

Intel Corporation Intel[®] DC SSD D7-D4512

FIPS 140-2 Cryptographic Module Non-Proprietary Security Policy

Document Version: 0.8 Date: June 3, 2020

Table of Contents

1	Introduction5		
	1.1 Hardware and Physical Cryptographic Boundary	.7	
1.1.	1 NVMe Interface	.7	
1.1.	2 SMBus Interface	.7	
	1.2 Firmware and Logical Cryptographic Boundary	.8	
	1.3 Modes of Operation	.9	
2	Cryptographic Functionality1	1	
	2.1 Critical Security Parameters	13	
	2.2 Public Security Parameters (PSP)	14	
3	Roles, Authentication and Services1	15	
	3.1 Assumption of Roles	15	
	3.2 Authentication Methods	16	
	3.3 Services	17	
4	Self-tests		
5	Physical Security	25	
	5.1 Physical Security Policy	25	
	5.2 Applying Tamper-Evident Seals for Drives Shipped in FIPS Non-Approved mode	28	
6	Operational Environment2	29	
7	Mitigation of Other Attacks Policy29		
8	Security Rules and Guidance29		
9	References and Definitions		

List of Tables

Table 1 – Cryptographic Module Configurations 5
Table 2 – Security Level of Security Requirements5
Table 3 – Ports and Interfaces7
Table 4 – Approved and CAVP Validated Cryptographic Functions11
Table 5 – Approved Cryptographic Functions Tested with Vendor Affirmation12
Table 6 – Non-Approved but Allowed Cryptographic Functions12
Table 7 – Critical Security Parameters (CSPs)13
Table 8 – Public Security Parameters14
Table 9 – Roles Description15
Table 10 – Unauthenticated Roles16
Table 11 – Authenticated Services
Table 12 – Unauthenticated Services19
Table 13 – CSPs and PSPs Access Rights within Services
Table 14 – Power-Up Self-Tests
Table 15 – Conditional Self-Tests
Table 16 – Physical Security Inspection Guidelines27
Table 17 – References
Table 18 – Acronyms and Definitions

List of Figures

Figure 1 Module picture	7
Figure 2 – Module Block Diagram	8
Figure 3 – Module Physical Enclosure - Front	25
Figure 4 – Module Physical Enclosure - Isometric	26
Figure 5 – Module Physical Enclosure - Back	26
Figure 6 – Module Physical Enclosure - Bottom	27
Figure 7 Applying Tamper-Evident Seals	28
Figure 8 Seal Application Locations	29

Copyrights and Trademarks

 $\ensuremath{\mathbb{C}}$ 2020 Intel Corporation. This document can be reproduced and distributed only whole and intact, including this copyright notice

1 Introduction

This document defines the Security Policy for the Intel[®] DC SSD D7-D4512 module, hereafter denoted as the Module. The Module is a PCIe dual-port Gen3 x 2 NVMe SSD with industry leading NAND delivering power-efficient performance with enterprise ready security and remote manageability capabilities. The Module meets FIPS 140-2 overall Level 2 requirements.

	Modules	HW P/Ns and Versions	Tamper-Evident Seals P/N	FW Version
1	Intel D7-D4512 1.92 TB	SSDPD2KS019T8R with J29722-003 Rev1 and J90877-300 Rev4		
2	Intel D7-D4512 3.84 TB	SSDPD2KS038T8R with J29722-003 Rev1 and J90878-300 Rev4	K33839-001	VPV1FT0K
3	Intel D7-D4512 7.68 TB	SSDPD2KS076T8R with J29722-003 Rev1 and J90879-300 Rev4		VIVILION
4	Intel D7-D4512 15.36 TB	SSDPD2KS153T8R with J76794-100 Rev9	1	

Table 1 – Cryptographic Module Configurations

The Module is intended for use by US Federal agencies and other markets that require FIPS 140-2 validated Self-Encrypting Solid State Disks. The Module is a multi-chip standalone embodiment.

The FIPS 140-2 security levels for the Module are as follows:

Security Requirement	Security Level
Cryptographic Module Specification	2
Cryptographic Module Ports and Interfaces	2
Roles, Services, and Authentication	2
Finite State Model	2
Physical Security	2
Operational Environment	NA
Cryptographic Key Management	2
EMI/EMC	2
Self-Tests	2
Design Assurance	2
Mitigation of Other Attacks	N/A

The Module implementation is compliant with:

- NVM Express 1.2b:
 - o <u>https://nvmexpress.org/wp-content/uploads/NVM_Express_1_2b_20160601-1.pdf</u>
- TCG Opal 2.01:
 - <u>https://trustedcomputinggroup.org/wp-content/uploads/TCG_Storage-</u>
 <u>Opal_SSC_v2.01_rev1.00.pdf</u>
- NVMe-MI 1.0a:
 - <u>https://nvmexpress.org/wp-</u>
 <u>content/uploads/NVM Express Management Interface 1 0a 2017.04.08 gold.pdf</u>

1.1 Hardware and Physical Cryptographic Boundary

The Module is designed to be embedded in a General Purpose Computer (host) and is connected through the PCIe connector. The physical form of the Module is depicted in Figure 1.

