

Juniper Networks vSRX 3.0 Virtual Firewall

Non-Proprietary FIPS 140-2 Cryptographic Module Security Policy

Document Version: 1.0

Date: June 24, 2020

Juniper Networks, Inc. 1133 Innovation Way Sunnyvale, California 94089 USA 408.745.2000 1.888 JUNIPER www.juniper.net

Table of Contents

1	Introduction	4
	1.1 Cryptographic Boundary	6
2	Cryptographic Functionality	9
	2.1 Approved Algorithms 2.2 Allowed Algorithms 2.3 Allowed Protocols 2.4 Disallowed Algorithms and Protocols 2.5 Critical Security Parameters	12 12 13
3	Roles, Authentication and Services	16
	 3.1 Roles and Authentication of Operators to Roles 3.2 Authentication Methods 3.3 Services 3.4 Non-Approved Services 	16 17
4	Self-tests	20
5	Physical Security Policy	22
6	Security Rules and Guidance	23
	6.1 Crypto-Officer Guidance	
7	References and Definitions	26

List of Tables

Table 1 – Cryptographic Module Tested Configurations	4
Table 2 – Security Level of Security Requirements	4
Table 3 – Ports and Interfaces	6
Table 4 – Data Plane Approved Cryptographic Functions	g
Table 5 – Control Plane QuickSec Approved Cryptographic Functions	
Table 6 – OpenSSL Approved Cryptographic Functions	
Table 7 – OpenSSH Approved Cryptographic Functions	
Table 8 – LibMD Approved Cryptographic Functions	
Table 9 – Kernel Approved Cryptographic Functions	
Table 10 – Allowed Cryptographic Functions	12
Table 11 – Protocols Allowed in FIPS Mode	12
Table 12 – Critical Security Parameters (CSPs)	14
Table 13 – Public Keys	
Table 14 – Authenticated Services	17
Table 15 – Unauthenticated traffic	17
Table 16 – CSP Access Rights within Services	17
Table 17 – Authenticated Services	18
Table 18 – Unauthenticated traffic	19
Table 19 – References	26
Table 20 – Acronyms and Definitions	27
Table 21 – Datasheets	27
List of Figures	
	_
Figure 1- Module's Cryptographic Boundary	

1 Introduction

The Juniper Networks vSRX 3.0 Virtual Firewall (here after referred to as vSRX 3.0 or the module) is a secure firewall that provide essential capabilities to connect, secure, and manage work force locations sized from handfuls to hundreds of users. By consolidating fast, highly available switching, routing, security, and applications capabilities in a single device, enterprises can economically deliver new services, safe connectivity, and a satisfying end user experience. The vSRX 3.0 runs Juniper's JUNOS software. The JUNOS software is FIPS-compliant, when configured in FIPS-MODE called JUNOS-FIPS-MODE, version 19.2R1. The software image is junos-install-vsrx3-x86-64-19.2R1.8.tgz for the vSRX 3.0 and the software status service identifies itself as in the "Junos OS 19.2R1".

The cryptographic module is defined as multiple-chip standalone software module. The module executes JUNOS-FIPS software on a VMware ESXi Hypervisor on the hardware platforms identified in Table 1.

Table 1 – Cryptographic Module Tested Configurations

Model	Software Version	Processor	HypervisorESXi	Hardware Platform
vSRX 3.0	Junos OS 19.2R1	Intel Xeon E5	ESXi 6.5	HP ProLiant DL380 Gen9 Server
vSRX 3.0	Junos OS 19.2R1	Intel Xeon D	ESXi 6.5	PacStar 451 Server
vSRX 3.0	Junos OS 19.2R1	Intel Corei5	ESXi 6.5	PacStar 451 Server

The module is designed to meet FIPS 140-2 Level 1 overall:

Table 2 – Security Level of Security Requirements

Area	Description	Level
1	Module Specification	1
2	Ports and Interfaces	1
3	Roles and Services	3
4	Finite State Model	1
5	Physical Security	N/A
6	Operational Environment	1
7	Key Management	1
8	EMI/EMC	1
9	Self-test	1
10	Design Assurance	3
11	Mitigation of Other Attacks	N/A
	Overall	1

The module has a limited operational environment as per the FIPS 140-2 definitions. The module does not implement any mitigations of other attacks as defined by FIPS 140-2.

1.1 Cryptographic Boundary

The cryptographic boundary of the module is depicted in Figure 1 below. The physical cryptographic boundary is defined as the outer edge of the hardware server on which the hypervisor and Juniper Networks vSRX 3.0 Virtual Firewall are installed. The module does not rely on external devices for input and output of critical security parameters (CSPs). The logical boundary is the Juniper vSRX 3.0 Virtual Firewall which is comprised of the Junos OS 19.2R1 software.

