
Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 1 of 48

FIPS 140-2 Security Policy
SafeZone FIPS Cryptographic Module

Rambus Global Inc., Finnish branch
Sokerilinnantie 11 C

FI-02600 Espoo
Finland

Phone: +358 50 3560966

Rambus Inc.
1050 Enterprise Way

Sunnyvale
CA 94089

United States

2020-03-21

Revision A

Software Version 1.2.0

Document Number: FIPS-2020-0113

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 2 of 48

TABLE OF CONTENTS

1 INTRODUCTION ... 4

1.1 PURPOSE ... 6
1.2 SECURITY LEVEL .. 6
1.3 GLOSSARY ... 6

2 PORTS AND INTERFACES ... 8

3 ROLES, SERVICES, AND AUTHENTICATION .. 9

3.1 ROLES AND SERVICES ... 9
3.1.1 User Role ... 9
3.1.2 Crypto-officer Role .. 10

3.2 AUTHENTICATION MECHANISMS AND STRENGTH .. 11

4 SECURE OPERATION AND SECURITY RULES .. 12

4.1 SECURITY RULES ... 12
4.2 PHYSICAL SECURITY RULES .. 13
4.3 SECURE OPERATION INITIALIZATION RULES ... 13

5 DEFINITION OF SRDIS AND MODES OF ACCESS ... 14

5.1 FIPS APPROVED AND ALLOWED ALGORITHMS .. 14
5.2 NON-FIPS MODE OF OPERATION ... 18
5.3 LIST OF SERVICES ... 21
6 CRYPTOGRAPHIC KEYS, CSPS, AND SRDIS ... 26
6.1 ACCESS CONTROL POLICY ... 32
6.2 USER GUIDE ... 38

6.2.1 NIST SP 800-108: Key Derivation Functions .. 38
6.2.2 NIST SP 800-56C Rev1: Key-Derivation Methods in Key-Establishment Schemes 38
6.2.3 HMAC-based Extract-and-Expand Key Derivation Function (HKDF) for TLS v1.3 40
6.2.4 NIST SP 800-132: Password-Based Key Derivation Function .. 40
6.2.5 NIST SP 800-38D: Galois/Counter Mode ... 40
6.2.6 NIST SP 800-38E: XTS Mode .. 41
6.2.7 NIST SP 800-67 Rev 2: Triple-DES Encryption .. 42
6.2.8 NIST SP 800-90A Rev1: Deterministic Random Bit Generator .. 42
6.2.9 NIST SP 800-133: Key Generation ... 43
6.2.10 NIST SP 800-107 Rev 1: Truncated HMAC .. 43
6.2.11 Support of Industry Protocols .. 43
6.2.12 Processor Algorithmic Acceleration ... 44

6.3 PORTING MAINTAINING VALIDATION ... 44

7 SELF TESTS ... 46

7.1 POWER-UP SELF-TESTS .. 46
7.2 CONDITIONAL SELF TESTS .. 47

8 MITIGATION OF OTHER ATTACKS .. 48

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 3 of 48

Modification History

2020-03-21 Updated operational environment according to validation comments.

Added new vendor affirmed environments.
Updated company info to Rambus Inc. and rebranded from Inside Secure
FIPS Cryptographic Module to SafeZone FIPS Cryptographic Module.

2020-01-08 Updated according to validation comments.
2019-05-10 Updated for CMVP validation.
2018-11-28 Updated list of services available.
2018-10-25 Added HKDF and AES-GCM IV #4 rationale.
2018-09-21 Policy revision A: FIPS Lib 1.2.0 policy, based on FIPS Lib 1.1.0.
 Rebranding: SafeZone FIPS to Inside Secure FIPS.
2014-12-12 Policy revision A: FIPS Lib 1.1.0 policy, based on FIPS Lib 1.0.3 (A)
2014-05-12 Policy revision D: Revalidation
2014-05-07 Updated according to NIST SP 800-131A
2014-05-02 Added more vendor affirmed platforms
2014-04-25 Added several vendor affirmed platforms
2014-04-25 Added validated one platform: Samsung Galaxy Note 3 (ARMv7-a)
2013-12-31 Updated contact addresses
2013-03-15 Policy revision C: The original validation

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 4 of 48

FIPS 140-2 Security Policy

SafeZone FIPS Cryptographic Module

1 Introduction
SafeZone FIPS Cryptographic Module is a FIPS 140-2 Security Level 1 validated
software cryptographic module from Rambus. This module is a toolkit that provides
the most commonly used cryptographic primitives for a wide range of applications,
including primitives needed for VPN (Virtual Private Network), TLS (Transport
Layer Security), DAR (Data-At-Rest), and DRM (Digital Rights Management)
clients.

SafeZone FIPS Cryptographic Module is a software-based product with a custom,
small-footprint API (Application Programming Interface). The cryptographic module
has been designed to provide the necessary cryptographic capabilities for other
Rambus products. However, it can also be used stand-alone in custom-developed
products to provide the required cryptographic functionality.

The module is primarily intended for embedded products with a general-purpose
operating system.

Figure 1: SafeZone FIPS Cryptographic Module Cryptographic Boundary

For FIPS 140-2 purposes, SafeZone FIPS Cryptographic Module is classified as a
multi-chip standalone cryptographic module. Within the logical boundary of
SafeZone FIPS Cryptographic Module is the libsafezone-sw-fips.a/so object
code library, also known as SafeZone FIPS Lib. The physical cryptographic boundary

CPU

ROM RAM

Logical Cryptographic Boundary

SafeZone FIPS Lib

Data OutputPersistent
Storage

Peripherals

Physical Cryptographic Boundary

Remote Devices

Data Input

Control Input

Status Output

Power Supply

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 5 of 48

of the module is the enclosure of a general-purpose computing device executing the
application that embeds the SafeZone FIPS Cryptographic Module.

The SafeZone FIPS Cryptographic Module has been tested for validation on the
following operational environments:

Operating System CPU Device Version
Xubuntu 18.04.1 LTS Intel Atom x5 with PAA

(X86 32-bit)
Lenovo MIIX 320 1.2.0

Xubuntu 18.04.1 LTS Intel Atom x5 without PAA
(X86 32-bit)

Lenovo MIIX 320 1.2.0

Xubuntu 18.04.1 LTS Intel Atom x5 with PAA
(X86 64-bit)

Lenovo MIIX 320 1.2.0

Xubuntu 18.04.1 LTS Intel Atom x5 without PAA
(X86 64-bit)

Lenovo MIIX 320 1.2.0

Debian 9 Linux ARM Cortex-A53 with PAA
(ARMv8-a 64-bit)

ROCK64 1.2.0

Debian 9 Linux ARM Cortex-A53 without PAA
(ARMv8-a 64-bit)

ROCK64 1.2.0

Debian 9 Linux ARM Cortex-A7
(ARMv7-a 32-bit)

Raspberry Pi 2 1.2.0

Compliance is maintained on platforms for which the binary executable remains
unchanged. The module has been confirmed by the vendor to be operational on the
following platforms. As allowed by the FIPS 140-2 Implementation Guidance G.5,
the validation status of the Cryptographic Module is maintained when operated in the
following additional operating environments:

Implementation Guidance G.5 Recompilation
Operating System CPU
Ubuntu 16.04.4 Linux X86 Intel Core i7-4790K (64-bit)
Ubuntu 18.04.2 Linux ARMv8-a with and without PAA (64-bit)
Debian 9 Linux ARMv8-a with and without PAA (64-bit)
Wind River Linux 6.0 ARMv7-a (32-bit)
Android 5.0 - 5.1 ARMv7-a (32-bit)
Android 5.0 - 5.1 ARMv8-a with and without PAA (64-bit)
Android 6.0 ARMv7-a (32-bit)
Android 7.0 - 7.1 ARMv8-a with and without PAA (64-bit)
Android 8.0 - 8.1 ARMv8-a with and without PAA (64-bit)
Android 9.0 ARMv8-a with and without PAA (64-bit)
Android 10.0 ARMv8-a with and without PAA (64-bit)
Arago 2013.05 ARMv5 ARM926EJ-S (32-bit)
Nucleus 3.0 ARMv5 ARM926EJ-S (32-bit)
PhotonOS 2.0 X86 Intel Xeon (32-bit)
Ubuntu Linux 18.04 X86 Intel Xeon (32-bit)
Ubuntu Linux 18.04 X86 Intel Xeon (64-bit)

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 6 of 48

Yocto Linux 2.6 X86 Intel Xeon (64-bit)
Ubuntu Linux 18.04 X86 Intel Core (32-bit)
Ubuntu Linux 18.04 X86 Intel Core (64-bit)
Yocto Linux 2.6 X86 Intel Core (64-bit)
Rasbian Linux ARMv7-a (32-bit)

The CMVP makes no statement as to the correct operation of the module or the
security strengths of the generated keys when the specific operational environment is
not listed on the validation certificate. Source code package for user performed post-
validation porting of the module for these platforms is available.

1.1 Purpose
The purpose of this document is to describe the secure operation of the SafeZone
FIPS Cryptographic Module including the initialization, roles, and responsibilities of
operating the product in a secure, in FIPS 140 mode of operation.

1.2 Security level
The cryptographic module meets the overall requirements applicable to Level 1
security of FIPS 140-2.

Security Level
Security Requirements

Specification
Level

Cryptographic Module Specification 1
Module Ports and Interfaces 1
Roles, Services, and Authentication 1
Finite State Model 1
Physical Security N/A
Operational Environment 1
Cryptographic Key Management 1
EMI/EMC 1
Self-Tests 1
Design Assurance 1
Mitigation of Other Attacks N/A

1.3 Glossary
Term/Acronym Description

AES Advanced Encryption Standard
API Application Programming Interface
CMVP Cryptographic Module Validation Program (FIPS 140)
CSP Critical Security Parameter
DEP Default Entry Point
DRM Digital Rights Management
DSS Digital Signature Standard
EC Elliptic Curve

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 7 of 48

FIPS Federal Information Processing Standard
IKE Internet Key Exchange
KEM Key-Encapsulation Mechanism (See NIST SP 800-56B)
KTS Key Transport Scheme
OAEP Optimal Asymmetric Encryption Padding
PAA Processor Algorithm Accelerator
PRF Pseudo-Random Function
SHS Secure Hash Standard
SRDI Security Relevant Data Item
TLS Transport Layer Security
Triple-DES Triple Data Encryption Standard
VPN Virtual Private Network

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 8 of 48

2 Ports and Interfaces
As a software-only module, the SafeZone FIPS Cryptographic Module provides an
API logical interface for invocation of FIPS140-2 approved cryptographic functions.
The functions shall be called by the referencing application, which assumes the
operator role during application execution. The API, through the use of input
parameters, output parameters, and function return values, defines the four FIPS 140-
2 logical interfaces: data input, data output, control input and status output.

Logical
Interfaces

API

Data Input The data read from memory area(s) provided to the invoked function
via parameters that point to the memory area(s).

Control Input The API function invoked and function parameters designated as
control inputs.

Data Output The data written to memory area(s) provided to the invoked function
via parameters that point to the memory area(s).

Status Output The return value of the invoked API function.
Power
Interface

Not accessible via the API. The power interface is used as applicable on
the physical device.

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 9 of 48

3 Roles, Services, and Authentication
The SafeZone FIPS Cryptographic Module supports the Crypto Officer and User
roles. The operator of the module will assume one of these two roles. Only one role
may be active at a time. The Crypto Officer role is assumed implicitly upon module
installation, uninstallation, initialization, zeroization, and power-up self-testing. If
initialization and self-testing are successful, a transition to the User role is allowed
and the User will be able to use all keys and cryptographic operations provided by the
module, and to create any CSPs (except Trusted Root Key CSPs which may only be
created in the Crypto Officer role).

The four unique run-time services given only to the Crypto Officer role are the ability
to initialize the module, to set-up key material for Trusted Root Key CSP(s), to
modify the entropy source, and to switch to the User role to perform any activities
allowed for the User role. The SafeZone FIPS Cryptographic Module does not
support concurrent operators.