Figure 1 Module Picture

The cryptographic boundary is defined as the external perimeter of the SSD enclosure represented in Figure 1.

The physical ports and logical interfaces are identified in Table 3 below:

raple 5 - rous and multillerates	Table	3 –	Ports	and	Interfaces
----------------------------------	-------	-----	-------	-----	------------

Port	Interfaces	Description	Logical Interface Type
PCle connector	NVMe	NVMe interface used for both normal and maintenance operations	Control in Data in Data out Status out
	SMBus	Management interface	Control in Status out
	Power	Power interface	Power

1.1.1 NVMe Interface

The NVMe interface provides the primary interface to interact with the module. Most services provided by the module are accessed via the NVMe Interface including Opal configuration, reading and writing user data, retrieving FIPS capability support, and retrieving FIPS status reporting.

1.1.2 SMBus Interface

The SMBus interface provides the ability to audit the SSD environment (temperature, Vital Product Data).

1.2 Firmware and Logical Cryptographic Boundary

The Module is composed of the following components:

- 1. P4512 The storage controller ASIC. This component is responsible for terminating PCIe/NVMe commands, reading or writing data to the Host platform, encrypting or decrypting data from the Host platform, and storing or retrieving data to NAND non-volatile memory.
- 2. AL5 The PCIe dual-port bridge ASIC. This component is responsible for bridging two PCIe Gen3x2 interfaces into a single PCIe Gen3x4 interface on the storage controller ASIC.
- 3. DDR Dynamic RAM. These components are used by the AL5 bridge for temporary storage of data and/or parameters that are needed by the AL5 controller during execution.
- 4. NAND non-volatile memory. These components comprise the non-volatile media of the storage device. These components store encrypted user data, firmware for the P4512, and other non-volatile configuration data needed by the P4512 controller during execution.
- 5. PIC SMBus controller.

The Module relies on the PCIe/NVMe interface as input/output devices.

Figure 2 depicts the Module block diagram:

Figure 2 – Module Block Diagram

The PCIe Host is attached to the Module via two PCIe Gen3x2 interfaces supporting 2 lanes each which are bridged by the AL5 ASIC into a single PCIe Gen3x4 interface on the P4512 ASIC. The dual PCIe interfaces provide the data input, data output, control and status interface. The NVMe layer handles NVMe 1.2b commands. Some of the NVMe 1.2b commands may be handled by firmware running in the P4512 controller via interrupts to the P4512 controller.

Firmware is located in AL5 and P4512 components. AL5 contains neither security relevant implementation, CSPs, nor Public parameters with the exception of the plaintext password that is passed through the AL5 to be processed by the P4512.

1.3 Modes of Operation

The Module ships from the manufacturing facility with either the FIPS Approved firmware identified in Table 1 or a firmware which was not validated.

To determine if a module is using a FIPS Approved firmware version, the FIPS Compliance Descriptor will be retrieved via the Read FIPS Compliance service and the following information will be verified:

- 1. Related Standard indicates FIPS 140-2 (2) on byte 13
- 2. Overall Security Level indicates Level 2 (2) on byte 14
- 3. Compliance Descriptor Hardware Version (byte 16) matches the HW P/N and Version column of a configuration in Table 1
- 4. Compliance Descriptor Version (byte 144) matches the FW Version column of a configuration in Table 1.
- 5. Compliance Descriptor Module Name (byte 272) matches the Module column of a configuration in Table 1.

When the FIPS firmware is installed, the module is placed in a FIPS uninitialized mode and user authentication is not enabled.

When the FIPS firmware is not installed, the user will have to perform the following operations to transition the module to a FIPS uninitialized mode:

- 1. Update the firmware with the Firmware download verification service to the FIPS Approved firmware.
- 2. Reset the module.
- 3. Enable/Activate Opal.
- 4. Perform an AdminSP Revert method on the AdminSP.
- 5. Apply the tamper-evident seals as shown in Section 5.2.

The Module must be placed into the FIPS Approved mode of operation (Initialized) through the following initialization procedure:

- 1. Taking ownership of Opal by setting the AdminSP SID credential to something other than MSID.
- 2. Activating the LockingSP.
- 3. Setting the WriteLockEnabled and ReadLockEnabled column within the Locking Table of all ranges containing sensitive user data.

The CO role is responsible for configuration of other CO roles and User roles as well as enabling locking/unlocking of any of the CO or User role-controlled areas (locking ranges). The User roles are responsible for enabling locking/unlocking of the assigned locking ranges as well as performing

locking/unlocking of their assigned locking range. In FIPS Approved mode (Initialized), both the CO and User Roles require authentication and unlock prior to allowing access to data, whereas the uninitialized mode does not. The module will be in non-Approved mode of operation if not initialized.

To determine if a Module is in the FIPS Approved mode of operation (Initialized), the following must be verified:

- 1. The LockingEnabled bit of the TCG Level 0 Discovery Locking Feature Descriptor is set to 1
- 2. The ReadLockEnabled column of the Locking Table is set to the *True* state for all ranges covering sensitive user data

It is possible to switch from the FIPS Approved Initialized mode to uninitialized mode by performing the AdminSP Revert method. However, the module shall be initialized to be in a FIPS mode of operation before any User accesses the Module and calls any services different than those described in Section 1.3.