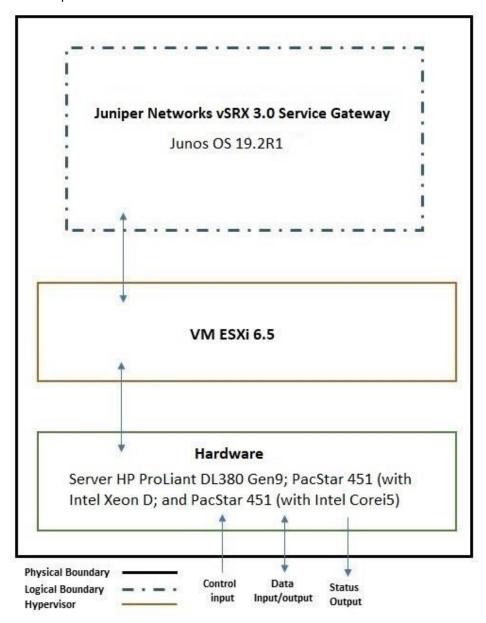


Figure 1- Module's Cryptographic Boundary

Table 3 - Ports and Interfaces

Physical Port/Interface	Logical Port/Interface	FIPS Interface
Host Platform Ethernet ports	Virtual Ethernet Ports	Data Input
Host Platform Ethernet ports	Virtual Ethernet Ports	Data Output
Host Platform Ethernet ports/	Virtual Ethernet Ports,	_
Serial port	Virtual Serial Ports	Control Input
Host Platform Ethernet ports/	Virtual Ethernet Ports,	
Serial port	Virtual Serial Ports	Status Output

1.2 Mode of Operation

The Crypto-Officer (CO) shall follow the instructions in Section 6 to download, install and initialize the module onto the platform identified in Table 1. Next, the module is configured in FIPS-MODE, as described below, and rebooted. Once the module is rebooted and the integrity and self-tests have run successfully on initial power-on in FIPS-MODE, the module is operating in the FIPS-Approved mode.

If the module was previously in a non-Approved mode of operation, the Cryptographic Officer must zeroize the CSPs by following the instructions in Section 1.3.

The CO shall enable the module for FIPS mode of operation by performing the following steps.

1. Enable the FIPS mode on the device.

user@host> set system fips level 2

2. Commit and reboot the device.

user@host> commit

Note: This module is a FIPS Level 1 module but the command "set system fips level 2" must be used to invoke a FIPS mode of operation.

Then, the CO must run the following commands to configure SSH to use FIPS approved and FIPS allowed algorithms:

1. Specify the permissible SSH host-key algorithms for the system services.

[edit system services]
root@host# set ssh hostkey-algorithm ssh-ecdsa

2. Specify the SSH key-exchange for Diffie-Hellman keys for the system services.

[edit system services] root@host#set ssh key-exchange ecdh-sha2-nistp256

3. Specify all the permissible message authentication code algorithms for SSHv2.

[edit system services]
root@host#set ssh macs hmac-sha1

4. Specify the ciphers allowed for protocol version 2.

[edit system services] root@host#set ssh ciphers aes128-cbc

When AES GCM is configured as the encryption-algorithm for IKE or IPsec, the CO must configure the module to use IKEv2 by running the following commands:

IKE:

IPSec:

root@host# set security ike proposal <ike_proposal_name> encryption-algorithm aes-256-gcm

 $root@host\#\ set\ security\ ipsec\ proposal < ipsec_proposal_name > encryption-algorithm\ aes-128-gcm$

root@host# set security ike gateway <gateway_name> version v2-only

root@host# commit
commit complete

When Triple-DES is configured as the encryption-algorithm for IKE or IPsec, the CO must configure the IPsec proposal lifetime-kilobytes to comply with [IG A.13] using the following command:

co@fips-srx:fips# set security ipsec proposal <ipsec_proposal_name> lifetime-kilobytes <kilobytes>" co@fips-srx:fips# commit

When Triple-DES is the encryption-algorithm for IKE (regardless of the IPsec encryption algorithm), the lifetime-kilobytes for the associated IPsec proposal must be greater than or equal to 6913080.

When Triple-DES is the encryption-algorithm for IPsec, the lifetime-kilobytes must be less than or equal to 8192.

The "show version" command will display the version of the Junos OS on the device so that the CO can confirm it is the FIPS validated version. The CO should also verify that the cli prompt if a "fips" prompt indicating the module is operating in FIPS mode.

The "show configuration security ike" and "show configuration security ipsec" commands display the approved and configured IKE/IPsec configuration for the device operating in FIPS-approved mode.

1.3 Zeroization

The cryptographic module provides a non-Approved mode of operation in which non-approved cryptographic algorithms are supported. When transitioning between the non-Approved mode of operation and the Approved mode of operation, the Cryptographic Officer must zeroize the Approved mode CSPs. This is achieved by removing the vSRX virtual machine from the datastore by following the below steps on VMWare vSphere:

- 1) Power off the vSRX virtual machine
- 2) Ensure that another virtual machine is not sharing the disk. If two virtual machines are sharing the same disk, the disk files are not deleted
- 3) Right click the virtual machine and select *All vCenter Actions > Delete from Disk*.
- 4) Click OK

The cryptographic officer shall perform zeroization in the following situations:

- 1. Before FIPS Operation: To prepare the device for operation as a FIPS cryptographic module by erasing all CSPs and other user-created data on a device before its operation as a FIPS cryptographic module.
- 2. Before non-FIPS Operation: To conduct erasure of all CSPs and other user-created data on a device in preparation for repurposing the device for non-FIPS operation.

Note: The Cryptographic Officer must retain control of the module while zeroization is in process.

2 Cryptographic Functionality

The module implements the FIPS Approved and Non-Approved but Allowed cryptographic functions listed in Tables 4, 5, 6, 7, 8 and 9 below. Table 11 summarizes the high-level protocol algorithm support. There maybe some algorithm modes that were tested but not implemented by the module. Only the algorithms, modes, and key sizes that are implemented by the module are shown in this/these table(s).

2.1 Approved Algorithms

References to standards are given in square bracket []; see the References table.

