# Western Digital

Ultrastar<sup>®</sup> DC HC530 TCG Enterprise HDD FIPS 140-2 Cryptographic Module Non-Proprietary Security Policy

Protection of Data at Rest

Document Version: 1.0 2020-07-21

# CONTENTS

| 1.  | Cry  | ptographic Module Overview                                                                      | 4  |
|-----|------|-------------------------------------------------------------------------------------------------|----|
|     | 1.1  | Models                                                                                          | 4  |
|     | 1.2  | Security Level                                                                                  | 5  |
| 2.  | Mo   | des of Operation                                                                                | 5  |
|     | 2.1  | FIPS Approved Mode of Operation                                                                 | 5  |
|     | 2.2  | Approved Algorithms                                                                             | 6  |
| 3.  | Por  | ts and Interfaces                                                                               | 7  |
| 4.  | Ide  | ntification and Authentication Policy                                                           | 7  |
|     | 4.1  | Cryptographic Officer                                                                           | 7  |
|     |      | 4.1.1 Secure ID (SID) Authority                                                                 |    |
|     |      | 4.1.2 EraseMaster Authority                                                                     |    |
|     | 4.2  | BandMaster Authority (User)                                                                     |    |
|     | 4.3  | Anybody                                                                                         |    |
|     | 4.4  | Maker                                                                                           |    |
| 5.  | Acc  | cess Control Policy                                                                             |    |
|     | 5.1  | Roles and Services                                                                              |    |
|     | 5.2  | Unauthenticated Services                                                                        |    |
|     | 5.3  | Definition of Critical Security Parameters (CSPs)                                               |    |
|     | 5.4  | Definition of Public Security Parameters                                                        |    |
|     | 5.5  | SP800-132 Key Derivation Function Affirmations                                                  |    |
|     | 5.6  | Definition of CSP Modes of Access                                                               |    |
| 6.  | -    | erational Environment                                                                           |    |
| 7.  | Sec  | urity Rules                                                                                     | 15 |
|     | 7.1  | Invariant Rules                                                                                 |    |
|     | 7.2  | Initialization Rules                                                                            |    |
|     |      | Zeroization Rules                                                                               |    |
| 8.  | Phy  | vsical Security Policy                                                                          | 17 |
|     | 8.1  | Mechanisms                                                                                      | 17 |
|     |      | Operator Responsibility                                                                         |    |
| 9.  | Mit  | igation of Other Attacks Policy                                                                 | 18 |
| 10. | Def  | finitions                                                                                       | 18 |
| 11. | Acr  | onyms                                                                                           | 20 |
| 12. | Ref  | erences                                                                                         | 21 |
|     | 12.1 | NIST Specifications                                                                             | 21 |
|     | 12.2 | 2 Trusted Computing Group Specifications                                                        | 21 |
|     |      | 3 International Committee on Information Technology Standards T10 Technical Committee Standards |    |
|     |      | Corporate Documents                                                                             |    |
|     | 12.5 | 5 SCSI Commands                                                                                 | 22 |
|     |      |                                                                                                 |    |

# Tables

| Table 1 - Ultrastar DC HC530 TCG Enterprise HDD Models                    | 4  |
|---------------------------------------------------------------------------|----|
| Table 2 - Module Security Level Specification                             | 5  |
| Table 3 - FIPS Approved Algorithms                                        | 6  |
| Table 4 – Approved Cryptographic Functions Tested with Vendor Affirmation |    |
| Table 5 - Ultrastar DC HC530 FIPS 140-2 Ports and Interfaces              | 7  |
| Table 6 - Roles and Required Identification and Authentication            | 8  |
| Table 7 - Authentication Mechanism Strengths                              | 9  |
| Table 8 - Authenticated CM Services (Approved Mode)                       |    |
| Table 9 - Authenticated CM Services (Non-Approved Mode)                   | 10 |
| Table 10 - Unauthenticated Services                                       | 11 |
| Table 11 - CSPs and Private Keys                                          | 12 |
| Table 12 - Public Security Parameters                                     | 13 |
| Table 13 - CSP Access Rights within Roles & Services                      | 14 |
| Table 14 - SCSI Commands                                                  |    |

# Figures

| Figure 1: Ultrastar DC HC530 Cryptographic Boundary | 4 |
|-----------------------------------------------------|---|
| Figure 2: Tamper-Evident Seal                       |   |
| Figure 3: Tamper Evidence on Tamper Seal            |   |