2 Cryptographic Functionality

The Module implements the FIPS Approved and Non-Approved but Allowed cryptographic functions listed in the tables below.

Algorithm	Description	Cert #
AES	[FIPS 197, SP 800-38A]	C586
	Functions: CTR Cryptographic Erase of encryption Keys, CBC Encryption and Decryption of encryption Keys	
	Modes: ECB, CTR, CBC	
	Key size: 256 bits	
AES	[FIPS 197, SP 800-38F]	C793
	Functions: Encryption and Decryption of the Keys	
	Modes: KW	
	Key size: 256 bits	
AES	[FIPS 197, SP 800-38A, SP 800-38E]	C587
	Functions: XTS Encryption and Decryption operations	
	Modes: XTS, ECB	
	Key size: 256 bits	
DRBG	[SP 800-90A]	C817
	Functions: HMAC DRBG	
	Hash: SHA-256 (Cert. #C586)	
	Security Strength: 256 bits	
НМАС	[FIPS 198-1]	C593
	Functions: Firmware Message Authentication Generation (Firmware Download), Verification of Firmware on Boot (integrity test)	
	SHA size: SHA-256 (Cert. #C593)	
НМАС	[FIPS 198-1]	C586
	Functions: HMAC-DRBG random number generation, KBKDF, PBKDF2	
	SHA size: SHA-256 (Cert. #C586)	
Key Based KDF	[SP800-108]	C793
(KBKDF)	Functions: Derivation of the keys used to wrap key blobs for cryptographic erase	
	Options HMAC-SHA-256: (Cert. #C586)	

Table 4 – Approved and CAVP Validated Cryptographic Functions

Algorithm	Description	Cert #
RSA	[FIPS 186-4 and PKCS #1 v2.1 (PKCS1.5)]	C793
	Functions: Digital Signature Verification (Firmware Download, Maintenance authentication)	
	Key size: 2048 bits	
	Hash: SHA-256 (Cert. #C586)	
SHS	[FIPS 180-4]	C593
	Functions: HMAC Digital Signature Generation (Firmware Download), Firmware Integrity test using HMAC	
	SHA size: SHA-256	
SHS	[FIPS 180-4]	C586
	Functions: Digital Signature Verification (Firmware Download), HMAC DRBG, Key Based-KDF operations	
	SHA size: SHA-256	

Table 5 – Approved Cryptographic Functions Tested with Vendor Affirmation

Algorithm	Description	IG Ref.
СКБ	[SP 800-133] Section 7.1: Direct symmetric key generation using unmodified DRBG	Vendor Affirmed IG
	output	D.12
	Section 7.4: Symmetric Keys Derived From a Pre-shared Key	
Password-Based	[SP 800-132]	Vendor
KDF	Options: PBKDF2 with Option 1a	Affirmed IG
	Functions: HMAC-based KDF using SHA-256 (Cert. #C586)	D.6
	Used as part of authentication of User and Cryptographic Officer roles	
	Note: the keys derived from passwords are only used for storage applications.	

Table 6 – Non-Approved but Allowed Cryptographic Functions

Algorithm	Description
NDRNG	[Annex C] Hardware Non-Deterministic RNG. The NDRNG provides a seed with a minimum entropy of 256 bits to the FIPS Approved DRBG.
Password Based KDF (no security claimed)	[SP 800-132] HMAC-based KDF with SHA-256. Used as part of PSID verification only.

Algorithm	Description
Key Based KDF (no	[SP800-108]
security claimed)	Functions:
	 Derivation of the key used to verify the Firmware Integrity.
	 Derivation of a key used to obfuscate the keys
AES KW (no security	[FIPS 197, SP 800-38F]
claimed)	Key storage encryption with a non-Approved method

Non-Approved Cryptographic Functions for use in non-FIPS mode only: None.

2.1 Critical Security Parameters

All CSPs used by the Module are described in this section. All usage of these CSPs by the Module (including all CSP lifecycle states) is described in the services detailed in Section 3.3.

CSP	Description / Usage
DRBG-EI	3096-bit DRBG entropy input
DRBG-State	HMAC_DRBG internal state (V and C)
AdminSPKREK	AdminSP Key Ring Encryption Key, AES-256 key
AdminSPPassword	AdminSP passwords used to authenticate the CO
АЅРРКеу	AdminSP Key derived from the CO passwords, AES-256 key
MEK	Media Encryption Keys, AES-256 keys
МКЕК	Media Key Encryption Keys, AES-256 keys
KREK	Key Ring Encryption Key, AES-256 key
U-Password	Passwords used to authenticate the CO and User
UPKey	Key derived from the CO and User passwords with PBKDF2, AES-256 keys
REK _{MEK}	Reset Ephemeral Key for Media Encryption Keys, AES-256 key
REK _{мкек}	Reset Ephemeral Key for Media Key Encryption Keys, AES-256 key
CEERK	Crypto Erase Ephemeral Root Key, 256-bit random data
СЕЕК	Crypto Erase Ephemeral Key, AES-256 key