3.1 Roles and Services
The module does not authenticate the operator role.

3.1.1 User Role
The User role is assumed once the Crypto Officer role is finished with module
initialization and explicitly switches the role using the FL_LibEnterUserRole API
function. The User role is intended for common cryptographic use. The full list of
cryptographic services available to the User role is supplied in section 5.3 of this
document.

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 10 of 48

Service Description
All services except installation,
initialization, entropy source nomination,
and creation of Trusted Root Key CSPs.

All standard cryptographic operations
of the module, such as symmetric
encryption, message authentication
codes, and digital signatures. The User
role may also allocate the key assets
and load values for any of these
cryptographic purposes.
The SafeZone FIPS Cryptographic
Module also provides a ‘Show Status’
service (API function FL_LibStatus)
that can be used to query the current
status of the cryptographic module. A
macro based on FL_LibStatus is
provided
(FL_IS_IN_APPROVED_MODE), which
returns true if the module is currently in
an approved mode of operation.

3.1.2 Crypto-officer Role
The Crypto Officer role can perform all the services allowed for the User role plus a
handful of additional ones. Separate from the run-time services of the module, the
tasks of installing and uninstalling the module to and from the host system imply the
role of a Crypto Officer. The four run-time services available only to the Crypto
Officer are initializing the module for use, creating key material for Trusted Root Key
CSPs, modifying the entropy source, and switching to the User role.

Service Description
All services allowed for User role See sections 3.1.1 and 5.3.
Initialization Loading and preparing the module for use.

Trusted Root Key creation Load key material into the module for local
security purposes
(FL_RootKeyAllocateAndLoadValue).

Entropy Source Select the provider of the external entropy
source. (FL_RbgInstallEntropySource,
FL_RbgRequestSecurityStrength,
FL_RbgUseNonblockingEntropySource).

Switch to the User Role Uses the FL_LibEnterUserRole API
function to switch to User role.

Installation When the module is installed to a host system.
Uninstallation When the module is removed from a host

system.

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 11 of 48

3.2 Authentication Mechanisms and Strength
FIPS 140-2 Security Level 1 does not require role-based or identity-based operator
authentication. The SafeZone FIPS Cryptographic Module will not authenticate the
operator.

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 12 of 48

4 Secure Operation and Security Rules
In order to operate the SafeZone FIPS Cryptographic Module securely, the operator
should be aware of the security rules enforced by the module and should adhere to the
rules for physical security and secure operation.

4.1 Security Rules
To operate the SafeZone FIPS Cryptographic Module securely, the operator of the
module must follow these instructions:

1. The operating environment that executes the SafeZone FIPS Cryptographic
Module must ensure single operator mode of operation to be compliant with the
requirements for the FIPS 140-2 Level 1.

2. The correct operation of the module depends on the Default Entry Point. It is not
allowed to prevent execution of the Default Entry Point (the function
FLS_LibInit).

3. The operator must not call ptrace or strace functions, or run gdb or other
debugger when the module is in the FIPS mode.

4. If the hardware platform has a connector for an external debugger (for example
JTAG), that connector must not be used while the module is in FIPS mode.

5. The SafeZone FIPS Cryptographic Module keeps all CSPs and other protected
objects in Random Access Memory (RAM). The operator(s) must only use these
objects via the handles provided by the SafeZone FIPS Cryptographic Module. It
is not permissible to directly access these objects in the memory.

6. The operator must not call functions provided by the SafeZone FIPS
Cryptographic Module that are not explicitly specified in the appropriate guidance
document for User or Crypto Officer.

7. When using cryptographic services provided by the SafeZone FIPS Cryptographic
Module, the operator must follow the appropriate guidance for each cryptographic
algorithm. Although the cryptographic algorithms provided by the SafeZone FIPS
Cryptographic Module are recommended or allowed by NIST, secure operation of
these algorithms requires thorough understanding of the recommendations and
appropriate limitations.

8. The SafeZone FIPS Cryptographic Module aims to be flexible and therefore it
includes support for cryptographic algorithms or key lengths that were considered
secure until 2013 according to NIST SP 800-131A. It is the responsibility of the
SafeZone FIPS Cryptographic Module user to ensure that disallowed algorithms
or key lengths are not used.

9. Some of the implemented cryptographic algorithms offer key lengths exceeding
the current NIST specifications. Such key lengths must not be used, unless
following newer guidance from NIST.

a. RSA Key Pair Generation provided by the module (FIPS 186-4 B.3.3 or
B.3.6) is FIPS-approved or FIPS allowed for RSA modulus sizes of 2048
bits, 3072 bits and 4096 bits. It is not permissible to generate keys using
other RSA modulus sizes.

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 13 of 48

10. The Crypto Officer must ensure that the Trusted Root Key has sufficient entropy
to meet all FIPS 140-2 requirements for its usage in the module.

4.2 Physical Security Rules
The physical device on which the SafeZone FIPS Cryptographic Module is executed
must follow the physical security rules applicable to the purpose of the device. The
SafeZone FIPS Cryptographic Module is software-based and does not provide
physical security.

4.3 Secure Operation Initialization Rules
The SafeZone FIPS Cryptographic Module must be linked with an application to
become executable. The software code of the module (the libsafezone-sw-
fips.a object code library or the libsafezone-sw-fips.so dynamically
loadable library) is linked with an end application producing an executable
application for the target platform. The application is installed in a platform-specific
way, e.g. when purchased from an application store for the platform. In some cases
there is no need for installation, e.g. when a mobile equipment vendor includes the
application with the equipment.

The SafeZone FIPS Cryptographic Module is loaded by loading an application that
links the library statically. The SafeZone FIPS Cryptographic Module is initialized
automatically upon loading. On some platforms the module is implemented as a
dynamically loadable module. In this case, the module is loaded as needed by the
dynamic linker.

The SafeZone FIPS Cryptographic Module does not support operator authentication
and thus does not require any authentication itself. The SafeZone FIPS Cryptographic
Module is by default in FIPS-approved mode once initialized. Usually, the module
does not require any special set-up or initialization except for installation.

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 14 of 48

5 Definition of SRDIs and Modes of Access
This chapter specifies security relevant data items (SRDIs) as well as the access
control policy that is enforced by the SafeZone FIPS Cryptographic Module.

Each SRDI is held in the asset store accompanied by a security usage policy. The
policy is set when the asset is allocated with
FL_RootKeyAllocateAndLoadValue, FL_AssetAllocate,
FL_AssetAllocateBasic, FL_AssetAllocateSamePolicy or
FL_AssetAllocateAndAssociateKeyExtra. When the asset is accessed for use
in a cryptographic operation, the policy is tested to ensure that the asset is eligible for
the requested use. A policy typically consists of the allowed algorithm(s), the
allowed strength of the algorithm, and the direction of the operation (encryption or
decryption).

5.1 FIPS Approved and Allowed algorithms
The SafeZone FIPS Cryptographic Module implements the following FIPS-approved
algorithms:

Algorithm Implementation Details Algorithm
Certificate(s)

RSA
FIPS 186-4
Signature
Generation
Key Pair Generation

2048, 3072 and 4096 bit keys;
PKCS #1 v1.5 and PSS; SHA-224,
SHA-256, SHA-384, SHA-512

C 510

RSA
FIPS 186-4
Signature
Validation

1024, 2048, 3072 and 4096 bit
keys; PKCS #1 v1.5 and PSS

C 510

CVL
RSA Private Key
Primitives (NIST
SP 800-56B)

2048, 3072 and 4096 bit keys;
PKCS #1: RSADP and RSASP1
primitives

C 510

RSA Public Key
Primitives (NIST
SP 800-56B)

1024, 2048, 3072 and 4096 bit
keys; PKCS #1: RSAEP and
RSAVP1 primitives

DSA
FIPS 186-4
Signature
Generation
Domain Parameter
Generation
Key Pair Generation

P=2048/N=224, P=2048/N=256,
P=3072/N=256; SHA-224, SHA-
256, SHA-384, SHA-512

C 510

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 15 of 48

Algorithm Implementation Details Algorithm
Certificate(s)

DSA
FIPS 186-4
Signature
Validation
Domain Parameter
Validation

P=1024/N=160, P=2048/N=224,
P=2048/N=256, P=3072/N=256

C 510

ECDSA
FIPS 186-4
Signature
Generation
Key Pair Generation

NIST P-224, P-256, P-384 and P-
521 curves; SHA-224, SHA-256,
SHA-384, SHA-512

C 510

ECDSA
FIPS 186-4
Signature
Validation
Public Key
Verification

NIST P-192, P-224, P-256, P-384
and P-521 curves

C 510

AES
FIPS 197,
NIST SP 800-38A

128, 192, 256 bit keys; ECB,
CBC, CTR mode

C 510

AES CCM
NIST SP 800-38C

128, 192, 256 bit keys C 510

AES GCM / GMAC
NIST SP 800-38D

128, 192, 256 bit keys;
with deterministic internal IV
generation, random internal IV
generation, TLS v1.3 internal IV
generation and SRTP internal IV
generation

C 510

XTS-AES
NIST SP 800-38E

256, 512 bit keys
(128-bit or 256-bit encryption
strength)

C 510

Triple-DES
NIST SP 800-67

192 bit keys; ECB and CBC mode C 510

CMAC
NIST SP 800-38B

128, 192, 256 bit keys C 510

HMAC
FIPS 198-1

112-512 bit keys; SHA-1, SHA-
224, SHA-256, SHA-384, SHA-
512

C 510

SHS
FIPS 180-4

SHA-1, SHA-224, SHA-256,
SHA-384, SHA-512; BYTE only

C 510

SHA-3
FIPS 202

SHA3-224, SHA3-256,
SHA3-384, SHA3-512; SHAKE-128,
SHAKE-256; BYTE only

C 510

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 16 of 48

Algorithm Implementation Details Algorithm
Certificate(s)

DRBG
NIST SP 800-90A
Rev 1

AES-128-CTR without df or
reseed
AES-256-CTR with df and reseed

C 510

CKG (NIST SP
800-133)

Key Generation N/A, Vendor-
affirmed

KTS (KEM
NIST SP 800-56B)

2048, 3072, and 4096 bit keys;
RSA-KEM-KWS-basic (section
9.3.3); vendor affirmed; key-
wrapping; key establishment
methodology provides between
112 and 150 bits of encryption
strength

N/A, Vendor-
affirmed

KTS (OAEP
NIST SP 800-56B)

2048, 3072, and 4096 bit keys;
RSA-OAEP (section 9.2.3);
vendor affirmed; key-wrapping;
key establishment methodology
provides between 112 and 150 bits
of encryption strength

N/A, Vendor-
affirmed

PBKDF
NIST SP 800-132

with SHA-1, SHA-256 N/A, Vendor-
affirmed

KDF
NIST SP 800-108

112-512 bit keys; SHA-1, SHA-
224, SHA-256, SHA-384, SHA-
512, AES-CMAC; counter,
feedback and double pipeline
modes

C 510
Key derivation
methodology

provides
between 112 and

256 bits of
encryption
strength.

CVL
Application
Specific Key
Derivation
Functions
NIST SP 800-
135rev1

IKEv1 Key Derivation Functions
IKEv2 Key Derivation Functions
TLS 1.0/1.1 Key Derivation
Functions
TLS 1.2 Key Derivation Functions
SRTP Key Derivation Functions

C 510

Key Derivation
through Extraction-
then-Expansion
NIST SP 800-56C
Rev1

Two-Step Key Derivation with
SHA-1, SHA-224, SHA-256,
SHA-384, SHA-512 or AES-
CMAC.

N/A; Vendor
affirmed

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 17 of 48

Algorithm Implementation Details Algorithm
Certificate(s)

CVL
FFC Diffie-Hellman
primitive;
A part of NIST SP
800-56A

Key Agreement Primitives;
2048-8192 bit modular Diffie-
Hellman groups; including
FFDHE2048, FFDHE3072,
FFDHE4096, FFDHE6144,
FFDHE8192, MODP2048,
MODP3072, MODP4096,
MODP6144, MODP8192

C 510
Key

establishment
methodology

provides
between 112 and

200 bits of
encryption
strength.

