when generated as part of a recognized IETF protocol. If the key is not generated as part of a recognized IETF protocol, then the limit of 2^16 encryptions shall apply.

2123	CVL	[800-135]	SSH	SSH Key Derivation Component
2209	DRBG [90A]	Hash	SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512	Random Number Generation Symmetric Key Generation
		НМАС	SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512	
		CTR	AES-128, AES-192 and AES-256	
1428	DSA [186-4]	PQG Generation	L= 2048, 3072 N= 224, 256 SHA = 224, 256, 384 and 512 (Note1: N= 224 is only approved for L= 2048) (Note2: SHA-224 is only approved for L=2048 N=224.)	Digital Signature Operations
		PQG Verification	L= 1024, 2048, 3072 N= 160, 224, 256 SHA = 1,224, 256, 384 and 512 (Note1: SHA-1 is only approved for L= 1024) (Note2: SHA-224 is only approved for L= 1024 and L=2048) (Note3: N=160 is only approved for L=1024, N=224 is only approved for L=2048, N=256 is only approved for L=2048 and 3072)	
		Key Pair	L= 2048, 3072 N= 224, 256	

		Signature Generation	L= 2048, 3072 N= 224, 256 SHA = 224, 256, 384 and 512	
		Signature Verification	L= 1024, 2048, 3072 SHA=1,224, 256, 384, 512 N= 160, 224 and 256	
1497	ECDSA [186- 4] ²	Key Pair	Curves: B-233, B-283, B-409, B-571, K-233, K-283, K-409, K-571, P-224, P-256, P-384, P-521	Elliptic Curve Digital Signature Operations (The Module supports only NIST defined curves for use with ECDSA
		Public Key Validation	Curves: B-233, B-283, B-409, B-571, K-233, K-283, K-409, K-571, P-224, P-256, P-384, P-521	and ECDH.)
		Signature Generation	Curve/SHA pairs tested: P = 224, 256, 384 and 521 /w SHA-224, 256, 384 and 512.	
			K = 233, 283, 409 and 571 /w SHA-224, 256, 384 and 512.	
			B = 233, 283, 409 and 571 /w SHA-224, 256, 384 and 512.	
		Signature Verification	Curve/SHA pairs tested:	
		vermeation	P = 224, 256, 384 and 521 /w SHA-1, 224, 256, 384 and 512.	
			K = 233, 283, 409 and 571 /w SHA-1, 224, 256, 384 and 512.	
			B = 233, 283, 409 and 571 /w SHA-1, 224, 256, 384 and 512.	

² ECDSA, B-163, K-163 and P-192 are non-Approved because the security strength they provide is less than the required 112 bits. SHA-1 is not to be used for signature generation.

200:		1	1	
2984	RSA [186-2]	Signature Verification 9.31	Modulus lengths: 1024, 1536, 2048, 3072, 4096 SHAs: SHA-1, SHA-256, SHA-384, SHA-512	RSA Digital Signature Operations
		Signature Verification PKCS1.5	Modulus lengths: 1024, 1536, 2048, 3072, 4096 SHAs: SHA-1, SHA-224, SHA-256, SHA-384, SHA- 512	
		Signature Verification PSS	Modulus lengths: 1024, 1536, 2048, 3072, 4096 SHAs: SHA-1, SHA-224, SHA-256, SHA-384, SHA- 512	
2984	RSA [186-4]	Signature Generation 9.31	Mod 2048 SHA: SHA-256, SHA-384, SHA-512 Mod 3072 SHA: SHA-256, SHA- 384, SHA-512	
		Signature Generation PKCS1.5	Mod 2048 SHA: SHA-224, SHA-256, SHA-384, SHA- 512 Mod 3072 SHA: SHA- 224, SHA-256, SHA-384, SHA-512	
		Signature Generation PSS	Mod 2048: SHA-224: Salt Length: 0 SHA-256: Salt Length: 0 SHA-384: Salt Length: 0 SHA-512: Salt Length: 0	
			Mod 3072: SHA-224: Salt Length: 0 SHA-256: Salt Length: 0 SHA-384: Salt Length: 0 SHA-512: Salt Length: 0	
		Signature Verification 9.31	Mod 1024 SHA: SHA-1, SHA-256, SHA-384, SHA- 512 Mod 2048 SHA: SHA-1, SHA-256, SHA-384, SHA- 512 Mod 3072 SHA: SHA-1, SHA-256, SHA-384, SHA- 512	

1	ı			i
		Signature	Mod 1024 SHA: SHA-1,	
		Verification	SHA-224, SHA-256, SHA-	
		PKCS1.5	384, SHA-512	
			Mod 2048 SHA: SHA-1,	
			SHA-224, SHA-256, SHA-	
			384, SHA-512	
			Mod 3072 SHA: SHA-1,	
			SHA-224, SHA-256, SHA-	
			384, SHA-512	
		Signature	Mod 1024:	
		Verification	SHA-1: Salt Length: 0 (bits)	
		PSS	SHA-224: Salt Length: 0	
			(bits)	
			SHA-256: Salt Length: 0	
			(bits)	
			SHA-384: Salt Length: 0	
			(bits)	
			SHA-512: Salt Length: 0	
			(bits)	
			Mod 2048:	
			SHA-1: Salt Length: 0 (bits)	
			SHA-224: Salt Length: 0	
			(bits)	
			SHA-256: Salt Length: 0	
			(bits)	
			SHA-384: Salt Length: 0	
			(bits)	
			SHA-512: Salt Length: 0	
			(bits)	
			Mod 3072:	
			SHA-1: Salt Length: 0 (bits)	
			SHA-224: Salt Length: 0	
			(bits)	
			SHA-256: Salt Length: 0	
			(bits)	
			SHA-384: Salt Length: 0	
			(bits)	
			SHA-512: Salt Length: 0	
			(bits)	
			(10.00)	