Table 7 – Critical Security Parameters (CSPs)

2.2 Public Security Parameters (PSP)

Table 8 – Public Security Parameter

Кеу	Description / Usage
FW_Pub	2048-bit RSA public Key used to verify the signature of the firmware
PSID	32 bytes value used to call the TCG Revert service
MSID	32 bytes value used to initialize the Module (first authentication)
Salt	PBKDF2 Salt, 20-byte value
Unlock_Key	Asymmetric Diagnostic Unlock Public Key: 2048-bit RSA public Key used to verify the certificate of the authorized intel entity that is unlocking the drive for diagnostic access

3 Roles, Authentication and Services

3.1 Assumption of Roles

The Module supports three (3) distinct operator roles: User, Cryptographic Officer (CO) and Maintenance roles. The cryptographic Module enforces the separation of the Cryptographic Officer and User roles using a credential (named password or PIN) that is provisioned for the administrator (CO) and User roles as part of taking ownership and personalization of the Opal security subsystem. The credential is verified as part of authentication as the specific role during session startup to the Opal Security Subsystem. Access control over configuration mechanisms under control of the administrator is enforced by the Module firmware.

The Maintenance role is entered via authentication of an RSA 2048-bit challenge/response protocol with 512-bit nonce and PSID verification (to prove physical presence). This role grants maintenance and recovery capabilities to the cryptographic Module implementer.

Table 9 lists all operator roles supported by the Module.

The Module does not support concurrent operators. If multiple successful authentications occur in an active session to the Opal security subsystem to multiple roles, modifications are possible to the Opal security subsystem under both roles simultaneously, however, it is assumed that the separation is performed by the human operators and not by the cryptographic Module or the software that is the session owner. Neither the administrator credential nor the user credential are discoverable/readable through the Opal Security Subsystem, regardless of the active authentication state in the session.

Role ID	Role Description	Authentication Type	Authentication Data
со	Cryptographic Officer – - Opal Locking SP Admin Authorities (4)	Role-based	14-byte to 32-byte password (U- Password) Five (5) attempts are
	- Opai Adminse Admin and Sid Authorities (2) - Ability to configure start addresses and encryption within the Module (locking ranges)		possible before requiring a power-on reset of the storage device
	-Ability to provide user roles with the ability to enable/disable locking on a locking range		
	- Ability to enable/disable locking on a locking range		
	 Ability to cryptographically erase a locking range 		
	- Ability to move from FIPS Approved Initialized Mode to FIPS uninitialized mode through AdminSP Revert		

Table 9 – Roles Description

© 2020 Intel Corporation

This document can be reproduced and distributed only whole and intact, including this copyright notice.

Role ID	Role Description	Authentication Type	Authentication Data
User	User – - Opal Locking SP User Authorities (8) - Ability to enable/disable locking on a locking range - Ability to cryptographically erase a locking range	Role-based	14-byte to 32-byte password (U- Password) Five (5) attempts are possible before requiring a power-on reset of the storage device
Maintenance	Maintenance role - Ability to recover debug logs - Ability to bring device to healthy state when otherwise non- functional - Ability to load authenticated firmware into the Module	Role-based	RSA 2048-bit challenge/response protocol w/ 512 bit nonce and PSID verification (to prove physical presence)

Table 10 – Unauthenticated Roles

Role ID	Role Description	Public Authentication Data (if present)
PSID	PSID role – - PSID Authority - Ability to move from FIPS Approved initialized Mode to FIPS uninitialized mode through AdminSP Revert which also causes Zeroization of all CSPs	32-byte value (written on the Module) Five (5) attempts are possible before requiring a power-on reset of the storage device
Anybody	User – -Ability to read MSID -Ability to read all configuration data in AdminSP and LockingSP tables (except for PIN values)	N/A

3.2 Authentication Methods

CO and User Password/PIN Authentication Method

The Module supports a maximum of four (4) admin users (CO) and nine (9) individual users (8 locking ranges plus one global range as defined by [TCG-OPAL]. Each user may insert a unique password/PIN up to 32 bytes in order to authenticate to the Module and act on the Module in that role. The password/PIN length must be at least 14 bytes (see Security Rules and Guidance).

Thus, the probability of guessing a password/PIN in a single attempt is $1/2^{112}$ (= $1/2^{8*14}$) which is smaller than $1/10^{6}$.

The Module enforces a count-based access protection mechanism that supports, at most, five (5) password authentication attempts per second. After five (5) consecutive unsuccessful password validation attempts have occurred, the Module requires a reset before any more login attempts can be attempted. The reset time required in performing a reset to the Module is one (1) second. Therefore, 5 * 30 = 150 password attempts may be executed in one minute where the overall search space is 2^112 leaving a false acceptance probability in one minute of 150/2^112, which is smaller than 1/10^5 as required for FIPS 140-2.

The password/PIN is received in plaintext by the Module and the Module passes the password through the PBKDF2 algorithm with 20 bytes of salt in order to derive the CO and the User CSPs to access the media.