CVL
ECC CDH
primitive;
A part of NIST SP
800-56A

Key Agreement Primitives;
NIST P-224, P-256, P-384 and P-
521 curves

C 510
Key

establishment
methodology

provides
between 112 and

256 bits of
encryption
strength.

CVL
ECC Diffie-
Hellman; NIST SP
800-56A without
KDF

Key Agreement Scheme;
NIST P-224, P-256, P-384 and P-
521 curves

C 510
Key

establishment
methodology

provides
between 112 and

256 bits of
encryption
strength.

KTS (NIST SP 800-
38F
Key Wrapping)

Key Wrapping function KW
CIPH=AES; 128, 192, 256 bit
keys
Key Wrapping function KWP
CIPH=AES; 128, 192, 256 bit
keys

C 510
Key

establishment
methodology

provides
between 128 and

256 bits of
encryption

strength

The cryptographic module supports the following non-approved algorithms in the
approved mode of operation as allowed:

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 18 of 48

Algorithm Algorithm Type Utilization

RSA Encryption
(PKCS #1 v1.5)

Key Transport;
2048, 3072 and 4096 bit keys

(C 510)
Key establishment

methodology
provides between

112 and 150 bits of
encryption strength.

Diffie-Hellman Key Agreement; 2048, 3072,
4096, 6144 and 8192 bit
modular exponential groups.

(C 510)
Vendor affirmed.
Key establishment

methodology
provides between

112 and 200 bits of
encryption strength.

EC Diffie-Hellman Key Agreement; NIST P-224,
NIST P-256, NIST P-384,
NIST P-521

(C 510)
Vendor affirmed.
Key establishment

methodology
provides between

112 and 256 bits of
encryption strength.

MD5 Message Digest;
This function is only allowed
as a part of an approved key
transport scheme (e.g. TLS
1.0 or TLS 1.1).

NDRNG;
RDSEED /
RDRAND,
getrandom,
/dev/random,
/dev/urandom

Non-Approved RBGs

Entropy sources for
NIST SP 800-90A

Rev1 DRBG.

The SafeZone FIPS Cryptographic Module is intended for products where FIPS 140-
2 approved algorithms are used. Rambus also provides solutions for customers that
need various non-approved algorithms.

5.2 Non-FIPS mode of operation

In the end of 2013, some of algorithms previously allowed by the NIST were
disallowed. This was because 80-bits of security was considered no longer sufficient.

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 19 of 48

See document NIST SP 800-131A for details. The SafeZone FIPS Cryptographic
Module implements additional key lengths for some of these algorithms (RSA, DSA,
ECDSA) for compatibility with applications previously using these key sizes. In
addition, some upcoming algorithms (such as X25519) are supported by the module,
but they are not allowed in FIPS Mode Operation. These and some other algorithms
provided by the module are no longer allowed in approved mode of operation.

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 20 of 48

The non-FIPS validated algorithms and key sizes supported by the module are:

Algorithm Implementation Details Reason for algorithm
being not allowed in
FIPS mode.

RSA
FIPS 186-2
Signature
Generation

1024, 1536, 2048, 3072, and
4096 bit keys; PKCS #1 v1.5
and PSS

Transition from FIPS
186-2 to 186-4.

RSA
FIPS 186-4
Signature
Generation
Key Pair Generation

1024 bit keys; PKCS #1 v1.5
and PSS

Key length used
provides less than 112

bits of encryption
strength

DSA
FIPS 186-4
Signature
Generation
Domain Parameter
Generation
Key Pair Generation

P=1024/N=160 Key length used
provides less than 112

bits of encryption
strength

ECDSA
FIPS 186-2/4
Signature
Generation
Key Pair Generation

NIST P-192 curve Key length used
provides less than 112

bits of encryption
strength

ECDSA
FIPS 186-2
Signature
Generation

NIST P-224, P-256, P-384
and P-521 curves

Transition from FIPS
186-2 to 186-4.

HMAC
FIPS 198-1

80-104 bit keys; SHA-1,
SHA-224, SHA-256, SHA-
384, SHA-512

Key length used
provides less than 112

bits of encryption
strength.

KTS
(KEM
NIST SP 800-56B)

1024, 1536, bit keys; RSA-
KEM-KWS-basic; key-
wrapping

Key establishment
methodology provides
less than 112 bits of
encryption strength

KTS (OAEP
NIST SP 800-56B)

1024, 1536 bit keys; RSA-
OAEP; key-wrapping

Key establishment
methodology provides
less than 112 bits of
encryption strength

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 21 of 48

Algorithm Implementation Details Reason for algorithm
being not allowed in
FIPS mode.

KDF
NIST SP 800-108

80-104 bit keys; SHA-1,
SHA-224, SHA-256, SHA-
384, SHA-512, AES-
CMAC; counter, feedback
and double pipeline modes

Key derivation
methodology provides
less than 112 bits of
encryption strength.

FFC Diffie-Hellman
primitive;

Key Agreement Primitives;
1024 bit modular Diffie-
Hellman groups

Key establishment
methodology provides
less than 112 bits of
encryption strength.

ECC CDH
primitive;
A part of NIST SP
800-56A

Key Agreement Primitives;
NIST P-192 curve

Key establishment
methodology provides
less than 112 bits of
encryption strength.

ECC Diffie-
Hellman; NIST SP
800-56A without
KDF

Key Agreement Scheme;
NIST P-192 curve

Key establishment
methodology provides
less than 112 bits of
encryption strength.

RSA Encryption
(PKCS #1 v1.5)

Key Transport;
1024, 1536 bit keys

Key establishment
methodology provides
less than 112 bits of
encryption strength.

AES-KEY WRAP Key Wrapping; AES-128,
AES-192, AES-256

Based on old NIST
specification key-

wrap.pdf which has
been superseded by SP

800-38F.

ChaCha20-
Poly1305

Symmetric encryption and
decryption

X25519 Key Agreement Scheme

5.3 List of services

The SafeZone FIPS provides services as specified in FIPS 140-2. The most of
services are intended for FIPS 140-2 allowed mode of operation in CryptoOfficer or
user role. The services correspond with function or functions with FL or FLS prefix.
Functions with FLS prefix take additional struct fls_instance * parameter, which is

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 22 of 48

used to select which Asset Store instance is used. This API difference is not FIPS
140-2 relevant, and therefore both FL_ prefix functions and FLS_ functions are
considered equivalent from FIPS 140-2 perspective.

SafeZone FIPS Cryptographic Module

Service List

Service FL API FLS API Notes
Services which are provided in any mode
Show Status FL_LibStatus FLS_LibStatus Any mode
Show Version FL_LibVersion FLS_LibVersion Any mode
Test DRBG FL_RbgTestVector FLS_RbgTestVector Any mode
Check Free Space in Key Store FL_AssetStoreStatus FLS_AssetStoreStatus Any mode
Obtain information on module
build arguments FL_StaticConfig Any mode

Get/set information on current
module configuration FLS_RuntimeConfigSetProperty,

FLS_RuntimeConfigGetProperty Any mode

Check module id FL_IntactID Any mode
 Zeroize memory area FL_Erase FLS_Erase Any mode
 Zeroize asset FL_EraseAsset FLS_EraseAsset Any mode
Services which change mode/role
Module Initialization (Invoked
automatically
upon loading the module)

FL_LibInit FLS_LibInit Any mode

Zeroize module state FL_LibUnInit FLS_LibUnInit CO/U
Enter User Role FL_LibEnterUserRole FLS_LibEnterUserRole CO
Services for Crypto-Officer and User roles

Create Key (Setup key policy,
allocate memory for key, and load
key value)

FL_AssetAllocate,
FL_AssetAllocateBasic,
FL_AssetAllocateSamePolicy,
FL_AssetAllocateAndAssociate-
KeyExtra,
FL_AssetLoadValue,
FL_AssetLoadMultipart,
FL_AssetLoadMultipartConvert-
BigInt,
FL_AssetPoke,
FL_LocalAllocate,
FL_LocalAllocateEx

FLS_AssetAllocate,
FLS_AssetAllocateBasic,
FLS_AssetAllocateSamePolicy,
FLS_AssetAllocateAndAssociate-
KeyExtra,
FLS_AssetLoadValue,
FLS_AssetLoadMultipart,
FLS_AssetLoadMultipartConvert-
BigInt,
FLS_AssetPoke

CO/U

Copy Key FL_AssetCopyValue FLS_AssetCopyValue CO/U

Delete Key FL_AssetFree,
FL_LocalFree FLS_AssetFree CO/U

Examine Key (get size or check) FL_AssetShow,
FL_AssetCheck

FLS_AssetShow,
FLS_AssetCheck CO/U

Peek Key (get key value) FL_AssetPeek FLS_AssetPeek CO/U
Generate Key FL_AssetLoadRandom FLS_AssetLoadRandom CO/U

Bulk Encryption/Decryption
FL_CipherInit,
FL_CipherContinue,
FL_CipherFinish

FLS_CipherInit,
FLS_CipherContinue,
FLS_CipherFinish

CO/U

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 23 of 48

SafeZone FIPS Cryptographic Module

Service List

Service FL API FLS API Notes

Authenticated
Encryption/Decryption with
Associated Data

FL_EncryptAuthInitRandom,
FL_EncryptAuthInitDeterministic,
FL_CryptAuthInit,
FL_CryptGcmAadContinue,
FL_CryptGcmAadFinish,
FL_CryptAuthContinue,
FL_EncryptAuthFinish,
FL_EncryptAuthPacketFinish,
FL_DecryptAuthFinish

FLS_EncryptAuthInitRandom,
FLS_EncryptAuthInit-
Deterministic,
FLS_CryptAuthInit,
FLS_CryptGcmAadContinue,
FLS_CryptGcmAadFinish,
FLS_CryptAuthContinue,
FLS_EncryptAuthFinish,
FLS_EncryptAuthPacketFinish,
FLS_DecryptAuthFinish

CO/U

Authenticated
Encryption/Decryption with
Associated Data for TLS v1.3

FL_CryptAuthInitTls13,
FL_CryptAuthContinue,
FL_EncryptAuthFinishTls13,
FL_DecryptAuthFinishTls13,
FL_EncryptAuthTls13,
FL_DecryptAuthTls13

FLS_CryptAuthInitTls13,
FLS_CryptAuthContinue,
FLS_EncryptAuthFinishTls13,
FLS_DecryptAuthFinishTls13,
FLS_EncryptAuthTls13,
FLS_DecryptAuthTls13

CO/U

Authenticated
Encryption/Decryption with
Associated Data for SRTP

FL_EncryptAuthSrtp,
FL_DecryptAuthSrtp,
FL_EncryptAuthSrtcp,
FL_DecryptAuthSrtcp

FLS_EncryptAuthSrtp,
FLS_DecryptAuthSrtp,
FLS_EncryptAuthSrtcp,
FLS_DecryptAuthSrtcp

CO/U

MAC Generation
FL_MacGenerateInit,
FL_MacGenerateContinue,
FL_MacGenerateFinish

FLS_MacGenerateInit,
FLS_MacGenerateContinue,
FLS_MacGenerateFinish

CO/U

MAC Verification
FL_MacVerifyInit,
FL_MacVerifyContinue,
FL_MacVerifyFinish

FLS_MacVerifyInit,
FLS_MacVerifyContinue,
FLS_MacVerifyFinish

CO/U

DRBG Random Number
Generation FL_RbgGenerateRandom FLS_RbgGenerateRandom CO/U

DRBG Reseeding FL_RbgReseed FLS_RbgReseed CO/U
Key Derivation FL_KeyDeriveKdk FLS_KeyDeriveKdk CO/U