Table 4 - Data Plane Approved Cryptographic Functions

CAVP				Key Lengths, Curves, or	
Cert.	Algorithm	Standard	Mode	Moduli	Functions
C936	AES	PUB 197-38A	СВС	Key Sizes: 128, 192, 256	Encrypt, Decrypt
	AES	SP 800-38D	GCM	Key Sizes: 128, 192, 256	Encrypt, Decrypt, AEAD
6036	LINAAC	PUB 198	SHA-1	Key size: 160 bits, λ = 96	NAcces of Authorities in
C936	HMAC		SHA-256	Key size: 256 bits, λ = 128	Message Authentication
C936	SHS	PUB 180-4	SHA-1 SHA-256		Message Digest Generation
C936	Triple-DES	SP 800-67	TCBC [38A]	Key Size: 192	Encrypt, Decrypt

Table 5 – Control Plane QuickSec Approved Cryptographic Functions

CAVP Cert.	Algorithm	Standard	Mode	Key Lengths, Curves, or Moduli	Functions	
6020	AFC	PUB 197-38A	CBC	Key Sizes: 128, 192, 256	Encrypt, Decrypt	
C939	AES	SP 800-38D	GCM	Key Sizes: 128, 256	Encrypt, Decrypt, AEAD	
N/A¹	CKG	SP 800 - 133rev2	Section 5.2		Asymmetric seed generation using unmodified DRBG output	
C939	CVL	SP 800-135	IKEv1	SHA 256, 384	Key Derivation	
C333	CVL	VL	IKEv2	SHA 256, 384	key Derivation	
C939	DRBG	SP 800-90A	HMAC	SHA-256	Random Bit Generation	
C939	ECDSA	PUB 186-4		P-256 (SHA 256) P-384 (SHA 384)	KeyGen, SigGen, SigVer	
C939	НМАС	PUB 198	SHA-256	Key size: 256 bits, Λ = 256	Message Authentication, KDF Primitive	
				Key size: 384 bits,	KUF FIIIIIIIIVE	

¹ Vendor Affirmed.

				λ = 384		
N/A	KTS	KTS		AES Cert. # C	939 and HMAC Cert. # C939	key establishment methodology provides between 128 and 256 bits of encryption strength
			Triple-DES Ce # C939	ert. # C939 and HMAC Cert.	key establishment methodology provides 112 bits of encryption strength	
C939	RSA	PUB 186-4	PKCS1_V1_ 5	n=2048 (SHA 256) n=4096 (SHA 256)	SigGen, SigVer ²	
C939	SHS	PUB 180-4	SHA-256 SHA-384		Message Digest Generation	
C939	Triple-DES	SP 800-67	TCBC	Key Size: 192	Encrypt, Decrypt	

Table 6 – OpenSSL Approved Cryptographic Functions

CAVP Cert.	Algorithm	Standard	Mode	Key	Lengths, Mod	Curves, or uli	Functions
C937	AES	PUB 197-38A	CBC CTR	Key S	izes: 128,	192, 256	Encrypt, Decrypt
C937	DRBG	SP 800-90A	HMAC	SHA-2	256		Random Bit Generation
N/A³	CKG	SP 800 - 133rev2	Section 5.1 Section 5.2			Asymmetric seed generation using unmodified DRBG output	
			Section 6.2.	1			Derivation of symmetric keys
C937	ECDSA	PUB 186-4		P-256 (SHA 256) P-384 (SHA 384) P-521 (SHA 512)		1)	SigGen, KeyGen, SigVer, PKV
			SHA-1	Key si	ze: 160 b	its, λ = 160	Message
1 FUD 130 55		SHA-512	Key size: 512 bits, λ = 512		its, λ = 512	Authentication	
C337	HMAC		SHA-256	Key si	ze: 256, λ	. = 256	Message Authentication DRBG Primitive
N/A ⁴	KAS	SP 800- 56Arev3	DH/ ECC	ΣH	SSHD, PKID	P-256 (SHA 256)	Key Agreement Scheme - Key

² RSA 4096 SigVer was not tested by the CAVP; however, it is Approved for use per CMVP guidance, because RSA 2048 SigVer was tested and testing for RSA 4096 SigVer is not available.

³ Vendor Affirmed.

⁴ Vendor Affirmed per IG D.1rev3.

					IKED	P-384 (SHA 384) P-521 (SHA 512) P-256 (SHA 256) P-384 (SHA 384), Group 24	Agreement Scheme Shared Secret Computation (KAS-SSC) per SP 800-56Arev3, Key Derivation per SP 800-135 (CVL Cert. #C939)
N/A	KTS		AES Cert. # C937 and HMAC Cert. # C937 Triple-DES Cert. # C937 and HMAC Cert. # C937			key establishment methodology provides between 128 and 256 bits of encryption strength key establishment methodology provides 112 bits of encryption strength	
C937	RSA	PUB 186-4	n=2048 (SHA 256, 512) n=4096 (SHA 256, 512)			KeyGen ⁵ , SigGen, SigVer ⁶	
C937	SHS	PUB 180-4	SHA-1 SHA-256 SHA-384 SHA-512				Message Digest Generation, KDF Primitive Message Digest Generation
C937	Triple-DES	SP 800-67	TCBC	Key S	ize: 192		Encrypt, Decrypt

Table 7 – OpenSSH Approved Cryptographic Functions

CAVP				Key Lengths, Curves, or	
Cert.	Algorithm	Standard	Mode	Moduli	Functions
C935	CVL	SP 800-135	SSH	SHA 1, 256, 384	Key Derivation

Table 8 – LibMD Approved Cryptographic Functions

CAVP Cert.	Algorithm	Standard	Mode	Key Lengths, Curves, or Moduli	Functions
C934	HMAC	PUB 198	SHA-1	Key size: 160 bits, $\lambda = 160$	Dassword Hashing
C934	HIVIAC		SHA-256	Key size: 256 bits, λ = 256	Password Hashing
C934	SHS	PUB 180-4	SHA-1		Message Digest Generation

⁵ RSA 4096 KeyGen was not tested by the CAVP; however, it is Approved for use per CMVP guidance, because RSA 2048 KeyGen was tested and testing for RSA 4096 KeyGen is not available.