Maintenance Authentication Method

This authentication method is used to verify the Maintenance role as part of the maintenance unlock mechanism. The operator, external to the module, must perform a challenge response authentication mechanism in addition to PSID verification to authenticate as the Maintenance role. The challenge response authentication mechanism is performed through the following steps:

- The operator requests a 64-byte challenge from the module through a vendor unique command

 The module will generate a 64-byte challenge using the HMAC-DRBG.
- 2. The operator collects the 64-byte challenge and has it signed by an authorized Intel representative that has access to an RSA leaf private key and a leaf certificate that has been signed with the RSA private key that corresponds to the RSA Asymmetric Diagnostic Unlock public key contained in the CM.
- 3. The operator then provides the signed 64-byte challenge, the leaf certificate, and the PSID value as a return response to the CM.
- 4. The CM then verifies the PSID, the leaf certificate, and then the RSA signed 64-byte challenge.
- 5. If all of these steps are successful, the CM will then transition into maintenance mode.

The Maintenance role challenge response authentication mechanism leverages a 64-byte nonce and 2048-bit signature verification. The security strength of the authentication method is greater than 112 bits. Therefore, the probability of a random attempt of generating a matching signed challenge is 1/2^112 which is smaller than 1/10^6.

The module can perform up to 1,500 authentication verifications per one minute where the overall search space is 2^112 leaving a false acceptance probability in one minute of 1,500/2^112 (= 2.88E-31), which is smaller than 1/10^5 as required for FIPS 140-2.

3.3 Services

All services implemented by the Module in FIPS initialized mode are listed in Table 11 and Table 12 below. Each service description also describes all usage of CSPs by the service. The service names highlighted in bold in Table 11 and Table 12 can be called in the FIPS uninitialized mode.

Note:

- CO = Cryptographic Officer Role
- U = User Role
- FM = Maintenance Role

Service	Description	СО	U	FM
Take Ownership	Sets the SID credential to something other than MSID	Х		
Data Encryption/Decryption	Protects access to the Media Encryption Keys stored in the Module in ciphertext form. The cryptographic officer or user password is used to generate an intermediate key (Pkey) which is used to unwrap a Key Ring Encryption Key which is then used to unwrap the Media Key Encryption Key which is then used to unwrap the Media Encryption Key.	X	x	
Enable/Disable of Opal (FIPS Approved, Initialized Mode)	Enable through TCG Activate/Disable Opal through AdminSP or LockingSP Revert	х		
Change admin password	Change any password in AdminSP	Х		
Zeroize/AdminSP Revert	Destroy user data (TCG Revert)	Х		
Disable authorities	Disable authorities to make them invalid and no longer able to authenticate to the drive.	х		
Configure Locking Ranges	Configure locking ranges in the CM.	х		
Change any password in Admin/Locking SP	Change any password in Locking SP	х		
Format NVM/ GenKey	Destroy any data (changing key)	х		
TCG RevertSP and keep data	Revert and keep data. Reset all configuration data in the locking SP but do not destroy user data in the Global Range.	х		
Set data store	Set data store – write data into the Opal data store tables.	х		
Configure Access Control	Change which entity can manage/lock/unlock an encryption range.	Х		
Lock, unlock ranges	Lock, unlock ranges from access to read/writes on the data input/output interface	Х	x	
Set common name – Locking SP if allowed by Locking SP Admin	If the Locking SP Administrator allows, change the common name to reflect different text in the Locking SP		x	

Service	Description	CO	U	FM
Set data store if allowed by Locking SP Admin	If Locking SP Administrator allows, change data in the data store tables		х	
FW Maintenance	Retrieve FW Maintenance Logs, recover device from non-functional state			х
Maintenance FW update	The module allows the firmware to be updated through a vendor unique command in the event of a firmware failure. This authentication mechanism is used to verify the firmware using RSASSA-PKCS1-v1.5 signature verification with SHA-256 and an internal public key.			х

Table 12 – Unauthenticated Services

Service	Description
Module Reset (Self-test)	Reset the Module by power cycle, or PERST#. Performs self-tests, firmware integrity check.
Warm Reset	Resets the module by performing an NVMe Subsystem Reset.
Read of configuration (show status)	Opening a session as Anybody does not require authentication. During an active session in this state, the CM will provide Status/Level 0 Discovery information, the version number, and Opal security configuration. This will be invoked during the FIPS Approved Mode check.
Read FIPS Compliance	Reads FIPS 140 compliance descriptor as defined in [SFSC].
NVMe Firmware download verification	The module allows the firmware to be updated through the NVMe Firmware Download and Commit commands. This authentication mechanism is used to verify the firmware using RSASSA-PKCS1-v1.5 signature verification with SHA256 and FW_Pub.
Zeroization/PSID Revert	Destroys all CSPs after PSID verification.
NVMe-MI Basic Management Command	Retrieves drive status (status flags, SMART warnings, temperature, VID, serial number, etc.).
User/Admin Authentication (start session)	Authenticates a user using a TCG credential.
FW Maintenance unlock	The Module authenticates the maintenance role using challenge response authentication and PSID verification and upon successful authentication, maintenance capabilities are unlocked.
Random	Generates a random number and returns it to the caller of the method.