TLS-PRF Key Derivation FL_KeyDeriveKdk,
FL_DeriveTlsPrf

FLS_KeyDeriveKdk,
FLS_DeriveTlsPrf CO/U

IKEv1 Key Derivation

FL_IKEv1ExtractSKEYID_DSA,
FL_IKEv1ExtractSKEYID_PSK,
FL_IKEv1ExtractSKEYID_PKE,
FL_IKEv1DeriveKeyingMaterial

FLS_IKEv1ExtractSKEYID_DSA,
FLS_IKEv1ExtractSKEYID_PSK,
FLS_IKEv1ExtractSKEYID_PKE,
FLS_IKEv1DeriveKeyingMaterial

CO/U

IKEv2 Key Derivation

FL_IKEv2ExtractSKEYSEED,
FL_IKEv2ExtractSKEYSEED-
rekey,
FL_IKEv2DeriveDKM

FLS_IKEv2ExtractSKEYSEED,
FLS_IKEv2ExtractSKEYSEED-
rekey,
FLS_IKEv2DeriveDKM

CO/U

IKEv1/IKEv2 KDF (Common) FL_IkePrfExtract FLS_IkePrfExtract CO/U

NIST SP 800-56C Rev1
FL_HkdfExtract,
FL_HkdfExpandAsset,
FL_HkdfExpand

FLS_HkdfExtract,
FLS_HkdfExpandAsset,
FLS_HkdfExpand

CO/U

HKDF Key Derivation / TLS 1.3
PRF FL_Hkdf FLS_Hkdf CO/U

SRTP Key Derivation FL_SrtpKeyDerive FLS_SrtpKeyDerive CO/U
AES Key Wrapping FL_AssetsWrapAes38F FLS_AssetsWrapAes38F CO/U
AES Key Unwrapping FL_AssetsUnwrapAes38F FLS_AssetsUnwrapAes38F CO/U
AES Data Wrapping FL_CryptKw FLS_CryptKw CO/U
AES Data Unwrapping FL_CryptKw FLS_CryptKw CO/U

Trusted Root Key Derivation FL_TrustedKdkDerive,
FL_TrustedKekdkDerive

FLS_TrustedKdkDerive,
FLS_TrustedKekdkDerive CO/U

Trusted KDK Key Derivation FL_TrustedKeyDerive FLS_TrustedKeyDerive CO/U

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 24 of 48

SafeZone FIPS Cryptographic Module

Service List

Service FL API FLS API Notes
Trusted Key Wrapping FL_AssetWrapTrusted FLS_AssetWrapTrusted CO/U
Trusted Key Unwrapping FL_AssetUnwrapTrusted FLS_AssetUnwrapTrusted CO/U
PBKDF2 Key Derivation FL_KeyDerivePbkdf2 FLS_KeyDerivePbkdf2 CO/U
DSA/Diffie-Hellman Domain
Parameter and Key Pair
Generation

FL_AssetGenerateKeyPair FLS_AssetGenerateKeyPair CO/U

Signature Generation
FL_HashSignFips186,
FL_HashSignPkcs1,
FL_HashSignPkcs1Pss

FLS_HashSignFips186,
FLS_HashSignPkcs1,
FLS_HashSignPkcs1Pss

CO/U

RSA Signature Generation,
Primitive Only FL_Pkcs1RSASP1 FLS_Pkcs1RSASP1 CO/U

RSA Decryption Primitive Only FL_Pkcs1RSADP FLS_Pkcs1RSADP CO/U
RSA-KEM Key Unwrapping FL_AssetsUnwrapRsaKem FLS_AssetsUnwrapRsaKem CO/U
RSA-OAEP Key Unwrapping FL_AssetsUnwrapRsaOaep FLS_AssetsUnwrapRsaOaep CO/U
RSA-PKCS#1v1.5 Key
Unwrapping FL_AssetsUnwrapPkcs1v15 FLS_AssetsUnwrapPkcs1v15 CO/U

Diffie-Hellman Key Agreement FL_DeriveDh FLS_DeriveDh CO/U
Elliptic Curve Diffie-Hellman
Key Agreement FL_DeriveDh FLS_DeriveDh CO/U

Diffie-Hellman Key Generation
Appendix D FL_DH_KeyGen CO/U

Diffie-Hellman Derivation
Appendix D FL_DH_Derive CO/U

Public Key Validation FL_AssetCheck FLS_AssetCheck CO/U
DSA/Diffie-Hellman Domain
Parameter Verification FL_AssetCheck FLS_AssetCheck CO/U

Signature Verification

FL_HashVerifyFips186,
FL_HashVerifyPkcs1,
FL_HashVerifyRecoverPkcs1,
FL_HashVerifyPkcs1Pss

FLS_HashVerifyFips186,
FLS_HashVerifyPkcs1,
FLS_HashVerifyRecoverPkcs1,
FLS_HashVerifyPkcs1Pss

CO/U

RSA Signature Verification /
Primitive Only FL_Pkcs1RSAVP1 FLS_Pkcs1RSAVP1 CO/U

RSA-KEM Key Wrapping FL_AssetsWrapRsaKem FLS_AssetsWrapRsaKem CO/U
RSA-OAEP Key Wrapping FL_AssetsWrapRsaOaep FLS_AssetsWrapRsaOaep CO/U
RSA PKCS#1v1.5 Key Wrapping FL_AssetsWrapPkcs1v15 FLS_AssetsWrapPkcs1v15 CO/U
RSA Encryption Primitive Only FL_Pkcs1RSAEP FLS_Pkcs1RSAEP CO/U
On-demand selftest FL_LibSelfTest FLS_LibSelfTest CO/U

Digest Computation

FL_HashInit, FL_HashContinue,
FL_HashFinish,
FL_HashFinishKeep,
FL_HashSingle

FLS_HashInit,
FLS_HashContinue,
FLS_HashFinish,
FLS_HashFinishKeep,
FLS_HashSingle

CO/U

Load Precomputed Digest FL_LoadFinishedHashStateAlgo FLS_LoadFinishedHashStateAlgo CO/U
Create new FLS operating context FL_New FLS_New CO/U
 Delete FLS operating context FL_Free FLS_Free CO/U
Services requiring Crypto-Officer
role

Entropy Source Installation

FL_RbgInstallEntropySource,
FL_RbgRequestSecurityStrength,
FL_RbgUseNonblockingEntropy-
Source

FLS_RbgInstallEntropySource,
FLS_RbgRequestSecurityStrength,
FLS_RbgUseNonblocking-
EntropySource

CO

Create Trusted Root Key FL_RootKeyAllocateAndLoad-
Value

FLS_RootKeyAllocateAndLoad-
Value CO

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 25 of 48

SafeZone FIPS Cryptographic Module

Service List

Service FL API FLS API Notes
Services only for non-FIPS mode
of operation

AES-KEY WRAP wrapping FL_AssetsWrapAes FLS_AssetsWrapAes Non-FIPS
AES-KEY WRAP unwrapping FL_AssetsUnwrapAes FLS_AssetsUnwrapAes Non-FIPS

CHACHA20-POLY1305
authenticated encryption

FL_Chacha20Poly1305IetfInit,
FL_Chacha20Poly1305IetfClear,
FL_Chacha20Poly1305Ietf-
EncryptDetached,
FL_Chacha20Poly1305Ietf-
DecryptDetached,
FL_Chacha20Poly1305Ietf-
Encrypt,
FL_Chacha20Poly1305Ietf-
Decrypt

 Non-FIPS

X25519 key agreement FL_X25519_KeyGen,
FL_X25519_Derive Non-FIPS

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 26 of 48

6 Cryptographic Keys, CSPs, and SRDIs
While operating in a FIPS-compliant manner, the asset store within the module may
contain the following security relevant data items (depending on which keys will be
used by the user):

ID Algorithm Size Description Origin Storage Zeroization
Method

General Keys/CSPs
AES
Encryption
Key

AES
including
modes
ECB, CBC,
and CTR

128, 192, 256
bits

Key created for the
purposes of
encrypting and/or
decrypting data
using AES
algorithm

Crypto
Officer, User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit,
FL_EraseAsset

AES CCM
Encryption
Key

AES CCM 128, 192, 256
bits

Key created for the
purposes of
authenticated
encryption and/or
decryption of data
using AES and
CCM algorithms

Crypto
Officer, User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit,
FL_EraseAsset

AES GCM
Encryption
Key
(or AES
GMAC Key)

AES GCM,
AES GMAC

128, 192, 256
bits

Key created for the
purposes of
authenticated
encryption and/or
decryption of data
using AES and
GCM/GMAC
algorithms

Crypto
Officer, User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit,
FL_EraseAsset

XTS-AES
Encryption
Key

XTS-AES 256, 512 bits Key created for the
purposes of
encrypting and/or
decrypting data
using AES
algorithm in XTS
mode

Crypto
Officer, User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit,
FL_EraseAsset

Triple-DES
Encryption
Key

Triple-DES 192 bits Key created for the
purposes of
encrypting and/or
decrypting data
using Triple-DES
algorithm

Crypto
Officer, User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit,
FL_EraseAsset

CMAC Key CMAC +
AES

128, 192, 256
bits

Key created for the
purposes of
generating and
verifying CMAC
authentication
codes

Crypto
Officer, User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit,
FL_EraseAsset

CMAC
Verify Key

CMAC +
AES

128, 192, 256
bits

Key created for the
purpose of
verifying CMAC
authentication
codes

Crypto
Officer, User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit,
FL_EraseAsset

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 27 of 48

ID Algorithm Size Description Origin Storage Zeroization
Method

KDF Key
Derivation
key

NIST SP
800-108 +
HMAC or
CMAC

112-512 bits Key created for the
purpose of deriving
other keys as
specified in NIST
SP 800-108 or
IKEv1/IKEv2 key
derivation
specified in NIST
SP 800-135.

Crypto
Officer, User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit,
FL_EraseAsset

TLS-PRF
Key
Derivation
Key

NIST SP
800-135

112-512 bits Key created for the
purpose of key
derivation using
TLS1.0/TLS1.2
key derivation
function presented
in NIST SP 800-
135.

Crypto
Officer, User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit,
FL_EraseAsset

HMAC Key HMAC +
SHS

112-512 bits Key created for the
purposes of
generating and
verifying HMAC
authentication
codes

Crypto
Officer, User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit,
FL_EraseAsset

HMAC
Verify Key

HMAC +
SHS

112-512 bits Key created for the
purpose of
verifying HMAC
authentication
codes

Crypto
Officer, User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit,
FL_EraseAsset

RSA Signing
Key

RSA Private
Key (CRT)

2048, 3072,
4096 bits
(modulus size)

Private key for the
purpose of signing
data using RSA
with PKCS #1v1.5
or PSS padding.

Crypto
Officer, User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit,
FL_EraseAsset

DSA Signing
Key

DSA Private
Key

P=2048/N=224,
P=2048/N=256,
P=3072/N=256

Private key for the
purpose of signing
data using DSA
algorithm.
Includes associated
domain
parameters.

Crypto
Officer, User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit,
FL_EraseAsset

ECDSA
Signing Key

ECDSA
Private Key

P-224,
P-256,
P-384,
P-521

Private key for the
purpose of signing
data using ECDSA
algorithm

Crypto
Officer, User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit,
FL_EraseAsset

AES Key-
Wrapping
Key

AES 128, 192, 256
bits

Key created for the
purposes of data or
key wrapping and
unwrapping using
NIST SP 800-38F
algorithm

Crypto
Officer, User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit,
FL_EraseAsset

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 28 of 48

ID Algorithm Size Description Origin Storage Zeroization
Method

Diffie-
Hellman
Private Value

Diffie-
Hellman

P=2048/N=224,
P=2048/N=256,
P=3072/N=256,
MODP or ffdhe
2048, 3072,
4096, 6144, or
8192

Private value for
the purpose of key
agreement using
Diffie-Hellman
algorithm.
Includes associated
domain
parameters.