Copyright Juniper, 2020 Version 1.0 Page 11 of 27

⁶RSA 4096 SigVer was not tested by the CAVP; however, it is Approved for use per CMVP guidance, because RSA 2048 SigVer was tested and testing for RSA 4096 SigVer is not available.

SHA-256	
SHA-512	

Table 9 – Kernel Approved Cryptographic Functions

CAVP	Alexandria	Charles	No. 1	Key Lengths, Curves, or	5
Cert.	Algorithm	Standard	Mode	Moduli	Functions
C932	DRBG	SP 800-90A	HMAC	SHA-256	Random Bit Generation
C932	HMAC	PUB 198	SHA-256	Key size: 256, λ = 256	DRBG Primitive
C932	SHS	PUB 180-4	SHA-1		Message Authentication
C332	3113		SHA-256		DRBG Primitive

2.2 Allowed Algorithms

Table 10 - Allowed Cryptographic Functions

Algorithm	Caveat	Use
NDRNG [IG] 7.14 Scenario 1b	The module generates a minimum of 256 bits of entropy for key generation.	Seeding the DRBG

2.3 Allowed Protocols

Table 11 - Protocols Allowed in FIPS Mode

Protocol	Key Exchange	Auth	Cipher	Integrity
IKEv1 ⁷	Diffie-Hellman (L = 2048, N = 256) EC Diffie-Hellman P-256, P-384	RSA 2048 RSA 4096 Pre-Shared Secret ECDSA P-256 ECDSA P-384	Triple-DES CBC AES CBC 128/192/256	SHA-256 SHA-384
IKEv2 ⁸	Diffie-Hellman (L = 2048, N =256) EC Diffie-Hellman P-256, P-384	RSA 2048 RSA 4096 Pre-Shared Secret ECDSA P-256 ECDSA P-384	Triple-DES CBC AES CBC 128/192/256 AES GCM ⁹ 128/256	SHA-256 SHA-384
IPsec ESP	 IKEv1 with optional: Diffie-Hellman (L = 2048, N = 256) EC Diffie-Hellman P-256, P-384 	IKEv1	3 Key Triple-DES CBC AES CBC 128/192/256	HMAC-SHA- 1-96

⁷ RFC 2409 governs the generation of the Triple-DES encryption key for use with the IKEv1 protocol.

⁸ IKEv2 generates the SKEYSEED according to RFC7296, from which all keys are derived to include Triple-DES keys.

 $^{^9}$ The AES GCM IV is generated according to RFC5282 and is used only in the context of the IPSec protocol as allowed in IG A.5. Rekeying is triggered after 2^{32} AES GCM transformations.

			AES GCM ¹⁰	HMAC-SHA-
			128/192/256	256-128
			3 Key Triple-DES CBC	
	IKEv2 with optional:		AES CBC	
	• Diffie-Hellman (L = 2048, N = 256)	IKEv2	128/192/256	
	EC Diffie-Hellman P-256, P-384		AES GCM ¹¹	
			128/192/256	
SSHv2 ¹²	EC Diffie-Hellman P-256, P-384, P-521	RSA 2048 ECDSA P-256	Triple-DES CBC AES CBC 128/192/256 AES CTR 128/192/256	HMAC-SHA- 1-96 HMAC-SHA- 1 HMAC-SHA- 256 HMAC-SHA- 512

No part of these protocols, other than the KDF, have been tested by the CAVP and CMVP.

The IKE and SSH algorithms allow independent selection of key exchange, authentication, cipher and integrity. In reference to the Allowed Protocols in Table 11 above: each column of options for a given protocol is independent and may be used in any viable combination. These security functions are also available in the SSH connect (non-compliant) service.

2.4 Disallowed Algorithms and Protocols

These algorithms are non-Approved algorithms that are disabled when the module is operated in an Approved mode of operation.

Algorithms:

- ARCFOUR
- Blowfish
- CAST
- DSA (SigGen, SigVer; non-compliant)
- HMAC-MD5
- HMAC-RIPEMD160
- UMAC

Protocols:

Finger

ftp

• rlogin

 $^{^{10}}$ The AES GCM IV is generated according to RFC4106 and is used only in the context of the IPSec protocol as allowed in IG A.5. Rekeying is triggered after 2^{32} AES GCM transformations.

¹¹ The AES GCM IV is generated according to RFC4106 and is used only in the context of the IPSec protocol as allowed in IG A.5. Rekeying is triggered after 2³² AES GCM transformations.

¹² RFC 4253 governs the generation of the Triple-DES encryption key for use with the SSHv2 protocol.

- telnet
- tftp
- xnm-clear-text

2.5 Critical Security Parameters

All CSPs and public keys used by the module are described in this section.