Service	Description
Telemetry	The module allows the collection of debugging information through NVMe log pages – host-initiated telemetry log page and controller initiated log page.
	The purpose of the telemetry log data is to provide information required to debug firmware issues remotely.
Sanitize	Destroys any data (changing key) while in FIPS uninitialized mode.

Table 13 defines the relationship between access to CSPs and the different Module services. The modes of access shown in the table are defined as:

- G = Generate: The Module generates the CSP.
- \bar{G} = Generate: The Module generates the CSP unless the CSP is the Global Range MEK, in which case it is not destroyed, but preserved through the service.
- R = Read: The Module reads the CSP. The read access is typically performed before the Module uses the CSP.
- E = Execute: The Module executes using the CSP.
- W = Write: The Module writes the CSP. The write access is typically performed after a CSP is imported into the Module, when the Module generates a CSP, or when the Module overwrites an existing CSP.
- Z = Zeroize: The Module zeroizes plaintext and ciphertext CSPs.
- Ž = Plaintext Zeroize: The Module zeroizes all plaintext instances of the CSP from memory, if present

	CSF	CSPs											PSPs						
Services	DRBG-EI	DRBG-State	AdminSPKREK	AdminSPPassword	ASPPKey	MEK	MKEK	KREK	U-Password	UPKey	REK _{MEK}	REK _{MKEK}	CEERK	CEEK	FW_Pub	PSID	MSID	Salt	Unlock_Key
Unauthenticated																			
Module Reset	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z G	Z G		Z					
Warm Reset	Z	Ζ		Z	Z				Ζ	Ζ	RE	RE		Ζ					
Read of configuration (show status)																			
Read of FIPS Compliance																			
NVMe Firmware download verification															RE				

Table 13 – CSPs and PSPs Access Rights within Services

	CSF	S													PS	Ps			
Services	DRBG-EI	DRBG-State	AdminSPKREK	AdminSPPassword	ASPPKey	MEK	MKEK	KREK	U-Password	UPKey	REK _{MEK}	REK _{MKEK}	CEERK	CEEK	FW_Pub	PSID	MSID	Salt	Unlock_Key
Zeroization/PSID Revert			Ζ			Ζ	Ζ	Z						Ζ		R		Ζ	
NVMe-MI Basic Management Command																			
User/Admin Authentication (start session)			RE	RE	G E Z	RE	RE	RE	RE Z	G E Z	RE	RE						RE	
FW Maintenance unlock	Ž	Ž	Ž	Ž	Ž	Ž	Ž	Ž	Ž	Ž	Ž	Ž	Ž	Ž					RE
Random	G RE W	RE W	1		1	1	1		1	-		-	1		1				
Telemetry										-	I	-			-		1		
Sanitize	G RE W	RE W				Z G W							Z G W	G E					
Authenticated																			
Take Ownership	G RE W	RE W	G E W	RE	RE			G E W		RE			Z G W	G E			R E	G E W	
Data Encryption/Decryption						RE													
Enable/Disable of Opal	G RE W	RE W	RE	R	G E		G RE	G RE		G E			Z G W	G E				G E W	
Change admin password	G RE W	RE W	RE	RE	G E			RE W		G E			Z G W	G E					
Zeroize/AdminSP Revert	G RE W	RE W	z		G E	z	z	z		G E			Z G W	G E				z	
Disable authorities			G W					G W											
Configure Locking Ranges																			
Change any password in Admin/Locking SP	G RE W	RE W	G E W	RE Z	G E			G E W	RE Z	G E			Z G W	G E				G E W	
Format NVM/GenKey	G RE W	RE W				Z G W	RE						Z G W	G E					
TCG RevertSP and keep data	G RE W	RE W				Ġ Z	Z	Z					Z G W	G E				Z	
Set data store																			

	CSF	CSPs												PSPs					
Services	DRBG-EI	DRBG-State	AdminSPKREK	AdminSPPassword	ASPPKey	MEK	MKEK	KREK	U-Password	UPKey	REK _{MEK}	REK _{MKEK}	CEERK	CEEK	FW_Pub	PSID	MSID	Salt	Unlock_Key
Configure Access Control			RE				R W	RE											
Lock, unlock ranges			RE		G E	R	RE	RE		G E			Z G W	G E					
Set common name – Locking SP if allowed by Locking SP Admin																			
Set data store if allowed by Locking SP Admin																			
FW Maintenance																			
Maintenance FW update															RE				

4 Self-Tests

Each time the Module is powered up, it tests that the cryptographic algorithms still operate correctly and that sensitive data has not been damaged. Power-up self-tests are available on demand by power cycling the Module.

On power-up or reset, the Module performs the Self-Tests described in Table 14 below. All KATs must be completed successfully prior to any other use of cryptography by the Module. If one of the KATs fails, the Module enters an internal error state if the failure is during the ROM boot stage of the device. If the device has exited the ROM boot stage, the Module enters a soft error state requiring reset of the Module.