Table 4a – Vendor Affirmed Security Functions – Gigamon Linux-Based Cryptographic Library

CAVP Cert.	Algorithm	Mode	Description	Functions
N/A	CKG	NIST SP 800-133	Key generation using unmodified DRBG output	Symmetric & Asymmetric Key Generation (RSA key generation non-Approved)

Table 5 – Approved Algorithms – Cavium Hardware Library

CAVP Cert.	Algorithm	Mode	Description	Functions
296	DRBG [90A]	Counter	AES-256	Random Bit Generation
2346	AES [197] ³	CBC, ECB	128, 192, 256	Encrypt/Decrypt
	LINAA C [4 00]	SHA-1	HMAC-SHA-1 Key Size = Block Size	Message Authentication,
1455	HMAC [198]	SHA-224	HMAC-SHA-224 Key Size = Block Size	KDF Primitive
		SHA-256	HMAC-SHA-256 Key Size = Block Size	
		SHA-384	HMAC-SHA-384 Key Size = Block Size	
		SHA-512	HMAC-SHA-512 Key Size = Block Size	
2023	SHS [180]	SHA-1, SHA- SHA-512	224, SHA-256, SHA-384 and	Message Digest Generation
1209	RSA [186-4]	Signature Generation PKCS1.5 Signature Verification PKCS1.5	Mod 2048 SHA: SHA-1, SHA-224, SHA-256, SHA-384, SHA-512 Mod 3072 SHA: SHA-1, SHA-224, SHA-256, SHA-384, SHA-512 Mod 1024 SHA: SHA-1, SHA-224, SHA-256, SHA-384, SHA-512 Mod 2048 SHA: SHA-1, SHA-224, SHA-256, SHA-384, SHA-512 Mod 3072 SHA: SHA-1, SHA-224, SHA-256, SHA-384, SHA-512	RSA Digital Signature Operations

³ <u>Note</u>: Not all modes/key lengths specified in the CAVP certificate are used by the module.

Table 6 – Approved Algorithms – Cavium OpenSSL Library

CAVP				
Cert.	Algorithm	Mode	Description ECC CDH:	Functions ECC CDH Primitive Component
1983	CVL	[800-56A]	Primitive Curves: B-233, B-283, B- 409, B-571, K-233, K- 283, K-409, K-571, P- 224, P-256, P-384, P- 521	
1984	CVL	[800-135]	TLS: Supports TLS 1.0/1.1 Supports TLS 1.2: SHA Functions: SHA-256	TLS Key Derivation Component
1493	ECDSA ⁴ [186- 4]	Key Pair	Curves: B-233, B-283, B-409, B-571, K-233, K-283, K-409, K-571, P-224, P-256, P-384, P-521	Elliptic Curve Digital Signature Operations
		Public Key Validation	Curves: B-233, B-283, B-409, B-571, K-233, K-283, K-409, K-571, P-224, P-256, P-384, P-521	
		Signature Generation	Curve/SHA pairs tested: P = 224, 256, 384 and 521 /w SHA-224, 256, 384 and	
			512. K = 233, 283, 409 and 571 /w SHA-224, 256, 384 and 512.	
			B = 233, 283, 409 and 571 /w SHA-224, 256, 384 and 512.	

⁴ ECDSA, B-163, K-163 and P-192 are non-Approved because the security strength they provide is less than the required 112 bits. SHA-1 is not to be used for signature generation.

Signature Verification		
	P = 224, 256, 384 and 521 /w SHA-1, 224, 256, 384 and 512.	
	K = 233, 283, 409 and 571 /w SHA-1, 224, 256, 384 and 512.	
	B = 233, 283, 409 and 571 /w SHA-1, 224, 256, 384 and 512.	

2.2 Allowed Algorithms

Table 7 – Allowed Cryptographic Functions

Algorithm	Caveat	Use	Library	CAVP Cert. #
Elliptic Curve Diffie- Hellman [IG] D.8	Provides between 112 and 256 bits of encryption strength.	key agreement; key establishment	Gigamon Linux Crypto Library	Cert. #1991 Cert. #2123
Elliptic Curve Diffie- Hellman [IG] D.8	Provides between 112 and 256 bits of encryption strength.	key agreement; key establishment	Cavium Crypto Library	Cert. #1983 Cert. #1984

Table 7a – Entropy Sources

Algorithm	Use
NDRNG1	Underlying OS based NDRNG (Allowed in the Approved mode) provides at least 256 bits of entropy per second
NDRNG2	Internal Hardware Cavium based NDRNG (Allowed in the Approved mode) provides full entropy per call (if x bits are requested then the x bits have x bits of entropy)

Table 7b – other non-Approved algorithms

Algorithm	Use	CAVP Cert. #
AES-GCM	Only used in non-Approved mode	
128,192,256	for encryption/decryption of data	
AES-XTS	Only used in non-Approved mode	
128,256	for encryption/decryption of data	
	for storage applications only	

The algorithms in Table 7b are not to be use in the Approved mode by policy. These two algorithms are not disabled when the module is in the Approved mode.