# 1. Cryptographic Module Overview

The self-encrypting *Ultrastar® DC HC530 TCG Enterprise HDD*, hereafter referred to as "Ultrastar DC HC530" or "Cryptographic Module", is a multi-chip embedded module that complies with FIPS 140-2 *Level 2* security. The Ultrastar DC HC530 complies with the *Trusted Computing Group (TCG) SSC: Enterprise Specification*. The drive enclosure defines the cryptographic boundary. See Figure 1: Ultrastar DC HC530 Cryptographic Boundary. The SIO port pins shown to the right of the SAS connector, in Figure 1 are disabled in FIPS Approved Mode and non-Approved Mode. Except for the four-conductor motor control cable, all components within the cryptographic boundary tested as compliant with FIPS 140-2 requirements. The control cable is not security relevant and therefore excluded from FIPS 140-2 requirements. The Ultrastar DC HC530 complies with the Advanced Format (AF) standard. The logical storage of user data is unaffected by the formatting method for drives that comply with the Advanced AF standard. 4Kn and 512e formatting organize user data on the physical media in the same manner. The emulation layer employed in 512e drives only services to organize the data in 512-byte chunks for processing by the host. Format method is not security relevant and therefore excluded from FIPS 140-2 requirements.

Figure 1: Ultrastar DC HC530 Cryptographic Boundary



Top View

SAS Connector View



23

#### 1.1 Models

The Ultrastar DC HC530 is available in two models that vary by block size. The validated models listed below in Table 1 lists the characteristics, hardware version, and firmware versions associated with each model.

| Part Number<br>(Hardware Version) | Firmware           | Description                                      |
|-----------------------------------|--------------------|--------------------------------------------------|
| WUH721414AL5205                   | R221, R240 or 3P00 | 14 TB, 512e, 3.5-inch HDD, 7200 RPM, 12 Gb/s SAS |
| WUH721414AL4205                   | R221, R240 or 3P00 | 14 TB, 4Kn, 3.5-inch HDD, 7200 RPM, 12 Gb/s SAS  |

| FIPS 140- 2 Security Policy | Western Digital | Page 4 of |
|-----------------------------|-----------------|-----------|
|                             |                 |           |

#### 1.2 Security Level

The Cryptographic Module meets all requirements applicable to FIPS 140-2 Level 2 Security.

| FIPS 140-2<br>Security Requirements Section | FIPS 140-2<br>Security Level Achieved |  |
|---------------------------------------------|---------------------------------------|--|
| Cryptographic Module Specification          | 2                                     |  |
| Module Ports and Interfaces                 | 2                                     |  |
| Roles, Services and Authentication          | 2                                     |  |
| Finite State Model                          | 2                                     |  |
| Physical Security                           | 2                                     |  |
| Operational Environment                     | N/A                                   |  |
| Cryptographic Key Management                | 2                                     |  |
| EMI/EMC                                     | 3                                     |  |
| Self-Tests                                  | 2                                     |  |
| Design Assurance                            | 2                                     |  |
| Mitigation of Other Attacks                 | N/A                                   |  |

Table 2 - Module Security Level Specification

# 2. Modes of Operation

#### 2.1 FIPS Approved Mode of Operation

Configuration and policy determine the Cryptographic Module's mode of operation. The Cryptographic Module enters FIPS Approved Mode after successful completion of the Initialize Cryptographic service instructions provided in Section 7.2. The operator can determine if the Cryptographic Module is operating in a FIPS approved mode by invoking the Get FIPS mode service<sup>1</sup>. The Cryptographic Officer shall not enable the Maker Authority after the Cryptographic Module enters FIPS Approved mode. The Cryptographic Module is in FIPS non-Approved mode whenever a successful authentication to the Maker Authority occurs. If the Cryptographic Officer enables the Maker Authority after the module enters FIPS Approved mode, the Cryptographic Officer must also execute the TCG Revert Method to zeroize the Cryptographic Module. If the Cryptographic Officer, subsequently, executes the Initialize Cryptographic service instructions provided in Section 7.2 with the intent of placing the Cryptographic Module in FIPS Approved mode, the Cryptographic Officer must first execute the TCG Revert Method to zeroize the Cryptographic Officer must first execute the TCG Revert Method to zeroize the Cryptographic Module.

The chapter titled FIPS 140 Cryptographic Officer Instructions within the <u>Ultrastar DC HC530 Product Specification</u> provides information on how to execute the Initialize Cryptographic service as well as the TCG Revert Method.