Table 12 - Critical Security Parameters (CSPs)

Name	Description and usage
DRBG_Seed	Seed material used to seed or reseed the DRBG
DRBG_State	V and Key values for the HMAC_DRBG
Entropy Input String	256 bits entropy (min) input used to instantiate the DRBG
ECDH Shared Secret	The Diffie-Hellman shared secret used in EC Diffie-Hellman (ECDH) exchange. Created per the EC Diffie-Hellman protocol. Provides between 128-256 bits of security.
DH Shared Secret	The shared secret used in Diffie Hellman (DH) key exchange. 128 bits. Established per the Diffie-Hellman key agreement.
SSH PHK	SSH Private host key. 1 st time SSH is configured, the keys are generated. RSA 2048, ECDSA P-256. Used to identify the host.
SSH ECDH	SSH Elliptic Curve Diffie-Hellman private component. Ephemeral Diffie-Hellman private key used in SSH. ECDH P-256, or ECDH P-384 or ECDH P-521
SSH-SEKs	SSH Session Keys: SSH Session Encryption Key: TDES (3key) or AES; SSH Session Integrity Key: HMAC
ESP-SEKs	IPSec ESP Session Keys: IKE Session Encryption Key: TDES (3key) or AES; IKE Session Integrity Key: HMAC.
IKE-PSK	Pre-Shared Key used to authenticate IKE connections.
IKE-Priv	IKE Private Key. RSA 2048, RSA 4096, ECDSA P-256, or ECDSA P-384
IKE-SKEYID	IKE SKEYID. IKE secret used to derive IKE and IPsec ESP session keys.
IKE-SEKs	IKE Session Keys: IKE Session Encryption Key: TDES (3key) or AES; IKE Session Integrity Key: HMAC
IKE-DH-PRI	IKE Diffie-Hellman private component. Ephemeral Diffie-Hellman private key used in IKE. DH (L=2048, N = 256), ECDH P-256, or ECDH P-384
HMAC Key	The LibMD HMAC keys: message digest for hashing password and critical function test.
CO-PW	ASCII Text used to authenticate the CO.
User-PW	ASCII Text used to authenticate the User.

Table 13 – Public Keys

Name	Description and usage
SSH-PUB	SSH Public Host Key used to identify the host. RSA 2048, ECDSA P-256.
SSH-ECDH-	Diffie-Hellman public component. Ephemeral Diffie-Hellman public key used in SSH key
PUB	establishment. ECDH P-256, ECDH P-384 or ECDH P-521
IKE-PUB	IKE Public Key RSA 2048, RSA 4096, ECDSA P-256, or ECDSA P-384
IKE-DH-PUB	Diffie-Hellman public component. Ephemeral Diffie-Hellman public key used in IKE key establishment. DH (L = 2048, N = 256), ECDH P-256, or ECDH P-384
Auth-UPub	User Authentication Public Keys. Used to authenticate users to the module. ECDSA P256 or P-384
Auth-COPub	CO Authentication Public Keys. Used to authenticate CO to the module. ECDSA P256 or P-384
Root-CA	JuniperRootCA. ECDSA P-256 or P-384 X.509 Certificate; Used to verify the validity of the Juniper Package-CA at software load.
Package-CA	PackageCA. ECDSA P-256 X.509 Certificate; Used to verify the validity of Juniper Images at software load and also at runtime integrity.

3 Roles, Authentication and Services

3.1 Roles and Authentication of Operators to Roles

The module supports two roles: Cryptographic Officer (CO) and User. The module supports concurrent operators, but does not support a maintenance role and/or bypass capability. The module enforces the separation of roles using either of the identity-based operator authentication methods in section 3.2.

The Cryptographic Officer role configures and monitors the module via a console or SSH connection. As root or super-user, the Cryptographic Officer has permission to view and edit secrets within the module.

The User role monitors the router via the console or SSH. The user role may not change the configuration.

3.2 Authentication Methods

The module implements two forms of Identity-Based authentication, Username and password over the Console and SSH as well as Username and ECDSA or RSA public key over SSH.

Password authentication: The module enforces 10-character passwords (at minimum) chosen from the 96 human readable ASCII characters. The maximum password length is 20-characters. Thus, the probability of a successful random attempt is $1/96^{10}$, which is less than 1/1 million.

The module enforces a timed access mechanism as follows: For the first two failed attempts (assuming 0 time to process), no timed access is enforced. Upon the third attempt, the module enforces a 5-second delay. Each failed attempt thereafter results in an additional 5-second delay above the previous (e.g. 4th failed attempt = 10-second delay, 5th failed attempt = 15-second delay, 6th failed attempt = 20-second delay, 7th failed attempt = 25-second delay).

This leads to a maximum of 7 possible attempts in a one-minute period for each getty. The best approach for the attacker would be to disconnect after 4 failed attempts and wait for a new getty to be spawned. This would allow the attacker to perform roughly 9.6 attempts per minute (576 attempts per hour/60 mins); this would be rounded down to 9 per minute, because there is no such thing as 0.6 attempts. The probability of a success with multiple consecutive attempts in a one-minute period is $9/(96^{10})$, which is less than 1/100,000.

ECDSA signature verification: SSH public-key authentication. The module supports ECDSA (P-256, P-384, and P-521), which has a minimum equivalent computational resistance to attack of either 2^128, 2^192 or 2^256 depending on the curve. Thus, the probability of a successful random attempt is 1/ (2^128), which is less than 1/1,000,000. Configurable SSH connection establishment rate limits the number of connection attempts, and thus failed authentication attempts in a one-minute period to a maximum of 15,000 attempts. The probability of a success with multiple consecutive attempts in a one-minute period is 15,000/(2^128), which is less than 1/100,000.

RSA signature verification: SSH public-key authentication. The module supports RSA (2048, 4096), which has a minimum equivalent computational resistance to attack of 2^112 (2048). Thus, the probability of a successful random attempt is 1/ (2^112), which is less than 1/1,000,000. Configurable SSH connection establishment rate limits the number of connection attempts, and thus failed authentication attempts in a one-minute period to a maximum of 15,000 attempts. The probability of a success with multiple consecutive attempts in a one-minute period is 15,000/ (2^112), which is less than 1/100,000.