2.3 Protocols

Table 8 – Protocols Allowed and Disallowed in FIPS Mode

Protocol	Key Exchange	Auth	Ciphers	Integrity
SSH	EC Diffie-Hellman: P-224 P-256 P-384 P-521 (Allowed in the Approved mode) SSH KDF: CMVP Cert. #2123	ECDSA	AES-128-CBC AES-256-CBC Triple-DES-CBC AES-128-CTR AES-256-CTR AES-192-CTR	HMAC-SHA-1 HMAC-SHA-256 HMAC-SHA-512
TLS HTTPS, FTPS, SMTP/S POP3/S	EC Diffie-Hellman: P-224 P-256 P-384 P-521 (Allowed in the Approved mode) TLS KDF: CMVP Cert. #1984	ECDSA RSA	Triple-DES AES 128 AES 256	SHA-1 SHA-256 SHA-384
SCP	EC Diffie-Hellman: P-224 P-256 P-384 P-521 (Allowed in the Approved mode)	ECDSA RSA	Triple-DES AES 128 AES 256	SHA-1 SHA-256 SHA-384
SFTP	EC Diffie-Hellman: P-224 P-256 P-384 P-521 (Allowed in the Approved mode)	ECDSA RSA	Triple-DES AES 128 AES 256	SHA-1 SHA-256 SHA-384
TACACS+	Use of this TACACS+ protocol will cause the module to operate in a <i>non-Approved mode</i> , due to its use of MD5.	HMAC- MD5	N/A	N/A
SNMP	Use of this SNMP protocol will cause the module to operate in a <i>non-Approved mode</i> , due to its use of MD5 and DES.	MD5 SHA-1 DES AES	N/A	N/A
LDAP	Use of this SNMP protocol will cause the module to operate in a <i>non-Approved mode</i> , due to its use of MD5.	HMAC- MD5	N/A	N/A
RADIUS	Use of this RADIUS protocol will cause the module to operate in a <i>non-Approved mode</i> , due to its use of MD5.	MD5	N/A	N/A

No part of these protocols, other than the KDF, have been tested by the CAVP and CMVP. The SSH algorithms allow independent selection of key exchange, authentication, cipher and integrity. In reference to the Protocols in Table 8 above: each column of options for a given protocol is independent and may be used in any viable combination.

2.4 No Security Claimed but allowed protocols

The module supports the following non-Approved but allowed protocols with no security claimed:

ARP, CDP, DHCP, DHCPv6, FTP, GRE (disabled in FIPS Mode), GTP (disabled in FIPS Mode), HTTP, IGMP, ICMP, ISL, IPv4, IPv6, LLDP, MPLS (disabled in FIPS Mode), NTP, PDP, SNMP, TCP, Telnet, TFTP and UDP

2.5 **Disallowed Algorithms**

These algorithms are non-Approved algorithms that are disabled when the module is operated in an Approved mode of operation. They are all available when the module is not configured to operate in the Approved mode.

- DES;
- IDEA;
- RC2;
- RC4;
- MD5;
- CAMELLIA128;
- CAMELLIA256;
- PSK;
- SEED;
- KRB5; and
- RSA (KeyGen).

2.6 **Critical Security Parameters**

All CSPs and public keys used by the module are described in this section. The access type for each is specified as: **R=Read, W=Write or D=Delete**.

Table 9 – Critical Security Parameters (CSPs)

Keys / CSPs	Storage	Origin	Method	Input	Output	Zeroization (RAM)	Zeroization (Disk)	Access
AES Key	RAM (Active) Disk (Persistent)	Internally Generated	Plaintext	API Call	None	 Reboot Session End User Deletes Key Disable/Enable FIPS Mode Factory Reset 	 User Deletes Key/Saves Config Disable/Enable FIPS Mode Factory Reset 	CO: RWD U: RWD
Triple-DES Key	RAM (Active) Disk (Persistent)	Internally Generated	Plaintext	API Call	None	 Reboot Session End User Deletes Key Disable/Enable FIPS Mode Factory Reset 	 User Deletes Key/Saves Config Disable/Enable FIPS Mode Factory Reset 	CO: RWD U: RWD
RSA Public Key	RAM (Active) Disk (Persistent)	Non- compliant	Plaintext	API Call	None	 Reboot Session End User Deletes Key Disable/Enable FIPS Mode Factory Reset 	 User Deletes Key/Saves Config Disable/Enable FIPS Mode Factory Reset 	CO: RWD U: RWD
RSA Private Key	RAM (Active) Disk (Persistent)	Non- compliant	Plaintext	API Call	None	 Reboot Session End User Deletes Key Disable/Enable FIPS Mode Factory Reset 	 User Deletes Key/Saves Config Disable/Enable FIPS Mode Factory Reset 	CO: RWD U: RWD

DSA Public Key	RAM (Active) Disk (Persistent)	Internally Generated	Plaintext	API Call	None	 Reboot Session End User Deletes Key Disable/Enable FIPS Mode Factory Reset 	 User Deletes Key/Saves Config Disable/Enable FIP Mode Factory Reset 	CO: RWD U: RWD
DSA Private Key	RAM (Active) Disk (Persistent)	Internally Generated	Plaintext	API Call	None	 Reboot Session End User Deletes Key Disable/Enable FIPS Mode Factory Reset 	 User Deletes Key/Saves Config Disable/Enable FIP Mode Factory Reset 	CO: RWD U: RWD
HMAC Key	RAM (Active) Disk (Persistent)	Internally Generated	Plaintext	API Call	None	 Reboot Session End User Deletes Key Disable/Enable FIPS Mode Factory Reset 	 User Deletes Key/Saves Config Disable/Enable FIP Mode Factory Reset 	CO: RWD U: RWD
NDRNG1 entropy	RAM (Active) Disk (Persistent)	Internally Generated	Plaintext	API Call	None	 Reboot Session End User Deletes Key Disable/Enable FIPS Mode Factory Reset 	 User Deletes Key/Saves Config Disable/Enable FIP Mode Factory Reset 	CO: RWD U: RWD
NDRNG2 entropy	RAM (Active) Disk (Persistent)	Internally Generated	Plaintext	API Call	None	 Reboot Session End User Deletes Key Disable/Enable FIPS Mode Factory Reset 	 User Deletes Key/Saves Config Disable/Enable FIP Mode Factory Reset 	CO: RWD U: RWD
ECDSA Private Key	RAM (Active) Disk (Persistent)	Internally Generated	Plaintext	None	None -	 Reboot Session End User Deletes Key Disable/Enable FIPS Mode Factory Reset 	 User Deletes Key/Saves Config Disable/Enable FIP Mode Factory Reset 	CO: RWD U: RWD