Crypto
Officer, User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit,
FL_EraseAsset

EC Diffie-
Hellman
Private Value

EC Diffie-
Hellman

P-224,
P-256,
P-384,
P-521

Private value for
the purpose of key
agreement using
Elliptic Curve
Diffie-Hellman
algorithm.

Crypto
Officer, User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit,
FL_EraseAsset

KTS (KEM)
Unwrapping
Key

RSA Private
Key (CRT)

2048, 3072,
4096 bits

Private key for the
purpose of
transporting keys
using RSA with
KEM as specified
in NIST SP 800-
56B

Crypto
Officer, User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit,
FL_EraseAsset

KTS (OAEP)
Unwrapping
Key

RSA Private
Key (CRT)

2048, 3072,
4096 bits

Private key for the
purpose of
transporting keys
using RSA with
OAEP as specified
in NIST SP 800-
56B

Crypto
Officer, User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit,
FL_EraseAsset

KTS (PKCS
#1 v1.5) RSA
Unwrapping
Key

RSA Private
Key (CRT)

2048, 3072,
4096 bits

Private key for the
purpose of
transporting keys
using RSA with
PKCS #1 v1.5
padding (also
known as RSA
Encryption)

Crypto
Officer, User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit,
FL_EraseAsset

Trusted Keys

Trusted Root
Key

NIST SP
800-108
KDF

256 bits Key used for
deriving other keys
as per NIST SP
800-108.
Can only derive
‘Trusted KDK’ and
‘Trusted KEKDK’
keys.

Crypto Officer Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit,
FL_EraseAsset

Trusted KDK NIST SP
800-108
KDF

256 bits Key used for
deriving other keys
as per NIST SP
800-108.

Crypto
Officer, User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit,
FL_EraseAsset

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 29 of 48

ID Algorithm Size Description Origin Storage Zeroization
Method

Trusted
KEKDK

NIST SP
800-108
KDF
+
AES
(Key Wrap)

256 bits Key used for
wrapping keys
with combination
of NIST SP800-
108 KDF and AES
Key Wrap.

Crypto
Officer, User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit,
FL_EraseAsset

Other CSPs

DRBG CTR-
128 entropy
input string
and the seed

CTR_DRBG
128-bits

256 bits

Entropy input
materials

Entropy
source

Plaintext
in RAM

Power Off,
FL_LibUnInit

DRBG CTR-
128 state:
Key

CTR_DRBG
128-bits

128 bits

Key for DRBG
used for random
number and
key/key pair
generation
purposes.

Entropy
source

Plaintext
in RAM

Power Off,
FL_LibUnInit

DRBG CTR-
128 state: V

CTR_DRBG
128-bits

128 bits

V value for DRBG
used for random
number and
key/key pair
generation
purposes.

Entropy
source

Plaintext
in RAM

Power Off,
FL_LibUnInit

DRBG CTR-
256 entropy
input string
and the seed

CTR_DRBG
256-bits
with
derivation
function

256-1024 bits

Entropy input
materials

Entropy
source

Plaintext
in RAM

Power Off,
FL_LibUnInit

DRBG CTR-
256 state:
Key

CTR_DRBG
256-bits
with
derivation
function

256 bits

Key for DRBG
used for random
number and
key/key pair
generation
purposes.

Entropy
source

Plaintext
in RAM

Power Off,
FL_LibUnInit

DRBG CTR-
256 state: V

CTR_DRBG
256-bits
with
derivation
function

128 bits

V value for DRBG
used for random
number and
key/key pair
generation
purposes.

Entropy
source

Plaintext
in RAM

Power Off,
FL_LibUnInit

PBKDF
password

NIST SP
800-132

varies
(at least 12
characters)

password or
passphrase

Crypto Officer,
User

Plaintext
in RAM

Power Off,
FL_Erase

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 30 of 48

ID Algorithm Size Description Origin Storage Zeroization
Method

Public Keys

Software
Integrity
Public Key

ECDSA /
Verify

NIST P-224 Public key used by
Power-on Software
Integrity to ensure
the integrity of the
Cryptographic
Module.

Embedded in
the software

Plaintext
in
persistent
storage

none

RSA
Verification
Key

RSA Public
Key

1024, 2048,
3072, 4096 bits
modulus size

Public key for the
purpose of
verifying signed
data using RSA
with PKCS #1 v1.5
or PSS padding.
Not considered
sensitive or CSP.

Crypto
Officer, User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit,
FL_EraseAsset

DSA
Verification
Key

DSA Public
Key

P=1024/N=160,
P=2048/N=224,
P=2048/N=256,
P=3072/N=256

Public key for the
purpose of
verifying signed
data using DSA
algorithm.
Includes associated
domain
parameters.
Not considered
sensitive or CSP.

Crypto
Officer, User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit,
FL_EraseAsset

ECDSA
Verification
Key

ECDSA
Public Key

P-192,
P-224,
P-256,
P-384,
P-521

Public key for the
purpose of
verifying signed
data using ECDSA
algorithm.
Not considered
sensitive or CSP.

Crypto
Officer, User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit,
FL_EraseAsset

Diffie-
Hellman
Public Value

Diffie-
Hellman

P=2048/N=224,
P=2048/N=256,
P=3072/N=256,
MODP or ffdhe
2048, 3072,
4096, 6144, or
8192

Public value for the
purpose of key
agreement using
the Diffie-Hellman
algorithm.
Includes associated
domain
parameters.
Not considered
sensitive or CSP.

Crypto
Officer, User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit,
FL_EraseAsset

EC Diffie-
Hellman
Public Value

EC Diffie-
Hellman

P-224,
P-256,
P-384,
P-521

Public value for the
purpose of key
agreement using
the Elliptic Curve
Diffie-Hellman
algorithm.
Not considered
sensitive or CSP.

Crypto
Officer, User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit,
FL_EraseAsset

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 31 of 48

ID Algorithm Size Description Origin Storage Zeroization
Method

KTS (KEM)
Wrapping
Key

RSA Public
Key

2048, 3072,
4096 bits

Public key for the
purpose of
transporting keys
using RSA with
KEM as specified
in NIST SP 800-
56B.
Not considered
sensitive or CSP.

Crypto
Officer, User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit,
FL_EraseAsset

KTS (OAEP)
Wrapping
Key

RSA Public
Key

2048, 3072,
4096 bits

Public key for the
purpose of
transporting keys
using RSA with
OAEP as specified
in NIST SP 800-
56B.
Not considered
sensitive or CSP.

Crypto
Officer, User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit,
FL_EraseAsset

KTS (PKCS
#1 v1.5) RSA
Wrapping
Key

RSA Public
Key

2048, 3072,
4096 bits

Public key for the
purpose of
transporting keys
using RSA with
PKCS #1 v1.5
padding (also
known as RSA
Encryption).
Not considered
sensitive or CSP.

Crypto
Officer, User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit,
FL_EraseAsset

All the cryptographic keys and other security relevant materials handled by the
module can be zeroized by using the cryptographic module, with the exception of the
Software Integrity Public Key that is used in the self-test to validate the module.

There are three ways to zeroize a key: individual keys can be explicitly zeroized using
the FL_AssetFree function call, all keys (except dynamically or preallocated
allocated assets) are zeroized once the module is uninitialized (FL_LibUnInit) or
encounters error state, and (as all the keys handled by the module except the Software
Integrity Public key are stored in RAM memory), the keys can also be zeroized by
turning the power off. Further keys and memory may be cleared with zeroization
convenience functions (FL_Erase, FL_EraseAsset).

The main difference between normal and Trusted Keys is that Trusted Keys do not
allow the User role to pick the key material to use, but the keys can only be derived
from the trusted root key provided by the Crypto Officer role. The primary use of
trusted keys is wrapping and unwrapping other keys for purposes of persistent storage
outside the SafeZone FIPS Cryptographic Module. Trusted Keys do not provide any
additional security for FIPS purposes. They merely are identifiers for the keys derived
from the trusted root key.

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 32 of 48

6.1 Access Control Policy
The module allows controlled access to the SRDIs contained within it. The following
table defines the access that an operator or an application has to each SRDI while
operating the SafeZone FIPS Cryptographic Module in a given role performing a
specific service (command). The permissions are categorized as a set of four separate
permissions: read [R] (the SRDI can be read by this operation), write [W] (the SRDI
can be written by this operation), execute [X] (the SRDI can be used in this
operation), and delete [D] (the SRDI will be zeroized by this operation). If no
permission is listed, then an operator outside the SafeZone FIPS Cryptographic
Module has no access to the SRDI.

The operations are presented in the following tables: for secret keys, private keys,
public keys, and none (operations which do not affect any of SRDI). The operations
which are not appropriate for a specific key type have been omitted.

SafeZone FIPS Cryptographic
Module

SRDI/Role/Service Access Policy

Secret Keys

Se
cu

rit
y

Re
le

va
nt

 D
at

a
Ite

m

A
ES

 E
nc

ry
pt

io
n

K
ey

A

ES
 C

CM
 E

nc
ry

pt
io

n
K

ey

A
ES

 G
CM

/G
M

A
C

K
ey

X

TS
- A

ES
 E

nc
ry

pt
io

n
K

ey

Tr
ip

le
-D

ES
 E

nc
ry

pt
io

n
K

ey

CM
A

C
K

ey

CM
A

C
V

er
ify

 K
ey

K

D
F

K
ey

 D
er

iv
at

io
n

ke
y

TL
S-

PR
F

K
ey

 D
er

iv
at

io
n

ke
y

H
M

A
C

K
ey

H

M
A

C
V

er
ify

 K
ey

A

ES
 K

ey
- W

ra
pp

in
g

K
ey

Tr

us
te

d
Ro

ot
 K

ey

Tr
us

te
d

K
D

K

Tr
us

te
d

K
EK

D
K

D
RB

G
 st

at
e:

 K
ey

 /
V

D
RB

G
 e

nt
ro

py
 in

pu
t /

 se
ed

PB
K

D
F

pa
ss

w
or

d

Role/Service
User role or Crypto Officer Role
Zeroize (FL_LibUnInit, FL_Erase, FL_EraseAsset) D D D D D D D D D D D D D D D D D D
Create Key (FL_AssetAllocate,
FL_AssetAllocateBasic,
FL_AssetAllocateSamePolicy,
FL_AssetAllocateAndAssociateKeyExtra,
FL_AssetLoadValue, FL_AssetLoadMultipart,
FL_AssetLoadMultipartConvertBigInt,
FL_AssetPoke, FL_LocalAllocate,
FL_LocalAllocateEx)

 W W W W W W W W W W W W

Copy Key (FL_AssetCopyValue) W W W W W W W W W W W W
Delete Key (FL_AssetFree, FL_LocalFree) D D D D D D D D D D D D D D
Examine Key (FL_AssetShow, FL_AssetCheck)
Peek Key (FL_AssetPeek) R R R R R R R R R R R R
Generate Key (FL_AssetLoadRandom) W W W W W W W W W W W W XW XW
Bulk Encryption/Decryption (FL_CipherInit,
FL_CipherContinue, FL_CipherFinish) X X X

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 33 of 48

SafeZone FIPS Cryptographic
Module

SRDI/Role/Service Access Policy

Secret Keys

Se
cu

rit
y

Re
le

va
nt

 D
at

a
Ite

m

A
ES

 E
nc

ry
pt

io
n

K
ey

A

ES
 C

CM
 E

nc
ry

pt
io

n
K

ey

A
ES

 G
CM

/G
M

A
C

K
ey

X

TS
-A

ES
 E

nc
ry

pt
io

n
K

ey

Tr
ip

le
-D

ES
 E

nc
ry

pt
io

n
K

ey

CM
A

C
K

ey

CM
A

C
V

er
ify

 K
ey

K

D
F

K
ey

 D
er

iv
at

io
n

ke
y

TL
S-

PR
F

K
ey

 D
er

iv
at

io
n

ke
y

H
M

A
C

K
ey

H

M
A

C
V

er
ify

 K
ey

A

ES
 K

ey
-W

ra
pp

in
g

K
ey

Tr

us
te

d
Ro

ot
 K

ey

Tr
us

te
d

K
D

K

Tr
us

te
d

K
EK

D
K

D
RB

G
 st

at
e:

 K
ey

 /
V

D
RB

G
 e

nt
ro

py
 in

pu
t /

 se
ed

PB
K

D
F

pa
ss

w
or

d

Role/Service
Authenticated Encryption/Decryption with
Associated Data (FL_EncryptAuthInitRandom,
FL_EncryptAuthInitDeterministic,
FL_CryptAuthInit1, FL_CryptGcmAadContinue,
FL_CryptGcmAadFinish,
FL_CryptAuthContinue, FL_EncryptAuthFinish,
FL_EncryptAuthPacketFinish,
FL_DecryptAuthFinish)

 X X

Authenticated Encryption/Decryption with
Associated Data for TLS v1.3
(FL_CryptAuthInitTls13, FL_CryptAuthContinue,
FL_EncryptAuthFinishTls13,
FL_DecryptAuthFinishTls13,
FL_EncryptAuthTls13, FL_DecryptAuthTls13)

 X X

Authenticated Encryption/Decryption with
Associated Data for SRTP (FL_EncryptAuthSrtp,
FL_DecryptAuthSrtp, FL_EncryptAuthSrtcp,
FL_DecryptAuthSrtcp)

 X X

MAC Generation (FL_MacGenerateInit,
FL_MacGenerateContinue,
FL_MacGenerateFinish)

 X X

MAC Verification (FL_MacVerifyInit,
FL_MacVerifyContinue, FL_MacVerifyFinish) X X X X

DRBG Random Number Generation
(FL_RbgGenerateRandom) XW XW

DRBG Reseeding (FL_RbgReseed) XW XW
Key Derivation (FL_KeyDeriveKdk) W W W W W W W XW W W W W
TLS-PRF Key Derivation (FL_KeyDeriveKdk,
FL_DeriveTlsPrf) W W W W W W W W XW W W W

IKEv1 Key Derivation
(FL_IKEv1ExtractSKEYID_DSA,
FL_IKEv1ExtractSKEYID_PSK,
FL_IKEv1ExtractSKEYID_PKE,
FL_IKEv1DeriveKeyingMaterial)

 W W W W W W W XW W W W W

IKEv2 Key Derivation
(FL_IKEv2ExtractSKEYSEED,
FL_IKEv2ExtractSKEYSEEDrekey,
FL_IKEv2DeriveDKM)

 W W W W W W W XW W W W W

1 Function may only be used to begin AES-CCM encryption operation or to
continue multipacket operation with deterministic IV. In particular, the function shall
not be used to initialize AES-GCM encryption, except when IV has been constructed in
FIPS 140-2 Implementation Guidance A.5 approved manner by an FIPS 140-2 approved
module.

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 34 of 48

SafeZone FIPS Cryptographic
Module

SRDI/Role/Service Access Policy

Secret Keys

Se
cu

rit
y

Re
le

va
nt

 D
at

a
Ite

m

A
ES

 E
nc

ry
pt

io
n

K
ey

A

ES
 C

CM
 E

nc
ry

pt
io

n
K

ey

A
ES

 G
CM

/G
M

A
C

K
ey

X

TS
-A

ES
 E

nc
ry

pt
io

n
K

ey

Tr
ip

le
-D

ES
 E

nc
ry

pt
io

n
K

ey

CM
A

C
K

ey

CM
A

C
V

er
ify

 K
ey

K

D
F

K
ey

 D
er

iv
at

io
n

ke
y

TL
S-

PR
F

K
ey

 D
er

iv
at

io
n

ke
y

H
M

A
C

K
ey

H

M
A

C
V

er
ify

 K
ey

A

ES
 K

ey
-W

ra
pp

in
g

K
ey

Tr

us
te

d
Ro

ot
 K

ey

Tr
us

te
d

K
D

K

Tr
us

te
d

K
EK

D
K

D
RB

G
 st

at
e:

 K
ey

 /
V

D
RB

G
 e

nt
ro

py
 in

pu
t /

 se
ed

PB
K

D
F

pa
ss

w
or

d

Role/Service
IKEv1/IKEv2 KDF (Common)
(FL_IkePrfExtract) X

NIST SP 800-56C Rev1 (FL_HkdfExtract,
FL_HkdfExpandAsset, FL_HkdfExpand) W W W W W W W XW W W W W

HKDF Key Derivation / TLS 1.3 PRF (FL_Hkdf) W W W W W W W XW W W W W
SRTP Key Derivation (FL_SrtpKeyDerive) X
AES Key Wrapping (FL_AssetsWrapAes38F) R R R R R R R R R R R XR
AES Key Unwrapping
(FL_AssetsUnwrapAes38F) W W W W W W W W W W W XW

AES Data Wrapping (FL_CryptKw) X
AES Data Unwrapping (FL_CryptKw) X
Trusted Root Key Derivation
(FL_TrustedKdkDerive,
FL_TrustedKekdkDerive)

 X W W

Trusted KDK Key Derivation
(FL_TrustedKeyDerive) W W W W W W W W W W W W X

Trusted Key Wrapping (FL_AssetWrapTrusted) R R R R R R R R R R R R X
Trusted Key Unwrapping
(FL_AssetUnwrapTrusted) W W W W W W W W W W W W X

PBKDF2 Key Derivation (FL_KeyDerivePbkdf2) W W W W W W W W W W W W RW
Crypto-officer Role
Entropy Source Installation
(FL_RbgInstallEntropySource,
FL_RbgRequestSecurityStrength,
FL_RbgUseNonblockingEntropySource)

 W

Create Trusted Root Key
(FL_RootKeyAllocateAndLoadValue) W

Enter User Role (FL_LibEnterUserRole)

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 35 of 48

SafeZone FIPS Cryptographic Module

SRDI/Role/Service Access Policy

Private Keys

Se
cu

rit
y

Re
le

va
nt

 D
at

a
Ite

m

RS
A

 S
ig

ni
ng

 K
ey

D

SA
 S

ig
ni

ng
 K

ey

EC
D

SA
 S

ig
ni

ng
 K

ey

D
iff

ie
- H

el
lm

an
 P

riv
at

e
V

al
ue

EC

 D
iff

ie
-H

el
lm

an
 P

riv
at

e
V

al
ue

K
TS

 (K
EM

) U
nw

ra
pp

in
g

K
ey

K
TS

 (O
A

EP
) U

nw
ra

pp
in

g
K

ey

K
TS

 (P
K

CS
 #

1
v1

.5
, o

th
er

) R
SA

U

nw
ra

pp
in

g
K

ey

D
RB

G
 st

at
e:

 K
ey

 /
V

D
RB

G
 e

nt
ro

py
 in

pu
t /

 se
ed

Role/Service
User role or Crypto Officer Role
Zeroize (FL_LibUnInit, FL_Erase, FL_EraseAsset) D D D D D D D D D D
Create Key
(FL_AssetAllocate, FL_AssetAllocateBasic,
FL_AssetAllocateSamePolicy,
FL_AssetAllocateAndAssociateKeyExtra, FL_AssetLoadValue,
FL_AssetLoadMultipart, FL_AssetLoadMultipartConvertBigInt,
FL_AssetPoke, FL_LocalAllocate, FL_LocalAllocateEx)

 W W W W W W W W

Copy Key (FL_AssetCopyValue) W W W W W W W W
Delete Key (FL_AssetFree, FL_LocalFree) D D D D D D D D
Examine Key (FL_AssetShow, FL_AssetCheck)
Peek Key (FL_AssetPeek) R R R R R R R R
Generate Key (FL_AssetLoadRandom) XW XW
Generate Key Pair (FL_AssetGenerateKeyPair) W W W W W W W W XW XW
DSA/Diffie-Hellman Domain Parameter and Key Pair Generation
(FL_AssetGenerateKeyPair) W W XW XW
Signature Generation (FL_HashSignFips186, FL_HashSignPkcs1,
FL_HashSignPkcs1Pss) X X X XW XW

RSA Signature Generation, Primitive Only (FL_Pkcs1RSASP1) X
RSA Decryption Primitive Only (FL_Pkcs1RSADP) X
AES Key Wrapping (FL_AssetsWrapAes38F) R R R R R R R R
AES Key Unwrapping (FL_AssetsUnwrapAes38F) W W W W W W W W
RSA Key Wrapping (FL_AssetsWrapPkcs1v15,
FL_AssetsWrapRsaKem, FL_AssetsWrapRsaOaep) R R R R R R R R

RSA-KEM Key Unwrapping (FL_AssetsUnwrapRsaKem) W W W W W WX W W
RSA-OAEP Key Unwrapping (FL_AssetsUnwrapRsaOaep) W W W W W W WX W
RSA-PKCS#1v1.5 Key Unwrapping (FL_AssetsUnwrapPkcs1v15) W W W W W W W WX
Trusted Key Wrapping (FL_AssetWrapTrusted) R R R R R R R R
Trusted Key Unwrapping (FL_AssetUnwrapTrusted) W W W W W W W W
Diffie-Hellman Key Agreement (FL_DeriveDh) X
Elliptic Curve Diffie-Hellman Key Agreement (FL_DeriveDh) X
Diffie-Hellman Key Generation Appendix D (FL_DH_KeyGen) X
Diffie-Hellman Derivation Appendix D (FL_DH_Derive) X

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 36 of 48

SafeZone FIPS Cryptographic Module

SRDI/Role/Service Access Policy

Public Keys

Se
cu

rit
y

Re
le

va
nt

 D
at

a
Ite

m

So
ftw

ar
e

In
te

gr
ity

 P
ub

lic
 K

ey

RS
A

 V
er

ifi
ca

tio
n

K
ey

D
SA

 V
er

ifi
ca

tio
n

K
ey

EC
D

SA
 V

er
ifi

ca
tio

n
K

ey

D
iff

ie
- H

el
lm

an
 P

ub
lic

 V
al

ue

EC
 D

iff
ie

- H
el

lm
an

 P
ub

lic
 V

al
ue

K
TS

 (K
EM

) W
ra

pp
in

g
K

ey

K
TS

 (O
A

EP
) W

ra
pp

in
g

K
ey

K
TS

 (P
K

CS
 #

1
v1

.5
, o

th
er

) R
SA

W

ra
pp

in
g

K
ey

D
RB

G
 st

at
e:

 K
ey

 /
V

D
RB

G
 e

nt
ro

py
 in

pu
t /

 se
ed

Role/Service
User role or Crypto-Officer Role
Zeroize (FL_LibUnInit, FL_Erase, FL_EraseAsset) D D D D D D D D D D
On-demand self-test (FL_LibSelfTest) X
Create Key (FL_AssetAllocate, FL_AssetAllocateBasic,
FL_AssetAllocateSamePolicy,
FL_AssetAllocateAndAssociateKeyExtra,
FL_AssetLoadValue, FL_AssetLoadMultipart,
FL_AssetLoadMultipartConvertBigInt, FL_AssetPoke,
FL_LocalAllocate, FL_LocalAllocateEx)

 W W W W W W W W

Copy Key (FL_AssetCopyValue) W W W W W W W W
Delete Key (FL_AssetFree, FL_LocalFree) D D D D D D D D
Examine Key (FL_AssetShow, FL_AssetCheck) RX RX RX RX RX RX RX RX
Peek Key (FL_AssetPeek) R R R R R R R R
Generate Key Pair (FL_AssetGenerateKeyPair) W W W W W W W W XW XW
DSA/Diffie-Hellman Domain Parameter and Key Pair
Generation (FL_AssetGenerateKeyPair) W W XW XW

Public Key Validation (FL_AssetCheck) X X X X X X X X
DSA/Diffie-Hellman Domain Parameter Verification
(FL_AssetCheck) X X

Signature Verification
(FL_HashVerifyFips186, FL_HashVerifyPkcs1,
FL_HashVerifyRecoverPkcs1, FL_HashVerifyPkcs1Pss)