<sup>&</sup>lt;sup>1</sup> A return value of 1 indicates that the cryptographic module is operating in FIPS Approved mode.

Ultrastar® DC HC530 TCG Enterprise HDD

#### 2.2 Approved Algorithms

The Cryptographic Module supports the following FIPS Approved algorithms. All algorithms and key lengths comply with NIST SP 800-131A.

| Algorithm                     | Description                                                                                                  | Cert # |
|-------------------------------|--------------------------------------------------------------------------------------------------------------|--------|
|                               | [FIPS 197, SP800 38A, SP 800 38F]                                                                            |        |
| AES Firmware                  | Functions: Encryption, decryption and key wrapping to protect an associated MEK in data storage applications | 5944   |
|                               | Modes: ECB, KW, CTR <sup>2</sup>                                                                             |        |
|                               | Key Sizes: 256                                                                                               |        |
|                               | [FIPS 197, SP800 38A]                                                                                        |        |
| AES Hardware <sup>3</sup>     | Functions: Encryption and decryption                                                                         | 5943   |
|                               | Modes: ECB                                                                                                   | 5715   |
| _                             | Key Sizes: 128, 256                                                                                          |        |
|                               | [FIPS 197, SP800 38A, SP800 38E]                                                                             |        |
|                               | Functions: Encryption and decryption in storage applications                                                 |        |
|                               | Modes: XTS                                                                                                   |        |
| AES XTS Hardware <sup>4</sup> | • XTS-AES Key1 does not equal XTS-AES Key2                                                                   | 5943   |
|                               | • The length of the XTS-AES data unit does not exceed 2 <sup>20</sup> blocks.                                |        |
|                               | Key Sizes: 128, 256                                                                                          |        |
|                               | [SP800 90A]                                                                                                  |        |
| DRBG Firmware                 | Functions: Deterministic random number generator that uses an AES-256 block cipher derivation function.      | 2495   |
|                               | Modes: CTR                                                                                                   |        |
|                               | Security Strength: 256 bits                                                                                  |        |
|                               | [FIPS 198-1]                                                                                                 |        |
| HMAC Firmware                 | Functions: Key encrypting key (KEK) derivation used within the PBKDF                                         | 3917   |
|                               | SHA sizes: SHA-256                                                                                           |        |
|                               | [FIPS 186-4, PSS]                                                                                            |        |
| RSA Firmware                  | Functions: Digital signature verification with SHA-256 <sup>5</sup>                                          | 3120   |
|                               | Key sizes: 2048                                                                                              |        |
|                               | [FIPS 180-4]                                                                                                 |        |
| SHA Firmware                  | Functions: AUTH Digest and KEK generation                                                                    | 4695   |
|                               | SHA sizes: SHA-256                                                                                           |        |

# Table 3 - FIPS Approved Algorithms

<sup>&</sup>lt;sup>2</sup> AES CTR-256 was tested but is not utilized by the Cryptographic Module

<sup>&</sup>lt;sup>3</sup> AES ECB-128 was tested but is not utilized by the Cryptographic Module

<sup>&</sup>lt;sup>4</sup> AES XTS-128 was tested but is not utilized by the Cryptographic Module.

<sup>&</sup>lt;sup>5</sup> SHA-256 Cert. #4696

Ultrastar® DC HC530 TCG Enterprise HDD

| Algorithm                | Description                                                                     | Cert # |
|--------------------------|---------------------------------------------------------------------------------|--------|
| SHA<br>Hardware/Firmware | [FIPS 180-4]<br>Functions: Digital Signature verification<br>SHA sizes: SHA-256 | 4696   |

#### Table 4 – Approved Cryptographic Functions Tested with Vendor Affirmation

| Algorithm | Description                                                                                                                       | Rationale                                                 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| СКС       | [SP800 133] Cryptographic Key Generation<br>Functions: Generated from the DRBG without further<br>modification or post processing | Vendor Affirmed<br>[FIPS140] IG D.12.<br>See Section 5.3. |
| PBKDF     | [SP800 132] Password Based Key Derivation Function<br>Functions: Key Encrypting Key<br>Modes: HMAC-SHA-256<br>Key Sizes: 256 bits | Vendor Affirmed<br>[FIPS140 IG] D.6.<br>See Section 5.5.  |

The Cryptographic Module supports the following non-Approved but allowed algorithm:

• A hardware NDRNG seeds the Approved [SP800 90A] DRBG. The NDRNG provides a minimum of 256 bits of entropy for key generation.