ECDSA Public Key	RAM (Active) Disk (Persistent)	Internally Generated	Plaintext	None	None	 Reboot Session End User Deletes Key Disable/Enable FIPS Mode Factory Reset 	 User Deletes Key/Saves Co Disable/Enab Mode Factory Reset 	le FIPS	CO: RWD U: RWD
EC Diffie-Hellman Public Components	RAM (Active) Disk (Persistent)	Internally Generated using FIPS 186-4 methods, Established	Plaintext	None	None -	 Reboot Session End User Deletes Key Disable/Enable FIPS Mode Factory Reset 	 User Deletes Key/Saves Co Disable/Enab Mode Factory Reset 	le FIPS	CO: RWD U: RWD
EC Diffie-Hellman Private Components	RAM (Active) Disk (Persistent)	Internally Generated using FIPS 186-4 methods	Plaintext	None	None	 Reboot Session End User Deletes Key Disable/Enable FIPS Mode Factory Reset 	 User Deletes Key/Saves Co Disable/Enab Mode Factory Reset 	le FIPS	CO: RWD U: RWD
HMAC DRBG Entropy	RAM (Active) Disk (Persistent)	Internally Generated	Plaintext	None	None	 Reboot Session End User Deletes Key Disable/Enable FIPS Mode Factory Reset 	 User Deletes Key/Saves Co Disable/Enab Mode Factory Reset 	le FIPS	CO: RWD U: RWD
HMAC DRBG V Value (Seed Length)	. RAM (Active) Disk (Persistent)	Internally Generated	Plaintext	None	None	 Reboot Session End User Deletes Key Disable/Enable FIPS Mode Factory Reset 	 User Deletes Key/Saves Co Disable/Enab Mode Factory Reset 	le FIPS	CO: RWD U: RWD
HMAC DRBG Key	RAM (Active) Disk (Persistent)	Internally Generated	Plaintext	None	None	RebootSession EndUser Deletes KeyDisable/Enable FIPS	User Deletes Key/Saves CoDisable/Enab Mode	-	CO: RWD U: RWD

HMAC DRBG init_seed	RAM (Active) Disk (Persistent)	Internally Generated	Plaintext	None	None	Mode Factory Reset Reboot Session End User Deletes Key Disable/Enable FIPS Mode Factory Reset	•	User Deletes Key/Saves Config Disable/Enable FIPS Mode Factory Reset	CO: RWD U: RWD
Hash DRBG Entropy	RAM (Active) Disk (Persistent)	Internally Generated	Plaintext	None	None	 Reboot Session End User Deletes Key Disable/Enable FIPS Mode Factory Reset 	•	User Deletes Key/Saves Config Disable/Enable FIPS Mode Factory Reset	CO: RWD U: RWD
Hash DRBG V Value (Seed Length)	RAM (Active) Disk (Persistent)	Internally Generated	Plaintext	None	None	 Reboot Session End User Deletes Key Disable/Enable FIPS Mode Factory Reset 	•	User Deletes Key/Saves Config Disable/Enable FIPS Mode Factory Reset	CO: RWD U:
Hash DRBG C Value	RAM (Active) Disk (Persistent)	Internally Generated	Plaintext	None	None	 Reboot Session End User Deletes Key Disable/Enable FIPS Mode Factory Reset 	•	User Deletes Key/Saves Config Disable/Enable FIPS Mode Factory Reset	CO: RWD U: RWD
Hash DRBG init_seed	RAM (Active) Disk (Persistent)	Internally Generated	Plaintext	None	None	 Reboot Session End User Deletes Key Disable/Enable FIPS Mode Factory Reset 	•	User Deletes Key/Saves Config Disable/Enable FIPS Mode Factory Reset	CO: RWD U: RWD
CTR DRBG Entropy	RAM (Active) Disk (Persistent)	Internally Generated	Plaintext	None	None	 Reboot Session End User Deletes Key Disable/Enable FIPS Mode 	•	User Deletes Key/Saves Config Disable/Enable FIPS Mode Factory Reset	CO: RWD U: RWD

						•	Factory Reset			
CTR DRBG V Value (Seed Length)	RAM (Active) Disk (Persistent)	Internally Generated	Plaintext	None	None	•	Reboot Session End User Deletes Key Disable/Enable FIPS Mode Factory Reset	•	User Deletes Key/Saves Config Disable/Enable FIPS Mode Factory Reset	CO: RWD U:
CTR DRBG Key Value	RAM (Active) Disk (Persistent)	Internally Generated	Plaintext	None	None	•	Reboot Session End User Deletes Key Disable/Enable FIPS Mode Factory Reset	•	User Deletes Key/Saves Config Disable/Enable FIPS Mode Factory Reset	CO: RWD U: RWD
CTR DRBG init_seed	RAM (Active) Disk (Persistent)	Internally Generated	Plaintext	None	None	•	Reboot Session End User Deletes Key Disable/Enable FIPS Mode Factory Reset	•	User Deletes Key/Saves Config Disable/Enable FIPS Mode Factory Reset	CO: RWD U: RWD
TLS premaster secret	RAM (Active)	Internally Generated/ Established	Plaintext	None	None	•	Destroyed after master secret is calculated.		N/A	CO: RWD U: RWD
TLS master secret	RAM	Internally Generated/ Established	Plaintext	None	None	•	Destroyed when SSL session keys are derived or stored in session cache which will be power cycle cleansed later.		N/A	CO: RWD U: RWD
TLS session keys	RAM	Internally Generated/ Established	Plaintext	None	None	•	Destroyed when SSL session is closed.		N/A	CO: RWD U: RWD
Crypto-Officer Password	Disk (Persistent)	Entered	Plaintext	API Call	None	•	N/A	•	Destroyed upon deletion of account or factory reset.	CO: RWD U: RWD

User Password	Disk (Persistent)	Entered	Plaintext	API Call	None	• N/A	 Destroyed upon deletion of account or factory reset. 	CO: RWD U: RWD
------------------	-------------------	---------	-----------	----------	------	-------	--	----------------

3 Roles, Authentication and Services

3.1 Roles and Authentication of Operators to Roles

The module supports two roles: Cryptographic Officer (CO) and User. The module supports concurrent operators but does not support a maintenance role or bypass capability. The module enforces the separation of roles using identity-based operator authentication.