3.3 Services

All services implemented by the module are listed in the tables below. Table 16 lists the access to CSPs by each service.

Table 14 – Authenticated Services

Service	Description	СО	User
Configure security	Security relevant configuration	Х	
Configure	Non-security relevant configuration	Χ	
Secure Traffic	IPsec protected connection (ESP)	Х	
Status	Show status	Χ	х
Zeroize	Destroy all CSPs	Х	
SSH connect	Initiate SSH connection for SSH monitoring and control (CLI)	Х	х
IPsec connect	Initiate IPsec connection (IKE)	Х	
Console access	Console monitoring and control (CLI)	Х	Х
Remote reset	Software initiated reset	Х	

Table 15 – Unauthenticated traffic

Service	Description
Local reset	Hardware reset or power cycle
Traffic	Traffic requiring no cryptographic services

Table 16 - CSP Access Rights within Services

		CSPs															
Service	DRBG_Seed	DRBG_State	Entropy Input String	DH Shared Secret	ECDH Shared Secret	SSH РНК	SSH DH	SSH-SEK	ESP-SEK	IKE-PSK	IKE-Priv	IKE-SKEYID	IKE-SEK	IKE-DH-PRI	HMAC Key	CO-PW	User-PW
Configure security	1	E	1	G W R	G W R	G W R		1	1	W R	G W R	1		1	G	W	w
Configure	1	1	-	1	-	1		1	1	-		-		1	1	1	
Secure traffic		-			-	-		-	E				E		-		
Status																	
Zeroize	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z				Z	Z	Z

SSH connect		E		E	E	E	GE	GE								E	E
IPsec connect		E							G	E	E	GE	G	GE	1		
Console access		-		-	-	1	1	1	1	1	1			1	1	E	E
Remote reset	GE Z	GZ	GZ	Z	Z	1	Z	Z	Z	1	1	Z	Z	Z	1	Z	Z
Local reset	GE Z	GZ	GZ	Z	Z		Z	Z	Z			Z	Z	Z	1	Z	Z
Traffic																	

G = Generate: The module generates the CSP

R = Read: The CSP is read from the module (e.g. the CSP is output)

E = Execute: The module executes using the CSP

W = Write: The CSP is updated or written to the module

Z = Zeroize: The module zeroizes the CSP.

3.4 Non-Approved Services

The following services are available in the non-Approved mode of operation. The security functions provided by the non-Approved services are identical to the Approved counterparts with the exception of SSH Connect (non-compliant) and IPsec Connect (non-compliant). SSH Connect (non-compliant) supports the security functions identified in Section 2.4 and the SSHv2 row of Table 11. The IPsec (non-compliant) supports the DSA in Section 2.4 and the IKEv1, IKEv2 and IPSec rows of Table 11.

Table 17 - Authenticated Services

Service	Description	СО	User
Configure security (non-compliant)	Security relevant configuration	Х	
Configure (non- compliant)	Non-security relevant configuration	Х	
Secure Traffic (non- compliant)	IPsec protected connection (ESP)	X	
Status (non- compliant)	Show status	Х	х
Zeroize (non- compliant)	Destroy all CSPs	Х	
SSH connect (non- compliant)	Initiate SSH connection for SSH monitoring and control (CLI)	Х	х
IPsec connect (non- compliant)	Initiate IPsec connection (IKE)	Х	
Console access (non-compliant)	Console monitoring and control (CLI)	Х	х
Remote reset (non- compliant)	Software initiated reset	Х	

Table 18 – Unauthenticated traffic

Service	Description
Local reset (non- compliant)	Hardware reset or power cycle
Traffic (non- compliant)	Traffic requiring no cryptographic services

4 Self-tests

Each time the module is powered up, it tests that the cryptographic algorithms still operate correctly, and that sensitive data have not been damaged. Power-up self—tests are available on demand by power cycling the module.

On power-up or reset, the module performs the self-tests described below. All KATs must be completed successfully prior to any other use of cryptography by the module. If one of the KATs fails, the module enters the Critical Failure error state.

The module performs the following power-up self-tests:

- Software Integrity check using ECDSA P-256 with SHA-256
- Data Plane KATs
 - AES-CBC (128/192/256) Encrypt KAT
 - AES-CBC (128/192/256) Decrypt KAT
 - Triple-DES-CBC Encrypt KAT
 - o Triple-DES-CBC Decrypt KAT
 - o HMAC-SHA-1 KAT
 - o HMAC-SHA-256 KAT
 - AES-GCM (128/192/256) Encrypt KAT
 - AES-GCM (128/192/256) Decrypt KAT

Control Plane QuickSec KATs

- SP 800-90A HMAC DRBG KAT
 - Health-tests initialize, re-seed, and generate
- RSA 2048 w/ SHA-256 Sign KAT
- RSA 2048 w/ SHA-256 Verify KAT
- ECDSA P-256 w/ SHA-256 Sign/Verify PCT
- Triple-DES-CBC Encrypt KAT
- Triple-DES-CBC Decrypt KAT
- o HMAC-SHA-256 KAT
- AES-CBC (128/192/256) Encrypt KAT
- AES-CBC (128/192/256) Decrypt KAT
- AES-GCM (128/256) Encrypt KAT
- o AES-GCM (128/256) Decrypt KAT
- KDF-IKE-V1 KAT
- KDF-IKE-V2 KAT