# 3. Ports and Interfaces

The drive uses the standard 29-pin Serial Attached SCSI (SAS) connector that conforms to the mechanical requirements of SFF 8680. Table 5 below identifies the Cryptographic Module's ports and interfaces. The Cryptographic Module does not provide a maintenance access interface.

| FIPS 140-2 Interface | Cryptographic Module Ports                 |
|----------------------|--------------------------------------------|
| Power                | Power connector [SAS]                      |
| Control Input        | SAS connector [SAS], SIO Port <sup>5</sup> |
| Status Output        | SAS connector [SAS], SIO Port <sup>5</sup> |
| Data Input           | SAS connector [SAS], SIO Port <sup>6</sup> |
| Data Output          | SAS connector [SAS], SIO Port <sup>5</sup> |

Table 5 - Ultrastar DC HC530 FIPS 140-2 Ports and Interfaces

# 4. Identification and Authentication Policy

The Cryptographic Module enforces role separation by requiring a role identifier and an authentication credential (Personal Identification Number or PIN). The Cryptographic Module enforces the following FIPS140-2 operator roles.

#### 4.1 Cryptographic Officer

#### 4.1.1 Secure ID (SID) Authority

This TCG authority initializes the Cryptographic Module. Section 11.3.1 of the <u>TCG Storage Security Subsystem</u> <u>Class: Enterprise Specification</u> defines this role.

<sup>&</sup>lt;sup>6</sup> Disabled when the Cryptographic Module is in the Approved Mode

#### 4.1.2 EraseMaster Authority

This TCG authority can selectively zeroize bands within the Cryptographic Module. Section 11.4.1 of the <u>TCG</u> <u>Storage Security Subsystem Class: Enterprise Specification</u> defines this role. The TCG EraseMaster authority can disable Users and erase LBA bands (user data regions).

#### 4.2 BandMaster Authority (User)

User roles correspond to Bandmaster Authorities. Section 11.4.1 of the <u>TCG Storage Security Subsystem Class:</u> <u>Enterprise Specification</u> provides a definition. Users have the authority to lock, unlock, and configure LBA bands (user data regions) and to issue read and write commands to the SED. The TCG EraseMaster authority can disable a Bandmaster.

#### 4.3 Anybody

This role corresponds to services that do not require authentication. With one exception, these do not disclose, modify, or substitute Critical Security Parameters, use an Approved security function, or otherwise affect the security of the Cryptographic Module. The excepted service is the Generate Random service, which provides output from an instance of the [SP800 90A] DRBG.

#### 4.4 Maker

For failure analysis purposes, the vendor can enable the serial port to perform diagnostics and gather data about the failure. A power cycle automatically locks the serial port. The vendor must authenticate to the SID and the Maker authorities to enable the serial port. The Cryptographic Module is in FIPS non-Approved mode whenever the vendor authenticates to the Maker Authority. The vendor performs failure analysis within the vendor's facility. Maker authentication data shall not leave the vendor's facilities. During normal operation, the Cryptographic Officer disables the Maker authority when invoking the Initialize Cryptographic Module service.

The following table maps TCG authorities to FIPS 140-2 roles.

| TCG<br>Authorities<br>and Roles | Description                                                                                                                            | Authentication<br>Type | Authentication Data                                                         |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------|
| SID Authority                   | The SID Authority is a Cryptographic<br>Officer role that initializes the<br>Cryptographic Module and authorizes<br>Firmware download. | Role-based             | CO Identity (TCG SID<br>Authority) and PIN (TCG SID<br>Authority PIN)       |
| EraseMaster<br>Authority        | The EraseMaster Authority is a<br>Cryptographic Officer role that zeroizes<br>Media Encryption keys and disables<br>Users.             | Role-based             | CO Identity (TCG EraseMaster<br>Authority) and PIN (TCG<br>EraseMaster PIN) |
| BandMaster N<br>(N = 0 to 15)   | The BandMaster Authority is a User<br>role that controls read/write access to<br>LBA Bands.                                            | Role-based             | User Identity (TCG<br>BandMaster Authority) and PIN<br>(TCG BandMaster PIN) |
| Anybody                         | The Anybody Authority requires no authentication.                                                                                      | Unauthenticated        | N/A                                                                         |
| Maker (Disabled)                | Completion of the Initialize<br>Cryptographic Module service disables<br>the Maker Authority                                           | Role-based             | User Identity (TCG Maker<br>Authority) and PIN (Maker<br>PIN)               |
| Maintenance                     | Maintenance role for Diagnostics commands                                                                                              | Role-based             | 32-bit EDC                                                                  |