The Crypto-Officer can create additional operators which have either "regular" or "monitor" capabilities, and thus the roles in the module are Admin (Crypto-Officer), Regular User (User) and Monitor User (User).

3.2 Authentication Methods

The module implements two methods of authentication. The first method involves Identity-Based authentication, in the form of username and password. The Crypto-Officer can change the password lengths of the module, however the lower threshold enforced by the module is 8-characters. The password length can go as high as 30 characters. Additionally, the module enforces the following password requirements:

- At least 1 numeric character;
- At least 1 upper case character;
- At least 1 lower case character; and
- At least 1 special character.

The chance of a random password attempt succeeding is 94⁸ which is consistent with the number (94) of keyboard selections on a standard US keyboard, as applied to an 8-character password, which is the minimum allowed. The odds of randomly guessing the password supersedes the FIPS 140-2 requirement of 1 in 1,000,000.

The module also ensures that the probability is less than 1 in 100,000 that a random attempt will succeed, or a false acceptance will occur within one minute. The module locks out the login process for 15 seconds after 5 incorrect login attempts. Assuming the attacker could make one attempt per second, they would reach the lockout threshold after 5 seconds, resulting in a 15 second delay. This process could only be repeated 3 times within 60 seconds; therefore, the attacker could realistically only make 15 attempts within one minute. This equates to 15 in 948 attempts.

For the SSH session, the module uses ECDSA public/private key authentication. The odds of guessing the value of the private key would well exceed the threshold of 1 in 1,000,000 or 1 in 100,000 within a minute, since guessing the value of the key would be equivalent to guessing a value of 2^{112} . The user creates an ECDSA public/private key pair using one of the Approved elliptic curves. The smallest size of the elliptic curves is p-224 which has a security strength of 112 bits. Assuming 512 attempts per second could be made (an overestimate by a wide margin) the probability of guessing the key pair in a 1 minute period is 1 in $60*512/2^112$ which is smaller than 1 in $64*512/2^112 = 1$ in $2^(112-9-6) = 1$ in 2^97 which easily exceeds the requirement of 1 in 100,000.

The implemented ECDSA uses the NIST recommended curves (specified in Table 4); which effectively provide encryption strengths in the range of 112, 128, 192 and >256 respectively. Please see [NIST 186-4, Table D-1] for more information.

3.3 **Services**

All services implemented by the module are listed in the tables below. Table 15 lists the access to CSPs by each service.

Table 10 – Approved Services

Service	Description	CO (admin)	User (rogular)	User (monitor)
Status	Show status	X	(regular) X	(monitor)
Module Self-Tests	Self-Tests performed	X	^	^
Wiodale Sell Tests	automatically	,		
Zeroize	Destroy all CSPs	Χ		
SSH Connect	Initiate SSH connection for SSH monitoring and control (CLI)	Х	Х	
Console Access	Console monitoring and control (CLI)	Х	Х	
Factory Reset	Reset module to factory defaults	Χ		
Backup/Restore Configuration File	Write Mem/Config Switch-to	Х	Х	
Firmware Upgrade	Install Firmware Image	Х		
Logging controls	Show Log/Log File Rotation	Х	Х	X (View Only)
Configure	Configure module parameters	Х		
Account Controls	Creation and Administration of users and roles	X		
Traffic Operation	Creating traffic through data path	Χ		
Run On-Demand Self-Tests	Execute self-test on demand (power cycle)	Х		
Configure Security	Configure Security Related Parameters Including Key Chain Password	Х		
Group Controls	(RBAC/AAA Control)	Χ		
Establish Keys	Key establishment methodology (EC Diffie-Hellman)	Х		
Encrypt/Decrypt	Encrypt/Decrypt operation (invoked as part of protocols)	X		
Generate Keys	Key generation service DRBG	Χ		
Signature Generation	Signature generation service (RSA)	Х		
Signature Verification	Verification signature service (DSA, RSA, ECDSA)	Х		
TLS Connect	Connecting to the module (CC)	Х		

	over TLS			
SCP Connect	Copy image and log configuration files through secure channel	Х	X	
SFTP Connect	Copy image and log configuration files through secure channel	X	Х	

3.4 Non-Approved Services

The following services are available in the non-Approved mode of operation. These services are generally the same as the Approved services, with the exception that they may utilize cryptography which the module disallows in the Approved mode.