 X X X

RSA Signature Verification / Primitive Only
(FL_Pkcs1RSAVP1) X

RSA-KEM Key Wrapping (FL_AssetsWrapRsaKem) R R R R R RX R R
RSA-OAEP Key Wrapping (FL_AssetsWrapRsaOaep) R R R R R R RX R
RSA PKCS#1v1.5 Key Wrapping
(FL_AssetsWrapPkcs1v15) R R R R R R R RX

RSA Encryption Primitive Only (FL_Pkcs1RSAEP) X
Diffie-Hellman Key Agreement (FL_DeriveDh) X
Diffie-Hellman Ephemeral Key Generation Appendix D
(FL_DH_KeyGen) X

Diffie-Hellman Key Agreement Appendix D
(FL_DH_Derive) X

Elliptic Curve Diffie-Hellman Key Agreement
(FL_DeriveDh) X

Crypto-officer Role
Module Initialization (FL_LibInit/FLS_LibInit)
(This function is automatically invoked upon loading the
module)

 X XW XW

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 37 of 48

SafeZone FIPS Cryptographic Module

SRDI/Role/Service Access Policy

 Services not using any SRDI

Role/Service
User role or Crypto Officer Role
Show Status (FL_LibStatus)
Digest Computation (FL_HashInit, FL_HashContinue, FL_HashFinish, FL_HashFinishKeep, FL_HashSingle)
Load Precomputed Digest (FL_LoadFinishedHashStateAlgo)
Create new FLS operating context / delete FLS operating context (FL_New, FL_Free)
 Zeroize memory area (FL_Erase)

SafeZone FIPS Cryptographic Module

SRDI/Role/Service Access Policy

 Services allowed in any state (including error state)

Role/Service
Services which are provided in any state
Show Version (FL_LibVersion)
Test DRBG (FL_RbgTestVector)
Check Free Space in Key Store (FL_AssetStoreStatus)
Obtain information on module build arguments (FL_StaticConfig)
Get/set information on current module configuration (FLS_RuntimeConfigSetProperty,
FLS_RuntimeConfigGetProperty)
Check module id (FL_IntactID)
 Zeroize memory area (FL_Erase)
 Zeroize asset (FL_EraseAsset)
 Zeroize module state (FL_LibUnInit)

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 38 of 48

SafeZone FIPS Cryptographic Module

SRDI/Role/Service Access Policy

 Non-FIPS 140-2 Services

Role/Service
Additional services which can be used only in non-FIPS mode of operation
AES-KEY WRAP wrapping (FL_AssetsWrapAes)
AES-KEY WRAP unwrapping (FL_AssetsUnwrapAes)
CHACHA20-POLY1305 authenticated encryption (FL_Chacha20Poly1305IetfInit, FL_Chacha20Poly1305IetfClear,
FL_Chacha20Poly1305IetfEncryptDetached, FL_Chacha20Poly1305IetfDecryptDetached,
FL_Chacha20Poly1305IetfEncrypt, FL_Chacha20Poly1305IetfDecrypt)
X25519 key agreement (FL_X25519_KeyGen, FL_X25519_Derive)

Most of the functions in the SafeZone FIPS Cryptographic module have alternative
invocation. The alternative invocation uses FLS prefix instead of FL.

6.2 User Guide
Some of the FIPS Publications or NIST Special Publications require that the
Cryptographic Module Security Policy mentions important configuration items for
those algorithms. The user of the module shall observe these rules.

6.2.1 NIST SP 800-108: Key Derivation Functions
All three key derivation functions, Counter Mode, Feedback Mode and Double-
Pipeline Iteration Mode are supported.

6.2.2 NIST SP 800-56C Rev1: Key-Derivation Methods in Key-Establishment
Schemes

The SafeZone FIPS Cryptographic module provides hash and HMAC functions that
can be used for One-Step Key Derivation as introduced in NIST SP 800-56C. The
module also offers Extraction-then-Expansion function that can be used for Two-Step
Key Derivation as introduced in NIST SP 800-56C. The Two-Step Key Derivation
function uses HMAC with SHA-1/SHA224/SHA256/SHA384 or AES-CMAC and
SHA512 and NIST SP 800-108 Key Derivation Function with Feedback Mode. The
construct is compatible with some uses of RFC 5869.

There are following rules the user of the functions for NIST SP 800-56C Key
Derivation functions shall observe:

• Key derived using NIST SP 800-56C rev 1 shall only be used as secret keying
material — such as a symmetric key used for data encryption or message
integrity, a secret initialization vector, or, perhaps, a key-derivation key that will
be used to generate additional keying material.

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 39 of 48

• The derived keying material shall not be used as a key stream for a stream
cipher.

• When using HMAC algorithm for key derivation, the algorithms requires a key.
This key corresponds to salt in NIST SP 800-56C rev 1. If salt is to be omitted, use
all-zero byte key at is exactly the bit length of the hash algorithm.

• HKDF expansion function always uses NIST SP 800-108 Feedback Mode Key
Derivation Function with single byte counter. This is interoperable with RFC
5869.

• The two-part extraction and expansion operation always uses the same
underlying hash function or AES-CMAC for both extraction and expansion.

• AES-CMAC can be used to generate keys up-to 128 bit security. For higher
security hash- or HMAC-based schemes shall be used.

• HMAC-SHA-1 and HMAC-SHA-2 functions can be used to generate keys with 112-
512 bit strength. See table below for details.

• If HMAC is used for key derivation, salt can be up-to one hash input block.
• If AES-CMAC is used, the key extraction phase may use 128 bit, 192 bit or 256 bit

salt, but the key-expansion step will always use AES-128-CMAC.
• The module does not support NIST SP 800-56C Rev1 Single-Step Key Derivation.
• If the input for NIST SP 800-56C Key Derivation Function is a shared secret, the

input must be destroyed after extraction (with FL_AssetFree or FLS_AssetFree).

The input attributes and security strength of generated keys follows this table:

Hash or MAC
for service

Length of
optional

salt
(in bits)

MAC algorithm
for optional

KDK

The length
of optional
KDK
(in bits)

 Security
strength s
supported
(in bits)

(HMAC-)SHA-1 up-to 512 HMAC-SHA-1 160 112 ≤ s ≤ 160

(HMAC-)SHA-224 up-to 512 HMAC-SHA-224 224 112 ≤ s ≤ 224

(HMAC-)SHA-256 up-to 512 HMAC-SHA-256 256 112 ≤ s ≤ 256

(HMAC-)SHA-384 up-to 1024 HMAC-SHA-384 384 112 ≤ s ≤ 384

(HMAC-)SHA-512 up-to 1024 HMAC-SHA-512 512 112 ≤ s ≤ 512

AES-128-CMAC 128 AES-128-CMAC 128 112 ≤ s ≤ 128

AES-192-CMAC 192 AES-128-CMAC 128 112 ≤ s ≤ 128

AES-256-CMAC 256 AES-128-CMAC 128 112 ≤ s ≤ 128

Two-Step Key Derivation will make use of both salt and KDK.

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 40 of 48

6.2.3 HMAC-based Extract-and-Expand Key Derivation Function (HKDF) for
TLS v1.3

The SafeZone FIPS Cryptographic module provides HMAC-based Key Derivation
Function from RFC 5869, known as HKDF. This function is similar to NIST SP 800-
56C Two-Step Key Derivation, but not the same.

This is a non-FIPS approved function. The function can be used in FIPS mode of
operation for compatibility with TLS v1.3 protocol and NIST SP 800-52 Rev2 only.

6.2.4 NIST SP 800-132: Password-Based Key Derivation Function
The key derived using NIST SP 800-132 shall only be used for storage purposes.

Both options presented in NIST SP 800-132 for deriving the Data Protection Key
from the Master Key are supported.

The SafeZone FIPS Lib does not limit the length of the passphrase used in NIST SP
800-132 PBKDF key derivation. The upper bound for the strength of passwords
usually used is between 5 or 6 bits per character. Thus, for security over 64 bits, the
passwords must generally be longer than 12 characters.

Minimum requirements and limits for NIST SP 800-132:

• There is no maximum for length of salt used, but at least 128 bits (16 bytes) of
salt value must be randomly generated.

• Iteration count shall be as large as possible. Iteration count used must be at
least 1000 to meet minimum requirements of NIST SP 800-132. However,
often it is recommendable to use much larger iteration counts, such as 100000
or 1000000, when user-perceived performance is not critical.

• Resulting MK (Master key) can be used directly as the Data protection key, or
as input to KDF or as a decryption key for Encrypted Data protection key.

6.2.5 NIST SP 800-38D: Galois/Counter Mode
The FIPS 140-2 Implementation Guidance A.5 applies to AES-GCM usage with this
module.

Item 1 in IG A.5 forbids using external IV for encryption via the
FL_CryptAuthInit function. However, the FL_CryptAuthInit function is still
used for decryption and the FL_CryptAuthInit function is used for subsequent
encryption operations for operation sequences started with the
FL_EncryptAuthInitDeterministic function.

FL_CryptAuthInit function can also be used by the user to initialize AES-GCM
operation, when IV has been generated in manner compatible with AES-GCM
Implementation Guidance A.5, such as when internal IV generation has been
accomplished by other FIPS 140-2 validated module.

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 41 of 48

The operator must use the FL_EncryptAuthInitRandom function if random IV
generation (IG A.5 item 2) is required, or in case of deterministic IV generation (IG
A.5 item 3), the FL_EncryptAuthInitDeterministic function.

The module supports AES-GCM with IPSec, TLS v1.2, TLS v1.3 and SRTP
protocols. The IPSec and TLS v1.2 protocols will use the
FL_EncryptAuthInitDeterministic function. For TLS v1.3, functions
FL_CryptAuthInitTls13, FL_EncryptAuthFinishTls13,
FL_EncryptAuthTls13 and have been introduced. These functions provide
equivalent functionality than FL_EncryptAuthInitDeterministic, but work
with TLS v1.3 protocol values. TLS v1.3 uses 64-bit counter, but instead of counting
from 0, counter is masked (XOR) with 96-bit value (known as Encryption Salt)
derived at the same time than key. This value also offers equivalent of ModuleName
used by IG A.5 item 3. Therefore, it can be concluded that the scheme offers security
equivalent to IG A.5 item 3. Also decryption functions,
FL_DecryptAuthFinishTls13, FL_DecryptAuthTls13 functions are offered
for consistency. 64-bit counter incremented once per TCP record will never overflow
in practice. However, TLS 1.3 RFC 8446 suggests much smaller limits for key usage:
encryption of up-to 224.5 (around 24 million) full-size records is the recommended
maximum use for a key. It is responsibility of user to decide limit for key usage
(based on e.g. record size they use) and rekey or terminate connection after the
chosen limit has been met.

The module supports AES-GCM with SRTP (RFC 7714). For SRTP, functions
FL_EncryptAuthSrtp, FL_EncryptAuthSrtcp have been introduced. These
functions provide equivalent functionality than
FL_EncryptAuthInitDeterministic, but work with SRTP protocols. SRTP IV
consists of 32-bit field, SSRC (synchronization source), which acts like 32-bit
Module Name of IG A.5 item 3. SRTP uses 48-bit counter ROC || SEQ. This counter
is incremented internal to the cryptographic module. The module will detect overflow
of counter. It is responsibility of the user to rekey upon counter overflow. In addition,
SRTP uses 96-bit Encryption Salt that is XORred with other fields. For control
purposes, SRTP has additional protocol, SRTCP. SRTCP protocol is otherwise
identical to SRTP, but it uses different keys, and IV format where ROC || SEQ is
replaced by SRTCP index. SRTCP index is incremented internal to the cryptographic
module. The module will allow only 231 packets to be produced with SRTCP prior
rekeying.

• Note: If IV is generated internally in a deterministic manner, then FIPS 140-2
Implementation Guidance A.5: Item B3 applies: In case a module’s power is
lost and then restored, the key used for the AES GCM encryption/decryption
must be re-distributed.