#### Table 6 - Roles and Required Identification and Authentication

FIPS 140- 2 Security Policy

| Authentication Mechanism | Mechanism Strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | TCG Credentials are 256 bits in length, which provide $2^{256}$ possible values.<br>The probability that a random attempt succeeds is 1 chance in $2^{256}$<br>(approximately (8.64 x 10 <sup>-78</sup> ) which is significantly less than 1/1,000,000 (1x 10 <sup>-6</sup> ).                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TCG Credential (PIN)     | Multiple, successive authentication attempts can only occur sequentially (one at a time) and only when the failed authentication <i>Tries</i> count value does not exceed the associated <i>TriesLimit</i> value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                          | Each authentication attempt consumes approximately 13 milliseconds.<br>Hence, at most, approximately 4615 authentication attempts are possible in one minute. Thus, the probability that a false acceptance occurs within a one-minute interval is approximately $4.0 \ge 10^{-74}$ , which is significantly less than 1 chance in 100,000 (1 $\ge 10^{-5}$ ).                                                                                                                                                                                                                                                                                                                                            |
| 32-bit EDC               | The maintenance role credential embedded within the VUC that enables the maintenance role is a 32-bit EDC, which provides $2^{32}$ possible values. The probability that a random attempt will succeed, or a false acceptance will occur is at least 1 chance in $2^{32}$ (2.33 x10 <sup>-10</sup> ), which is significantly less than $1/1,000,000$ (1x 10 <sup>-6</sup> ). Authentication attempts consume 74.5 milliseconds. Therefore, at most, 805 authentication attempts are possible within a one-minute interval. Thus, the probability that a false acceptance occurs within a one-minute interval is 1.88 x 10 <sup>-7</sup> , which is less than 1 chance in 100,000 (1 x 10 <sup>-5</sup> ). |

#### Table 7 - Authentication Mechanism Strengths

# 5. Access Control Policy

#### 5.1 Roles and Services

| Service                                         | Description                                                                                                                                                                                                                                        | Role(s)                                                   |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Initialize Cryptographic<br>Module <sup>7</sup> | Cryptographic Officer provisions the Cryptographic<br>Module from organizational policies                                                                                                                                                          | CO<br>(SID Authority)                                     |
| Authenticate                                    | Input a TCG Credential for authentication                                                                                                                                                                                                          | CO, Users (SID<br>Authority, EraseMaster,<br>BandMasters) |
| Lock/Unlock Firmware<br>Download Control        | Deny/Permit access to Firmware Download service                                                                                                                                                                                                    | CO<br>(SID Authority)                                     |
| Firmware Download                               | Load and utilize RSA2048 PSS and SHA-256 to verify<br>the entire firmware image. If the new self-tests complete<br>successfully, the SED executes the new code. Unlocking<br>the Firmware Download Control enables the<br>downloading of firmware. | CO<br>(SID Authority)                                     |

<sup>&</sup>lt;sup>7</sup> See Cryptographic Module Acceptance and Provisioning within the <u>Ultrastar DC HC530 SAS OEM Product Specification</u>

| Service                 | Description                                                                                                                                                                       | Role(s)                                                    |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Zeroize (TCG Revert)    | The TCG Revert method zeroizes a drive and returns the Cryptographic Module to its original manufactured state.                                                                   | CO, Users                                                  |
| Set                     | Write data structures; access control enforcement occurs<br>per data structure field. This service can change PINs.                                                               | CO, Users, (SID<br>Authority, EraseMaster,<br>BandMasters) |
| Set LBA Band            | Set the starting location, size, and attributes of a set of contiguous Logical Blocks                                                                                             | Users (BandMasters)                                        |
| Lock/Unlock<br>LBA Band | Deny/Permit access to a LBA Band                                                                                                                                                  | Users<br>(BandMasters)                                     |
| Write Data              | Transform plaintext user data to ciphertext and write in a LBA band                                                                                                               | Users<br>(BandMasters)                                     |
| Read Data               | Read ciphertext from a LBA band and output user plaintext data                                                                                                                    | Users<br>(BandMasters)                                     |
| Set Data Store          | Write a stream of bytes to unstructured storage                                                                                                                                   | Users<br>(BandMasters)                                     |
| Erase LBA Band          | Band cryptographic-erasure by changing LBA band<br>encryption keys to new values. Erasing an LBA band<br>with EraseMaster sets the TCG Credential to the default<br>value.        | CO<br>(EraseMaster)                                        |
| Diagnostics             | Vendor Unique Commands (VUC) support diagnostic<br>functions for testing the memory of the drive and the<br>SCSI bus integrity. The VUCs do not alter the medium<br>of the drive. | Maintenance                                                |