Test Target	Description
Firmware Integrity	HMAC-SHA-256 (Cert. #C593) (used to verify all firmware upon boot from internal media on the P4512 controller).
	32-bit modular sum (used to verify all firmware upon boot from internal media on the AL5 ASIC)
AES-CTR (Cert. #C586)	KATs: Encryption, Decryption
	Modes CTR
	Key size: 256 bits
AES-CBC (Cert. #C586)	KATs: Encryption, Decryption
	Mode: CBC
	Key size: 256 bits
AES-ECB (Cert. #C586)	KATs: Encryption, Decryption as part of AES-CTR KAT
AES-KW (Cert. #C793)	KATs: Encryption, Decryption
	Mode: KW
	Key size 256 bits
AES-XTS (Cert. #C587)	KATs: Encryption, Decryption
	Mode: XTS
	Key size: 256 bits
AES-ECB (Cert. #C587)	KATs: Encryption, Decryption as part of AES-XTS KAT
	Key size: 256 bits
DRBG (Cert. #C817)	KATs: HMAC DRBG (inclusive of instantiate, generate and reseed)
	Mode: HMAC SHA-256
	Security Strength: 256 bits
HMAC (Cert. #C593)	KATs: Verification as part of Firmware Integrity test
	SHA size: SHA-256
HMAC (Cert. #C586)	KATs: Generation as part of DRBG KAT
	SHA size: SHA-256
KBKDF (Cert. #C793)	KATs: Key Derivation
	Key size: 256 bits
RSA (Cert. #C793)	KATs: Signature Verification with SHA-256 (Cert. #C586)
	Key size: 2048 bits
SHS (Cert. #C586)	KATs: SHA-256 as part of RSA KAT
SHS (Cert. #C593)	KATs: SHA-256 as part of HMAC Firmware Integrity Test

Table 14 – Power-Up Self-Tests

Table 15 – Conditional Self-Tests

Test Target	Description
NDRNG	NDRNG Continuous Test performed when a random value is requested from the NDRNG.
Firmware load test	Firmware signature verification based on RSA PKCS#1 v1.5 with SHA-256 and 2048- bit key.

If a self-test fails, the Module will indicate the following information:

- Firmware integrity: either the Module will not respond or will not enumerate
- KAT (other than XTS-AES): the module will not enumerate
- XTS-AES KAT: the SSD NVMe Identify service will return 1 at offset 4010
- Firmware upload: the SSD will return Invalid Image
- NDRNG: the SSD NVMe Identify service will return 1 at offset 4010

During the Initialization period, the module can send the NVMe SSD driver to the host to allow the host to communicate with the SSD after the POST.

5 Physical Security

5.1 Physical Security Policy

The following physical security mechanisms are implemented in the cryptographic Module:

- The Module consists of production-grade components enclosed in an aluminum alloy enclosure, which is opaque within the visible spectrum. The enclosure contains two parts: a top and bottom part that affix together through the use of a hinge on the back side of the Module and two (2) screws that affix the top to the bottom near the PCIe edge connector.
- Two (2) tamper-evident seals (one large and one small) are affixed to the front of the Module such that if the Module top and bottom are separated, exposing the internals of the Module, that the tamper-evident seals will be broken in the process. The position of the two (2) tamper-evident seals is indicated in Figure 3. The two tamper-evident seals are captured as part of one-part number that is listed in Table 1.

Figure 4 – Module Physical Enclosure - Isometric

Figure 5 – Module Physical Enclosure - Back

Figure 6 – Module Physical Enclosure - Bottom

The following table summarizes the actions required by the Cryptographic Officer Role to ensure that physical security is maintained:

Physical Security Mechanism	Recommended Frequency of Inspection/Test	Inspection/Test Guidance Details
Production grade cases	On initial receipt of the device and annually at a minimum afterwards.	Inspect the entire perimeter for cracks, gouges, lack of enclosure, bent clips, and other signs of tamper. Remove from service if tampering is found.
Two (2) Tamper-evident Seals		Inspect the tamper-evident seals for scratches, gouges, cuts and other signs of tamper. Remove from service if tampering is found.

Table 16 – Physical Security Inspection Guidelines

© 2020 Intel Corporation

This document can be reproduced and distributed only whole and intact, including this copyright notice.

5.2 Applying Tamper-Evident Seals for Drives Shipped in FIPS Non-Approved mode

Modules shipped in FIPS Non-Approved mode may not include the required tamper-evident seals. The tamper-evident seals shall be installed for the module to operate in a FIPS Approved mode of operation.

To convert the module to a FIPS Approved mode of operation, the following procedure must be followed to apply the provided seals to the module:

- 1. Clean seal surface
 - a. Use isopropyl alcohol of equivalent solution to remove any contaminants from the enclosure seam seal location
 - b. Handle drive and seal with gloves
- 2. There are two different size seals with a designated location for each seal. The larger seal is applied to the right front of the module; the smaller seal on the left front (see Figure 3).
- 3. Use tweezers to lift seal from liner and place on the seam of the enclosure for the designated area (see Figure 7).
- 4. Apply finger pressure to seal pressing out any air or lifted edges

Figure 7 Applying Tamper-Evident Seals

NOTES: ALL DIMENSIONS ARE IN INCHES.