Table 11 – non-Approved Services

Service	Description	CO (admin)	User (regular)	User (monitor)
Status	Show status	Х	Х	X
Zeroize	Destroy all CSPs	Х		
SSH Connect	Initiate SSH connection for SSH monitoring and control (CLI)	Х	Х	
Console Access	Console monitoring and control (CLI)	Х	Х	
Factory Reset	Reset module to factory defaults	Х		
Backup/Restore Configuration File	Write Mem/Config Switch-to	Х	Х	
Firmware Upgrade	Install Firmware Image	Х		
Logging controls	Show Log/Log File Rotation	Х	Х	X (View Only)
Configure	Configure modules parameters	Х		
Account Controls	Creation and Administration of users and roles	Х		
Traffic Operation	Creating traffic through data path	Х		
Run On-Demand Self-Tests	Execute self-test on demand (power cycle)	Х		
Configure Security	Configure Security Related Parameters Including Key Chain Password	Х		
Group Controls	(RBAC/AAA Control)	Х		
Establish Keys	Key establishment methodology (EC Diffie-Hellman , RSA)	Х		
Encrypt/Decrypt	Encrypt/Decrypt operation	Х		
Generate Keys	Key generation service DRBG	Х		
Signature Generation	Signature generation service (RSA)	Х		
Signature Verification	Verification signature service (DSA,	Χ		

	RSA, ECDSA)			
Traffic Operation	Creating traffic through data path	Х		
Run On-Demand Self-Tests	Execute self-test on demand (power cycle)	Х		
Configure Security	Configure Security Related Parameters Including Key Chain Password	Х		
TACACS+	Authentication Server to all roles	Х	Х	Х
SNMP	Configuring SNMP to all roles	Х	Х	
LDAP	Authentication Server to all roles	Х	Х	Х
RADIUS	Authentication Server to all roles	Х	Х	Х

												CSPs											
Service	AES Key	Triple-DES Key	RSA Public Key	RSA Private Key	DSA Public Key	DSA Private Key	нмас кеу	NDRNG1 entropy	NDRNG2 entropy	ECDSA Private Key	ECDSA Public Key	EC Diffie-Hellman Public Components	EC Diffie-Hellman Private Components	DRBG Entropy	DRBG V Value (HMAC & CTR DRBG)	DRBG Key Value (HMAC & CTR DRBG)	DRBG init_seed (All DRBG types)	DRBG C Value (Hash DRBG)	TLS premaster secret	TLS master secret	TLS session keys	CO-Password	User-Password
Traffic Operation			RW G	GR	-		GR	GZR	GZR	GR	GW R	GR	GR	GR		GR	GR		GR	GR	GR		
Configure Security	RE W G		GW R	GW	-		-																
Configure					-																	GW	GW
Status			R		-						R				1					1			
Zeroize	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z		
SSH Connect					-					RWG	RWG											RE	RE
Console Access					-		-1															RE	RE
Factory Reset	WZ	WZ	WZ	WZ	WZ	WZ	WZ	WZ	WZ	WZ	WZ	WZ	WZ	WZ	WZ	WZ	WZ	WZ	WZ	WZ	WZ	WZG	WZ
Backup/Restore Configuration File	R W		RW	RW	-					RW	RW											RW	RW

Firmware Upgrade					-		R																
Logging controls					-		R				R												
Group Controls																							
Establish Keys	R W	-	RW	RW						RW													
Encrypt/Decrypt	R W	R W					-															-	
Generate Keys	G	G	G	G	1		G	G	G	G	G	G	G	G	G	G	G	G	G	G	G		
Signature Generation	-	-		w						w			w										
Signature Verification	-	1	R		-						R	R											
Module Self-Tests (Automatic POST)																							
Run On-Demand Self-Tests																							
TLS Connect		-					-			RW	RW	RW	RW						RW	RW	RW		
SCP Connect			RW	RW	RW	RW																	
SFTP Connect			RW	RW	RW	RW																	
Account Controls		-																				RW	RW

Table 12 – CSP Access Rights within Services

Legend

G = Generate: The module generates the CSP

R = Read: The CSP is read from the module (e.g. the CSP is output)

E = Execute: The module executes using the CSP

W = Write: The CSP is updated or written to the module

Z = Zeroize: The module zeroizes the CSP.

4 Self-tests

Each time the module is powered up, it tests that the cryptographic algorithms still operate correctly, and that sensitive data have not been damaged. Power-up self—tests are available on demand by power cycling the module. When power is applied to the module, it requires no operator intervention to execute the power-up self-tests. The firmware integrity test located on the CC card side, verifies <u>all</u> firmware components used within the module. This includes all files on both the CC card and the GS cards. If no error message is displayed on the console after the FIPS Approved mode has been invoked and after self-tests have successfully executed, the status of the module is considered to be operating in the FIPS Approved mode.

On power up or reset, the module performs the self-tests described below. All self-tests must be completed successfully prior to any other use of cryptography by the module. If one of the tests fails, the module enters the Critical Failure error state. An operator may attempt to clear a self-test error by power-cycling the module, however a persistent error in the firmware integrity test or known answer tests will likely require the operator to contact Gigamon for service.

The module performs the following power-up self-tests:

Table 13 – Module Self-Tests

Algorithm	Card	CAVP Library	CAVP Cert. #	Test Type
DRBG Health	GS	Cavium Hardware	Cert. #296	Power-Up – Critical
CTR_DRBG	GS	Cavium Hardware	Cert. #296	Power-Up KAT
SP 800-90A DRBG	GS	Cavium Hardware	Cert. #296	Conditional - CRNGT
AES	GS	Cavium Hardware	Cert. #2346	Power-Up KAT (E/D)
SHA-1	GS	Cavium Hardware	Cert. #2023	Power-Up KAT
SHA-224	GS	Cavium Hardware	Cert. #2023	Power-Up KAT
SHA-256	GS	Cavium Hardware	Cert. #2023	Power-Up KAT
SHA-384	GS	Cavium Hardware	Cert. #2023	Power-Up KAT
SHA-512	GS	Cavium Hardware	Cert. #2023	Power-Up KAT
HMAC-SHA-1	GS	Cavium Hardware	Cert. #1455	Power-Up KAT
HMAC-SHA-224	GS	Cavium Hardware	Cert. #1455	Power-Up KAT
HMAC-SHA-256	GS	Cavium Hardware	Cert. #1455	Power-Up KAT
HMAC-SHA-384	GS	Cavium Hardware	Cert. #1455	Power-Up KAT
HMAC-SHA-512	GS	Cavium Hardware	Cert. #1455	Power-Up KAT
ECDSA	GS	Cavium SSL Library	Cert. #1493	Power-Up KAT
ECDSA	GS	Cavium SSL Library	Cert. #1493	Conditional - PCT
EC Diffie-Hellman	GS	Cavium SSL Library	Cert. #1983	Power-Up KAT
SHA-256	СС	Gigamon Linux Lib	Cert. #4457	Power-Up - FW Integrity
SHA-1	СС	Gigamon Linux Lib	Cert. #4457	Power-Up KAT
SHA-224	СС	Gigamon Linux Lib	Cert. #4457	Power-Up KAT
SHA-256	СС	Gigamon Linux Lib	Cert. #4457	Power-Up KAT
SHA-384	СС	Gigamon Linux Lib	Cert. #4457	Power-Up KAT
SHA-512	СС	Gigamon Linux Lib	Cert. #4457	Power-Up KAT
HMAC-SHA-1	СС	Gigamon Linux Lib	Cert. #3702	Power-Up KAT
HMAC-SHA-224	СС	Gigamon Linux Lib	Cert. #3702	Power-Up KAT
HMAC-SHA-256	СС	Gigamon Linux Lib	Cert. #3702	Power-Up KAT
HMAC-SHA-384	СС	Gigamon Linux Lib	Cert. #3702	Power-Up KAT
HMAC-SHA-512	CC	Gigamon Linux Lib	Cert. #3702	Power-Up KAT

AES	CC	Gigamon Linux Lib	Cert. #5554	Power-Up KAT (E/D)
AES-CCM	CC	Gigamon Linux Lib	Cert. #5554	Power-Up KAT
AES-CMAC	CC	Gigamon Linux Lib	Cert. #5554	Power-Up KAT
Triple-DES	CC	Gigamon Linux Lib	Cert. #2795	Power-Up KAT (E/D)
RSA	CC	Gigamon Linux Lib	Cert. #2984	Power-Up KAT
RSA	CC	Gigamon Linux Lib	Cert. #2984	Conditional - PCT
DSA	CC	Gigamon Linux Lib	Cert. #1428	Power-Up KAT
DSA	CC	Gigamon Linux Lib	Cert. #1428	Conditional - PCT
CTR_DRBG	CC	Gigamon Linux Lib	Cert. #2209	Power-Up KAT
HASH_DRBG	CC	Gigamon Linux Lib	Cert. #2209	Power-Up KAT
HMAC_DRBG	CC	Gigamon Linux Lib	Cert. #2209	Power-Up KAT
SP 800-90A DRBG and	CC	Gigamon Linux Lib	Cert. #2209	Conditional - CRNGT
Entropy Check				
DRBG Health	CC	Gigamon Linux Lib	Cert. #2209	Power-Up – Critical
ECDSA	CC	Gigamon Linux Lib	Cert. #1497	Power-Up KAT
ECDSA	CC	Gigamon Linux Lib	Cert. #1497	Conditional - PCT
EC Diffie-Hellman	CC	Gigamon Linux Lib	Cert. #1991	Power-Up KAT
Firmware Load Test	CC	Gigamon Linux Lib	Cert. #3702	Conditional Load Test
(HMAC-SHA-256)				

^{*}GS=Implemented on GigaSMART Card | CC=Implemented on Controller Card.

5 Physical Security Policy

The module's physical embodiment is that of a multi-chip standalone device that meets Level 2 Physical Security requirements. The module is completely enclosed in a hard metal enclosure and maintains opacity. The tamper-evident seals shall be installed for the module to operate in a FIPS mode of operation. Tamper-evident seals allow the operator to tell if the enclosure has been breached. These seals are not factory-installed and must be applied by the Cryptographic Officer. Extra seals are provided with the original kit to replace any damaged seals. Additional kits can be ordered directly from Gigamon using SKU: ACC-HCO-FIPS. Inquiries for procurement of additional tamper seals should be sent to sales@gigamon.com.

The Cryptographic Officer is responsible for securing and having control at all times of any unused seals and the direct control and observation of any changes to the module such as reconfigurations where the tamper-evident seals or security appliances are removed or installed to ensure the security of the module is maintained during such changes and the module is returned to a FIPS Approved state.

Table 14 – Physical Security Inspection Guidelines

Physical Security Mechanism	Recommended Frequency of Inspection/Test	Inspection/Test Guidance Details
Tamper seals, opaque metal enclosure.	Periodic inspection schedule to be determined by Crypto-Officer.	Seals should be free of any tamper evidence.

If the Cryptographic Officer observes tamper evidence, it shall be assumed that the device has been compromised. The Cryptographic Officer shall retain control of the module and perform Zeroization of the module's CSPs by following the steps in Section 1.3 of the Security Policy and then follow the steps in Section 1.2 to place the module back into a FIPS-Approved mode of operation.

5.1 General Tamper Evident Label Placement and Application Instructions

For instructions regarding the placement of the tamper seals and the requisite preparation requirements, please see Appendix A of this document.