# Table 9 - Authenticated CM Services (Non-Approved Mode)

| Service                                                      | Description                                                                                                                                                                                                                                 | Role(s)                                                             |
|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Initialize Cryptographic                                     | Cryptographic Officer provisions the Cryptographic Module                                                                                                                                                                                   | CO                                                                  |
| Module <sup>8</sup> (non-compliant)                          | from the organizational policies                                                                                                                                                                                                            | (SID Authority)                                                     |
| Authenticate (non-<br>compliant)                             | Input a TCG Credential for authentication                                                                                                                                                                                                   | CO, Users, Maker<br>(SID Authority,<br>EraseMaster,<br>BandMasters) |
| Lock/Unlock Firmware<br>Download Control (non-<br>compliant) | Deny/Permit access to Firmware Download service                                                                                                                                                                                             | CO<br>(SID Authority)                                               |
| Firmware Download (non-<br>compliant)                        | Load and utilize RSA2048 PSS and SHA-256 to verify the<br>entire firmware image. If the self-tests complete successfully,<br>the SED executes the new code. Unlocking the Firmware<br>Download Control enables the downloading of firmware. | CO<br>(SID Authority)                                               |
| Zeroize (TCG Revert)<br>(non-compliant)                      | The TCG Revert method zeroizes a drive and returns the Cryptographic Module to its original manufactured state.                                                                                                                             | CO, Users                                                           |

<sup>&</sup>lt;sup>8</sup> See the Cryptographic Module Acceptance and Provisioning section within the Ultrastar DC HC530 SAS OEM Product Specification

| Service                                     | Description                                                                                                                                                                    | Role(s)                                                             |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Set<br>(non-compliant)                      | Write data structures; access control enforcement occurs per<br>data structure field. This service can change PINs.                                                            | CO, Users, Maker<br>(SID Authority,<br>EraseMaster,<br>BandMasters) |
| Set LBA Band (non-<br>compliant)            | Set the starting location, size, and attributes of a set of contiguous Logical Blocks.                                                                                         | Users<br>(BandMasters)                                              |
| Lock/Unlock<br>LBA Band (non-<br>compliant) | Deny/Permit access to a LBA Band                                                                                                                                               | Users<br>(BandMasters)                                              |
| Write Data (non-<br>compliant)              | Transform plaintext user data into ciphertext and write in a LBA band.                                                                                                         | Users<br>(BandMasters)                                              |
| Read Data (non-compliant)                   | Read ciphertext from a LBA band and output user plaintext data.                                                                                                                | Users<br>(BandMasters)                                              |
| Set Data Store (non-<br>compliant)          | Write a stream of bytes to unstructured storage.                                                                                                                               | Users<br>(BandMasters)                                              |
| Erase LBA Band (non-<br>compliant)          | Band cryptographic-erasure by changing LBA band encryption<br>keys to new values. Erasing an LBA band with EraseMaster<br>sets the TCG Credential to the default value.        | CO<br>(EraseMaster)                                                 |
| Set Vendor Data (non-<br>compliant)         | A Non-Approved service that is unavailable after the Initialize<br>Cryptographic Module service completes                                                                      | Maker                                                               |
| Diagnostics (non-<br>compliant)             | Vendor Unique Commands (VUC) support diagnostic<br>functions for testing the memory of the drive and the SCSI bus<br>integrity. The VUCs do not alter the medium of the drive. | Maintenance                                                         |

# 5.2 Unauthenticated Services

Table 10 - Unauthenticated Services lists the Cryptographic Module's unauthenticated services.