OpenSSL KATs

- SP 800-90A HMAC DRBG KAT
 - Health-tests initialize, re-seed, and generate.
- ECDSA P-256 Sign/Verify PCT
- ECDH P-256 KAT
 - Derivation of the expected shared secret.
- RSA 2048 w/ SHA-256 Sign KAT
- o RSA 2048 w/ SHA-256 Verify KAT
- Triple-DES-CBC Encrypt KAT
- Triple-DES-CBC Decrypt KAT
- o HMAC-SHA-1 KAT
- o HMAC-SHA-256 KAT

- o HMAC-SHA-512 KAT
- AES-CBC (128/192/256) Encrypt KAT
- o AES-CBC (128/192/256) Decrypt KAT
- O KAS-ECC-EPHEM-UNIFIED-NOKC KAT
- KAS-FFC-EPHEM-NOKC KAT

OpenSSH KATs

KDF-SSH-SHA256 KAT

LibMD KATs

- o HMAC SHA-1
- o HMAC SHA-256
- o SHA-512

Kernel KATs

- SP 800-90A HMAC DRBG KAT
 - Health-tests initialize, re-seed, and generate
- o HMAC-SHA-256 KAT
- SHA-1

Critical Function Test

 The cryptographic module performs a verification of a limited operational environment, and verification of optional non-critical packages.

The module also performs the following conditional self-tests:

- Continuous RNG Test on the SP 800-90A HMAC-DRBG
- Continuous RNG test on the NDRNG
- Pairwise consistency test when generating ECDSA, and RSA key pairs.
- Software Load Test (ECDSA signature verification)

5 Physical Security Policy

The module's physical security requirements do not apply to the Juniper Networks vSRX 3.0 Virtual Firewall because the module is a FIPS 140-2 Level 1 software module and the physical security is provided by the host platform.

6 Security Rules and Guidance

The module design corresponds to the security rules below. The term *must* in this context specifically refers to a requirement for correct usage of the module in the Approved mode; all other statements indicate a security rule implemented by the module.

- 1. The module clears previous authentications on power cycle.
- 2. When the module has not been placed in a valid role, the operator does not have access to any cryptographic services.
- 3. Power up self-tests do not require any operator action.
- 4. Data output is inhibited during key generation, self-tests, zeroization, and error states.
- 5. Status information does not contain CSPs or sensitive data that if misused could lead to a compromise of the module.
- 6. There are no restrictions on which keys or CSPs are zeroized by the zeroization service.
- 7. The module does not support a maintenance interface or role.
- 8. The module does not support manual key entry.
- 9. The module does not output intermediate key values.
- 10. The module requires two independent internal actions to be performed prior to outputting plaintext CSPs.
- 11. The cryptographic officer must determine whether software being loaded is a legacy use of the software load service.
- 12. The cryptographic officer must retain control of the module while zeroization is in process.
- 13. If the module loses power and then it is restored, then a new key shall be established for use with the AES GCM encryption/decryption processes.
- 14. The Triple-DES encryption key is generated as part of recognized IETF protocols (RFC 2409 IKEv1, RFC 4251 SSH, RFC 7296 IKEv2, and RFC 6071 IPSec). The user must ensure that the number of 64-bit blocks encrypted by the same key does not exceed 2^20.
- 15. 3-key Triple-DES has been implemented in the module and is FIPS approved until December 31, 2023. Should the CMVP disallow the usage of Triple-DES post December 31, 2023, then users must not configure Triple-DES.

6.1 Crypto-Officer Guidance

The crypto-officer is responsible for installing the module on the platform on which the module was tested and validated, configuring the module in FIPS mode and configuring the operator's usernames and passwords.

Guide to Download Software Packages for vSRX 3.0 from Juniper Networks:

- 1. Using a Web browser, follow the link to the download URL on the Juniper Networks webpage at http://www.juniper.net/support/downloads/?p=vsrx#sw
- 2. Log in to the Juniper Networks website using the username (generally your e-mail address) and password supplied by your Juniper Networks representatives.
- 3. Under "Version" dropped down list, select the appropriate certified Release (Example: 15.1X49).
- 4. Under "Application Media" section, select the appropriate software package for the target release version and hypervisor.

- 5. Download Junos OS to a local host or to an internal software distribution site.
- 6. MD5 checksum and SHA1 checksum can be found under "Checksum"
 - Verify the checksum of the download with the provided checksum

The crypto-officer shall follow the instructions for installation provided in the Juniper Networks documentation:

For installing the vSRX 3.0 using a .tgz file, the instructions can be found in the *Junos® OS FIPS Evaluated Configuration Guide for vSRX 3.0 Instance, Release 19.2R1*. The CLI command from the aforementioned document to install Junos OS is repeated below:

>request system software add /<image-path>/<junos package>no-copy no-validate reboot

Where the <junos package> is the .tgz file for e.g. junos-install-vsrx3-x86-64-19.2R1.8.tgz.