6.2.6 NIST SP 800-38E: XTS Mode
The module supports XTS Mode for Confidentiality on Storage Devices. Both
XTS-AES-128 (256 bit key) and XTS-AES-256 (512 bit key) are supported. The

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 42 of 48

XTS-AES key is parsed as concatenation of two AES keys Key_1 and Key_2. As
is explained in FIPS 140-2 Implementation Guidance A.9, it is required that
Key_1 ≠ Key_2. If Key_1 = Key_2, attempt to perform XTS-AES encryption or
decryption will fail. The XTS Mode is only approved for usage in storage
applications.

6.2.7 NIST SP 800-67 Rev 2: Triple-DES Encryption
The module support Triple-DES encryption algorithm. The algorithm has tight
restrictions for maximum number of encryptions with a single key. It is allowed to
perform at most 220 (IETF protocols) or 216 (non-IETF protocols) data block
encryptions with the same Triple-DES key.

The module does not enforce these limits, instead the user of the module is
responsible for ensuring their use of the module meets these restrictions.

According to NIST SP 800-131A Rev 2, Triple-DES Encryption is deprecated
algorithm and is becoming disallowed after 2023. It is recommended that the users of
move to AES algorithm for symmetric encryption needs.

6.2.8 NIST SP 800-90A Rev1: Deterministic Random Bit Generator
The module generates cryptographic keys whose strengths are modified by available
entropy. No assurance of the minimum strength of the generated keys is given by the
module. Depending on the platform, the module provides access to different entropy
sources.

By default, the SafeZone FIPS Cryptographic Module DRBG uses x86/x86-64
architecture specific RDSEED or RDRAND instructions to obtain entropy. If the
instructions are not available, the module will use getrandom Linux system call. If the
system call does not exist, it will use operating system and platform independent
operating system device files as entropy sources. Primarily, the module uses
/dev/random as the entropy source on platforms that provide such an entropy
device. This entropy generation path is merely a convenience default. The quality of
entropy coming from /dev/random is not measured by the SafeZone FIPS
Cryptographic Module.

It is possible to use function FL_RbgUseNonblockingEntropySource to
configure /dev/urandom as the entropy source. The difference between
/dev/random and /dev/urandom is that when the entropy source does not know if
there is sufficient entropy available, /dev/random will block and /dev/urandom
will generate pseudo-random values based on available entropy. The quality of
entropy coming from /dev/urandom is not measured by the SafeZone FIPS
Cryptographic Module.

If Crypto Officer uses /dev/random or /dev/urandom as entropy source, it is up
to Crypto Officer to configure it suitably to provide reasonable security. Crypto
Officer can provide an entropy function which overrides the default entropy source.

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 43 of 48

6.2.9 NIST SP 800-133: Key Generation
The module allows key generation. Key generation will use one of random number
generators, NIST SP 800-90A Rev1 DRBG-CTR AES-256 or DRBG-CTR AES-128.
AES-256 based DRBG is used to generate symmetric keys and many of asymmetric
keys. AES-128 DRBG is used in generation of some asymmetric keys of up-to 128
bit equivalent security strength (such as RSA-2048 and RSA-3072 keys).

The output of the approved DRBG is used unmodified when symmetric keys are
generated. It is also used unmodified as random input for asymmetric key generation.

6.2.10 NIST SP 800-107 Rev 1: Truncated HMAC
The module supports truncation of HMAC results for all SHA-1 and SHA-2 family
hash functions. These include e.g. HMAC-SHA-1-80, HMAC-SHA-1-96, HMAC-
SHA-256-128, HMAC-SHA-384-192 and HMAC-SHA-512-256. Following
guidance of NIST SP 800-107 Rev 1, it is not allowed to truncate HMAC to less than
32-bits. Therefore, minimum allowed mac output length argument for the
FL_MacGenerateFinish or FL_MacVerifyFinish is 4.

6.2.11 Support of Industry Protocols
The module is intended to interoperate with established Industry Protocols.

The module implements wide support of primitives for building applications with
IKE, SRTP and/or TLS support. The key derivation functions from NIST SP 800-135
revision 1, various key agreement schemes, encryption and authentication functions
are implemented. In addition, key extract-and-expand scheme from NIST SP 800-56C
Rev1 is implemented for use with TLS v1.3.

Key Agreement groups supported for IKEv2 (IPsec) include 2048-bit MODP group
(ID=14), 3072-bit MODP group (ID=15), 4096-bit MODP group (ID=16), 6144-bit
MODP group (ID=17), 8192-bit MODP group (ID=18), 2048-bit MODP group with
224-bit prime order subgroup (ID=23), 2048-bit MODP group with 256-bit prime
order subgroup (ID=24), NIST P-224 (ID=26), NIST P-256 (ID=19), NIST P-384
(ID=20), and NIST P-521 (ID=21).

Key Agreement groups supported for TLS v1.0-v1.2 include ffdhe2048, ffdhe3072,
ffdhe4096, ffdhe6144, ffdhe8192, P-224, P-256, P-384, and P-521. In addition, the
module may process generic Diffie-Hellman parameters (with p between 2048 and
8192 bits), and the module can support RSA Key Transport with PKCS #1 v1.5.

This module supports implementation of IKEv1, IKEv2 and TLS v1.0/v1.1/v1.2
protocols. No parts of the protocols, other than KDF, have been tested by the CAVP
and CMVP. The module also supports implementation of TLS v1.3 protocol, but as
there is no CMVP guidance for TLS v1.3, the protocol has not been tested by CAVP
or CMVP.

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 44 of 48

6.2.12 Processor Algorithmic Acceleration
This module supports Processor Algorithm Acceleration (PAA) functions.

These functions allow fast and power efficient execution of common cryptographic
functions on processors.

The supported PAA implementations are:

• AES-NI (Intel and AMD processors)

◦ Accelerator sub-functions for AES implementations (including GCM)

• ARMv8-a Cryptography Extensions

◦ Accelerator sub-functions for AES and SHA implementations

These capabilities are automatically enabled on processors with appropriate support.
Processors without PAA support can be used, but AES or SHA performance will be
lower than for processors with PAA support. For compliance with requirements of
FIPS 140-2 Implementation Guidance 1.21, the same module is able to run with and
without Processor Algorithmic Acceleration functions.

6.3 Porting maintaining validation

SafeZone FIPS 140-2 product is typically delivered in binary format. The product in
binary format is validated for platforms mentioned in the validation certificate.

There is also another product available from the Rambus: source code product. This
package can be recompiled by the user for their target platform. Recompilation
without any changes to the module is allowed by FIPS 140-2 Implementation
Guidance G.5. If changes to the module are required, they need to be processed as a
revalidation (see FIPS 140-2 Implementation Guidance G.8 for details). This section
provides guidance for user post-validation porting of the module.

A user may perform post-validation porting of a module and affirm the modules
continued validation compliance provided that the following is maintained: A
software, firmware or hybrid cryptographic module will remain compliant with the
FIPS 140-2 validation when operating on any general purpose computer (GPC) or
platform provided that the GPC for the software module, or software controlling
portion of the hybrid module, uses the specified single user operating system/mode
specified on the validation certificate, or another compatible single user operating
system, or that the GPC or platform for the firmware module or firmware controlling
portion of the hybrid module, uses the specified operating system on the validation
certificate.

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 45 of 48

Rambus can provide unmodified source code of the cryptographic module for
purpose of post-validation porting. The package is only available within a commercial
licensing agreement. The module can be compiled for target system(s) with
commands:

 tar zxf FIPSLib1.2-src.tgz
 cd FIPSLib1.2-src
 make PLATFORM=target

The target can currently be one of x86_64-linux-gnu, i686-linux-gnu, arm-linux-
gnueabi, arm-linux-gnueabihf or aarch64-linux-gnu.

If the unmodified module does not compile with these commands, the target platform
cannot be supported without revalidation.

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 46 of 48

7 Self Tests

7.1 Power-Up Self-Tests
The SafeZone FIPS Cryptographic Module includes the following power-up self
tests:

• Software Integrity Test (using ECDSA Verify with NIST P-224)
• KAT test for SHA-1
• KAT test for SHA-512
• KAT test for SHA3-224
• KAT test for HMAC SHA-256
• KAT test for AES encryption (CBC, 128-bit key)
• KAT test for AES decryption (CBC, 128-bit key)
• KAT test for AES encryption (CCM, 128-bit key)
• KAT test for AES decryption (CCM, 128-bit key)
• KAT test for AES encryption (GCM, 128-bit key)
• KAT test for AES decryption (GCM, 128-bit key)
• KAT test for AES encryption (XTS, 128-bit key strength)
• KAT test for AES decryption (XTS, 128-bit key strength)
• KAT test for CMAC, 192-bit key
• KAT test for Triple-DES encryption (CBC, 192-bit key)
• KAT test for Triple-DES decryption (CBC, 192-bit key)
• KAT for RSA 2048-bit (signing and verification; PKCS #1 v1.5)
• KAT for DSA (signing P=2048/N=256; verification P=1024/N=160)
• KAT for ECDSA Signing (NIST P-224)
• KAT for KTS: RSA Key Wrapping 2048-bit (RSA-OAEP; encryption and

decryption)
• KAT for Diffie-Hellman
• KAT for EC Diffie-Hellman
• KAT for KBKDF (Counter Mode)
• KAT for 800-56C (includes KBKDF Feedback Mode)
• KAT for KBKDF (Double Pipeline Mode)
• KAT and health test for AES-CTR-256 DRBG
• KAT and health test for AES-CTR-128 DRBG

The self-tests are invoked automatically upon loading the SafeZone FIPS
Cryptographic Module. The initialization function FL_LibInit/FLS_LibInit is
executed via DEP (default entry point) as specified in FIPS 140-2 Implementation
Guidance 9.10.

Any error during the power-up self tests will result in a module transition to the error
state. There are two possible ways to recover from the error state:

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 47 of 48

• Reinitializing the module with the API function sequences FL_LibUnInit/
FLS_LibUnInit and FL_LibInit/FLS_LibInit.

• Power-cycling the device and reinitialize the module with the API function
FL_LibInit/FLS_LibInit. (Invoked automatically via DEP.)

The FL_LibStatus API function can be used to obtain the module status. It returns
FL_STATUS_INIT when the module has not yet been initialized and
FL_STATUS_ERROR when the module is in error state.

As it is recommended to self-test cryptographic components (like DRBG) frequently,
the module provides the capability to invoke the self-tests manually (on demand) with
the FL_LibSelfTest API function. The important difference between the manually
invoked self-tests and the automatically invoked self-tests when initializing the
module is that the manually invoked self-tests will not cause zeroization of the key
material currently loaded in the module, providing the tests execute successfully.

In general, if a self-test fails, the module will transition to the error state and the
return value (status) of the invoked API function will be something other than
FLR_OK, depending on the current situation.

7.2 Conditional Self tests
The SafeZone FIPS Cryptographic Module contains the following conditional self-
tests:

• Pair-wise consistency check for key pairs created for digital signature purposes
(DSA, FIPS 186-4)

• Pair-wise consistency check for key pairs created for digital signature purposes
(ECDSA, FIPS 186-4)

• Pair-wise consistency check for RSA key pairs created for digital signature (FIPS
186-4) or key transport (NIST SP 800-56B) purposes.

• Conditional health test for AES-CTR-256 DRBG (upon reseeding).
• Continuous random number generator test for DRBG.
• Continuous random number generator test for non-Approved NDRNG.

The conditional self-tests for manual key entry and software/firmware load or bypass
are not provided, as these are not applicable.

Any error during the conditional self tests will result in a module transition to the
error state. The ways to recover from the error state are listed in section 7.1.

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 48 of 48

8 Mitigation of Other Attacks
The module contains an implementation of the RSA algorithm with data independent
processing time for signing and decryption operations. This makes it harder to attack
the RSA implementation via timing attacks.

The module does not mitigate other attacks outside the scope of FIPS 140-2.