#### Table 10 - Unauthenticated Services

| Service         | Description                                                                                                                                          |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reset Module    | Power on Reset                                                                                                                                       |
| Self-Test       | The Cryptographic Module performs self-tests when it powers up                                                                                       |
| Status Output   | TCG (IF-RECV) protocol                                                                                                                               |
| Get FIPS Mode   | TCG 'Level 0 Discovery' method outputs the FIPS mode of the Cryptographic Module.                                                                    |
| Start Session   | Start TCG session                                                                                                                                    |
| End Session     | End a TCG session by clearing all session state                                                                                                      |
| Generate Random | TCG Random method generates a random number from the [SP800 90A] DRBG                                                                                |
| Get             | Reads data structure; access control enforcement occurs per data structure field                                                                     |
| Get Data Store  | Read a stream of bytes from unstructured storage                                                                                                     |
| Zeroize         | TCG Revert method to return the Cryptographic Module to its original manufactured state; authentication data (PSID) is printed on the external label |
| SCSI            | [SCSI Core] and [SCSI Block] commands to function as a standardized storage device. See Table 14 - SCSI Commands                                     |

FIPS 140- 2 Security PolicyWestern Digital.Page 11 of 23

| Service                 | Description                                                                      |
|-------------------------|----------------------------------------------------------------------------------|
| FIPS 140 Compliance     | This service reports the FIPS 140 revision as well as the cryptographic module's |
| Descriptor <sup>9</sup> | overall security level, hardware revision, firmware revision and module name.    |

#### 5.3 Definition of Critical Security Parameters (CSPs)

The Cryptographic Module contains the CSPs listed in Table 11 - CSPs and Private Keys. Zeroization of CSPs complies with the purge requirements for SCSI hard disk drives within [SP800 88], Guidelines for Media sanitization.

#### Table 11 - CSPs and Private Keys

| Name                                                       | Туре                                                                          | Description                                                                                                                                                   |
|------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cryptographic Officer PIN -<br>TCG Credential<br>(2 total) | 256-bit authentication data                                                   | The PBKDF uses this PIN to authenticate a Cryptographic Officer's credentials.                                                                                |
| User PIN –TCG Credential<br>(16 total)                     | 256-bit authentication data                                                   | The PBKDF uses this PIN to authenticate a User's credentials.                                                                                                 |
| MEK - Media Encryption Key<br>(16 total - 1 per LBA band)  | XTS-AES-256 (512 bits)<br>256-bit Key <sub>1</sub> , 256-bit Key <sub>2</sub> | Encrypts and decrypts LBA Bands. Each<br>key is only associated with one LBA band.<br>The Cryptographic Module's DRBG<br>generates MEKs without modification. |
| KEK – Key Encrypting Key<br>(16 total)                     | SP 800 132 PBKDF (256 bits)                                                   | Ephemeral keys derived from BandMaster<br>PINs and a 256-bit KDF salt. An [SP800<br>38F] AES Key Wrap uses KEKs to wrap<br>MEKs.                              |
|                                                            |                                                                               | Note: Keys protected by this [SP 800 132]<br>PBKDF derived key shall not leave the<br>module.                                                                 |
| NDRNG                                                      | 256-byte Entropy output                                                       | Entropy source for DRBG                                                                                                                                       |
| DRBG                                                       | Internal CTR_DRBG state (384 bits)                                            | All properties and states associated with the<br>[SP 800 90A] Deterministic Random Bit<br>Generator. The internal state includes<br>values "V" and "Key."     |
| Maintenance Role Credential                                | 32-bit authentication                                                         | A 32-bit EDC is required to authenticate<br>the credentials of the VUC that enables the<br>maintenance role.                                                  |
| AUTH Digest                                                | 256-bit authentication data                                                   | SHA-256 digest of a PIN and a PIN salt                                                                                                                        |

<sup>9</sup> See FIPS140 Compliance Descriptor Overview within the Ultrastar DC HC530 SAS OEM Product Specification

#### 5.4 Definition of Public Security Parameters

The Cryptographic Module contains two public keys. The Cryptographic Module uses the public keys to verify the digital signature of a firmware download image. If the digital signature verification process fails when utilizing the primary public key, the Cryptographic Module attempts to use the secondary public key to verify the digital signature. The Cryptographic Module rejects the downloaded firmware image if both verification attempts fail.

| Key Name                                              | Туре                                     | Description                                                                                                                                                                                        |
|-------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| KDF Salt - Key Derivation Function<br>Salt (16 total) | 256-bit key                              | The Cryptographic Module's DRBG generates a KDF salt without modification.                                                                                                                         |
| PIN salt (16 total)                                   | 256-bit key                              | The Cryptographic Module's DRBG generates a PIN salt without modification.                                                                                                                         |
| PSID                                                  | Twenty-character<br>alpha-numeric string | A unique value generated in the factory and<br>printed on the Cryptographic Module's label.<br>The PSID provides authentication data and<br>proof of physical presence for the Zeroize<br>service. |
| RSAPublicKey[0]                                       | RSA 2048 public key                      | Primary public key used to verify the digital signature of a firmware image.                                                                                                                       |
| RSAPublicKey[1]                                       | RSA 2048 public key                      | Secondary public key used to verify the digital signature of a firmware image.                                                                                                                     |

#### 5.5 SP800-132 Key Derivation Function Affirmations

The Cryptographic Module deploys a [SP800 132] Password Based Key Derivation Function (PBKDF).