For installing the vSRX 3.0 using an .ova file, the instructions can be found in the <u>vSRX Guide for VMware</u>. The steps from the aforementioned document are repeated below:

- 1. Enter the vCenter server hostname or address in your browser (<a href="https://<ipaddress>:9443">https://<ipaddress>:9443) to access the vSphere WebClient, and login to the vCenter server with your credentials.
- 2. Select a host or other valid parent for a virtual machine and click Actions>All vCenter Actions>Deploy OVF Template.
- 3. Click Browse to locate the vSRX 3.0 software package, and then click Next.
- 4. Click Next in the OVF Template Details window.
- 5. Click Accept in the End User License Agreement window, and then click Next.
- 6. Change the default vSRX 3.0 VM name in the Name box and click Next. It is advisable to keep this name the same as the hostname you intend to give to the VM.
- 7. In the Datastore window, do not change the default settings for:
 - Datastore
 - Available Space
- 8. Select a datastore to store the configuration file and virtual disk files in OVF template, and then click Next.
- 9. Select your management network from the list, and then click Next. The management network is assigned to the first network adapter, which is reserved for the management interface (fxp0).
- 10. Click Finish to complete the installation.
- 11. Open the Edit Settings page of the vSRX 3.0 VM and select a virtual switch for each network adapter. Three network adapters are created by default. Network adapter 1 is for the management network (fxp0). To add a fourth adapter, select Network from New device list at the bottom of the page.
- 12. Enable promiscuous mode for the management virtual switch:
 - 1. Select the host where the vSRX 3.0 VM is installed and select Manage>Networking >Virtual switches.
 - 2. In the list of virtual switches, select vSwitch0 to view the topology diagram for the management network connected to network adapter 1.

- 3. Click the Edit icon at the top of the list, select Security, and select Accept next to Promiscuous mode. Click OK.
- 13. Enable hardware-assisted virtualization to optimize performance of the vSRX 3.0 Routing Engine that runs in a nested VM:
 - 1. Power off the vSRX 3.0 VM.
 - 2. Right-click on the vSRX 3.0 VM and select Edit Settings.
 - 3. On the Virtual Hardware tab, expand CPU, select Expose hardware-assisted virtualization to guest OS, and click OK.

On the Manage tab, select Settings>VM Hardware and expand CPU to verify that the Hardware virtualization option is shown as Enabled.

The default vSRX 3.0 VM login ID is root with no password. By default, vSRX 3.0 is assigned a DHCP-based IP address if a DHCP server is available on the network.

Once the FIPS 140-2 validated vSRX 3.0 *software* is installed on the hardware platform and hypervisor in Table 1 then the crypto-officer shall follow the instructions in section 1.2 of the security policy to place the module in the FIPS Approved mode of operation.

6.2 User Guidance

The user should verify that the module is operating in the desired mode of operation (FIPS-Approved mode or non-Approved mode) by observing the command prompt when logged into the device. If the string ":fips" is present, then the switch is operating in a FIPS-Approved mode. Otherwise it is operating in a non-Approved mode.

All FIPS users, including the Crypto Officer, must observe security guidelines at all times.

All FIPS users must:

- Keep all passwords confidential.
- Store devices and documentation in a secure area.
- Deploy devices in secure areas.
- Check audit files periodically.
- Conform to all other FIPS 140-2 security rules.
- Follow these guidelines:
 - Users are trusted.
 - Users abide by all security guidelines.
 - Users do not deliberately compromise security.
 - Users behave responsibly at all times.

7 References and Definitions

The following standards are referred to in this Security Policy.

Table 19 – References

Abbreviation	Full Specification Name	
[FIPS140-2]	Security Requirements for Cryptographic Module, May 25, 2001	
[SP800-131A]	Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms and Key Lengths, January 2011	
[IG]	Implementation Guidance for FIPS PUB 140-2 and the Cryptographic Module Validation Program	
[135]	National Institute of Standards and Technology, Recommendation for Existing Application-Specific Key Derivation Functions, Special Publication 800-135rev1, December 2011.	
[186]	National Institute of Standards and Technology, Digital Signature Standard (DSS), Federal Information Processing Standards Publication 186-4, July, 2013.	
[197]	National Institute of Standards and Technology, Advanced Encryption Standard (AES), Federal Information Processing Standards Publication 197, November 26, 2001	
[38A]	National Institute of Standards and Technology, Recommendation for Block Cipher Modes of Operation, Methods and Techniques, Special Publication 800-38A, December 2001	
[38D]	National Institute of Standards and Technology, Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC, Special Publication 800-38D, November 2007	
[198]	National Institute of Standards and Technology, The Keyed-Hash Message Authentication Code (HMAC), Federal Information Processing Standards Publication 198- 1, July, 2008	
[180]	National Institute of Standards and Technology, Secure Hash Standard, Federal Information Processing Standards Publication 180-4, August, 2015	
[67]	National Institute of Standards and Technology, Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher, Special Publication 800-67, May 2004	
[90A]	National Institute of Standards and Technology, Recommendation for Random Number Generation Using Deterministic Random Bit Generators, Special Publication 800-90A, June 2015.	

Table 20 – Acronyms and Definitions

Acronym	Definition	
AEAD	Authenticated Encryption with Associated Data	
AES	Advanced Encryption Standard	
DH	Diffie-Hellman	
DSA	Digital Signature Algorithm	
ECDH	Elliptic Curve Diffie-Hellman	
ECDSA	Elliptic Curve Digital Signature Algorithm	
EMC	Electromagnetic Compatibility	
ESP	Encapsulating Security Payload	
FIPS	Federal Information Processing Standard	
HMAC	Keyed-Hash Message Authentication Code	
IKE	Internet Key Exchange Protocol	
IPsec	Internet Protocol Security	
MD5	Message Digest 5	
RSA	Public-key encryption technology developed by RSA Data Security, Inc.	
SHA	Secure Hash Algorithms	
SSH	Secure Shell	
Triple-DES	Triple - Data Encryption Standard	

Table 21 – Datasheets

Model	Title	URL
vSRX 3.0	vSRX Virtual Firewall	http://www.juniper.net/assets/us/en/local/pdf/datasheets/1000489- en.pdf