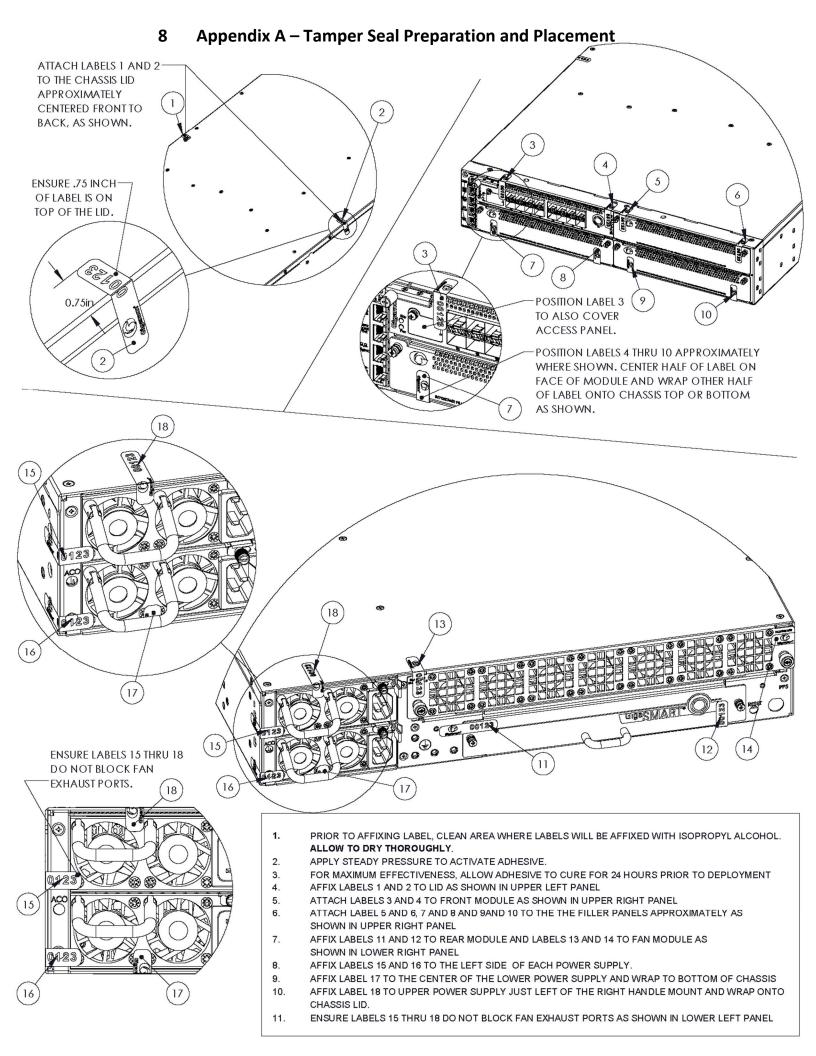
6 Security Rules and Guidance

The module design corresponds to the security rules below. The term *must* in this context specifically refers to a requirement for correct usage of the module in the Approved mode; all other statements indicate a security rule implemented by the module.

- 1. The module clears previous authentications on power cycle.
- 2. When the module has not been placed in a valid role, the operator does not have access to any cryptographic services.
- 3. Power up self-tests do not require any operator action.
- 4. Data output is inhibited during key generation, self-tests, zeroization, and error states.
- 5. Status information does not contain CSPs or sensitive data that if misused could lead to a compromise of the module.
- 6. There are no restrictions on which keys or CSPs are zeroized by the zeroization service.
- 7. The module does not support a maintenance interface or role.
- 8. The module does not support manual key entry.
- 9. The module does not output intermediate key values.
- 10. The cryptographic officer must retain control of the module while zeroization is in process.
- 11. Per SP800-67 rev1, the User is responsible for ensuring the module's limit to 2^{20} encryptions with the same Triple-DES key.
- 12. Gigamon uses a bonded courier for the shipment of the hardware module to the customer. Their trusted couriers include Fedex, Expeditors and MainFreight. The latest firmware can be downloaded from the Gigamon website.
- 13. Using AES-XTS will put the module into the non-Approved mode
- 14. Using AES_GCM will put the module into the non-Approved mode

7 References and Definitions

The following standards are referred to in this Security Policy.


Table 15 - References

Abbreviation	Full Specification Name
[FIPS140-2]	Security Requirements for Cryptographic Modules, May 25, 2001
[IG]	Implementation Guidance for FIPS PUB 140-2 and the Cryptographic Module Validation Program
[135]	National Institute of Standards and Technology, Recommendation for Existing Application-Specific Key Derivation Functions, Special Publication 800-135rev1, December 2011.
[186]	National Institute of Standards and Technology, Digital Signature Standard (DSS), Federal Information Processing Standards Publication 186-4, July, 2013.
[197]	National Institute of Standards and Technology, Advanced Encryption Standard (AES), Federal Information Processing Standards Publication 197, November 26, 2001
[38A]	National Institute of Standards and Technology, Recommendation for Block Cipher Modes of Operation, Methods and Techniques, Special Publication 800-38A, December 2001

[38D]	National Institute of Standards and Technology, Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC, Special Publication 800-38D, November 2007
[198]	National Institute of Standards and Technology, The Keyed-Hash Message Authentication Code (HMAC), Federal Information Processing Standards Publication 198- 1, July, 2008
[180]	National Institute of Standards and Technology, Secure Hash Standard, Federal Information Processing Standards Publication 180-4, August, 2015
[67]	National Institute of Standards and Technology, Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher, Special Publication 800-67, May 2004
[90A]	National Institute of Standards and Technology, Recommendation for Random Number Generation Using Deterministic Random Bit Generators, Special Publication 800-90A, June 2015.

Table 16 – Acronyms and Definitions

Acronym	Definition
AES	Advanced Encryption Standard
DSA	Digital Signature Algorithm
ECDH	Elliptic Curve Diffie-Hellman
ECDSA	Elliptic Curve Digital Signature Algorithm
E/D	Encrypt/Decrypt
FIPS	Federal Information Processing Standard
HMAC	Keyed-Hash Message Authentication Code
MD5	Message Digest 5
RE	Routing Engine
RSA	Public-key encryption technology developed by RSA Data Security, Inc.
SHA	Secure Hash Algorithms
SSH	Secure Shell
Triple-DES	Triple - Data Encryption Standard