Figure 8 Seal Application Locations

6 Operational Environment

The Module is designated as a non-modifiable operational environment under the FIPS 140-2 definitions. The Module includes a firmware load service to support necessary updates. The Module will not load or execute firmware which is not signed with the Intel 2048-bit RSA private key. The mechanisms available to perform a firmware load are the following:

- 1. Through NVMe using NVMe Firmware Download and Commit operations
- 2. Through NVMe after entering the Maintenance role

New firmware versions within the scope of this validation must be validated through the FIPS 140-2 CMVP. Any other firmware loaded into this Module is out of the scope of this validation and require a separate FIPS 140-2 validation.

7 Mitigation of Other Attacks Policy

The cryptographic Module has not been designed to mitigate any specific attacks beyond the scope of FIPS 140-2.

8 Security Rules and Guidance

The Module design corresponds to the Module security rules. This section documents the security rules enforced by the cryptographic Module to implement the security requirements of this FIPS 140-2 Level 2 Module.

1. The Module shall provide three distinct operator roles: Maintenance, User and Cryptographic Officer.

- 2. The Module shall provide role-based authentication.
- 3. The Module shall clear previous authentications on power cycle.
- 4. When the Module has not been placed in a valid role, the operator shall not have access to any cryptographic services.
- 5. The operator shall be capable of commanding the Module to perform the power-up self-tests by cycling power or resetting the Module.
- 6. Power-up self-tests do not require any operator action.
- 7. Data output shall be inhibited during self-tests and error states.
- 8. Data output shall be logically disconnected during key generation and zeroization.
- 9. Status information does not contain CSPs or sensitive data that if misused could lead to a compromise of the Module.
- 10. There are no restrictions on which keys or CSPs are zeroized by the zeroization service.
- 11. The Module does not support concurrent operators.
- 12. The Module does not support manual key entry.
- 13. The Module does have external input/output devices used for entry/output of data.
- 14. The Module does not output plaintext CSPs.
- 15. The Module does not output intermediate key values.
- 16. The Module does not support a bypass capability service.
- 17. The Module does not support the update of the logical serial number or vendor ID.

This section documents the security rules imposed by the vendor.

- 1. The operator is capable of commanding the Module to perform the power-up Self-Tests by cycling power or resetting the Module.
- 2. The shipping container protecting the module or set of modules in transit should be verified for tamper evidence.
- 3. If the Module is shipped from the factory with the FIPS firmware installed and uninitialized (TCG Opal is in a manufactured inactive state), the following step will have to be followed. On receipt of the Module, the CO should examine the product to ensure it has not been tampered with during shipping according to the procedures outlined in the Section 5. Upon verification that the Module has not been tampered, the user should initialize the module as described in Section 1.3.
- 4. If the module is shipped with the FIPS firmware not installed, seals will need to be applied as described in Section 5 and then the module must be initialized as described in Section 1.3.
- 5. The module CSPs may be zeroized by calling the Revert method on the AdminSP in the Opal interface of the cryptographic Module.
- 6. The module shall be zeroized through "Module Reset" and "Zeroize/Destroy User Data through TCG Revert" prior to performing a Maintenance operation.

- 7. The module shall be zeroized using the service: "Module Reset" and "Zeroize/Destroy User Data through TCG Revert" after performing a Maintenance operation. The operator shall follow the procedure contained in "Intel__SSD_DC_D7-D4512 _Procedure_To_Exit_Maintenance_Mode.pdf" Version 1.0 to exit the maintenance mode.
- 8. The password length must be greater than 14 bytes.
- 9. The Module shall be initialized by the CO before any User access the Module and calling any services different than those described in Section 1.3.

9 References and Definitions

The following standards are referred to in this Security Policy.

Abbreviation	Full Specification Name
[FIPS140-2]	Security Requirements for Cryptographic Modules, May 25, 2001
[SP800-131Arev2]	Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms and Key Lengths, March 2019
[TCG-OPAL]	Storage Work Group Storage Security Subsystem Class: Opal, Version 2.01 Final, Revision 1.00
[SFSC]	Information technology – Security Features for SCSI Commands (SFSC)

Table 1	8 – Acron	yms and	Definitions
---------	-----------	---------	-------------

Acronym	Definition
ASCII	American Standard Code for Information Interchange
AES	Advanced Encryption Standard
СВС	Cipher Block Chain mode of AES encryption/decryption
со	Cryptographic Officer
CSP	Critical Security Parameters
DRBG	Deterministic Random Bit Generator
ЕСВ	Electronic Code Book mode of AES encryption/decryption
КАТ	Known Answer Test
KBKDF	Key Based Key Derivation Function
KDF	Key Derivation Function
MSID	Manufactured SID, Public value that is used as default password
NVMe	Non-Volatile Memory express
PBKDF	Password Based Key Derivation Function
PCIe	Peripheral Component Interconnect express
POST	Power-On Self-Test
PSID	Physical SID, a public unique value for each drive
RSA	Rivest Shamir Adleman
SHA	Secure Hash Algorithm
SHS	Secure Hash Standard
SID	Secure ID

© 2020 Intel Corporation

This document can be reproduced and distributed only whole and intact, including this copyright notice.

Acronym	Definition
TCG	Trusted Computing Group
XTS	XEX Tweakable Block Cipher with Ciphertext Stealing