- The Cryptographic Module complies with Option 2a within [SP800 132].
- The Cryptographic Module tracks TCG Credentials (PINs) by hashing a message, which consists of a concatenated PIN salt and PIN. The Cryptographic Module stores the SHA256 digest and associated salt in the Reserved Area.
- Security policy rules set the minimum PIN length at 32 bytes. The Cryptographic Module allows values from 0x00 to 0xFF for each byte of a PIN
- The upper bound for the probability of guessing a PIN is 2<sup>-256.</sup> The difficulty of guessing the PIN is equivalent to a brute force attack.
- The Cryptographic Module generates ephemeral KEKs ([SP800 132] Master Keys) by passing a User PIN ([SP 800 132] Password) and associated KDF salt though an [SP800 132] KDF. The KEK generation process utilizes the HMAC-SHA-256 algorithm. Each 256-bit KEK has a security strength of 128-bits against a collision attack
- The Cryptographic modules uses the [SP800 90A] DRBG to generate unique 256-bit salts.
- The Cryptographic Module generates and assigns a unique MEK and KEK to each LBA Band.
- The sole use of a KEK is to wrap and unwrap its associated Media Encryption Key (MEK).

#### 5.6 Definition of CSP Modes of Access

Table 13 - CSP Access Rights within Roles & Services defines the relationship between access to Critical Security Parameters (CSPs) and the different Cryptographic Module services.

• <u>**G**</u> = <u>Generate</u>: The Cryptographic Module generates a CSP from the [SP800 90A] DRBG, derives a CSP with the Key Derivation Function or hashes authentication data with SHA-256.

- $\underline{\mathbf{E}} = \underline{\mathbf{Execute}}$ : The module executes using the CSP.
- <u>**W**</u> = Write: The Cryptographic Module writes a CSP. The write access is performed after the Cryptographic Module generates a CSP.
- $\underline{\mathbf{Z} = \text{Zeroize}}$ : The Cryptographic Module zeroizes a CSP.

| Table 13 - CSP Access Rights within Roles & Services |
|------------------------------------------------------|
|------------------------------------------------------|

| Service                               | CSPs and Keys | Type of CSP<br>Access |
|---------------------------------------|---------------|-----------------------|
|                                       | CO PIN        | E, W                  |
|                                       | User PIN      | E, W                  |
|                                       | DRBG, NDRNG   | Е                     |
| Initialize Cryptographic Module       | KEK           | G                     |
|                                       | MEK           | G, W                  |
|                                       | AUTH Digest   | G, W                  |
|                                       | CO PIN        | Е                     |
| Authenticate                          | User PIN      | Е                     |
|                                       | AUTH Digest   | Е                     |
| Lock/Unlock Firmware Download Control | CO PIN        | Е                     |
| Firmware Download                     | CO PIN        | Е                     |
| Firmware Download                     | RSAFW         | Е                     |
|                                       | CO PIN        | Е                     |
| Set                                   | User PIN      | Е                     |
|                                       | Maker PIN     | Е                     |
| Set LBA Band                          | User PIN      | Е                     |
|                                       | User PIN      | Е                     |
| Lock/Unlock LBA Band                  | KEK           | G                     |
|                                       | MEK           | Е                     |
|                                       | User PIN      | Е                     |
| Write Data                            | MEK           | Е                     |
|                                       | User PIN      | Е                     |
| Read Data                             | MEK           | Е                     |
| Set Data Store                        | User PIN      | Е                     |
| Set Vendor Data                       | None          | None                  |
|                                       | CO PIN        | E                     |
|                                       | User PIN      | Z                     |
| Erase LBA Band                        | KEK           | G                     |
|                                       | MEK           | Z, G, W               |
| Diagnostics                           | None          | None                  |
| C-16/T                                | NDRNG         | Е                     |
| Self-Test                             | DRBG          | W                     |
| Reset Module                          | None          | None                  |

FIPS 140- 2 Security Policy

| Service                        | CSPs and Keys | Type of CSP<br>Access |
|--------------------------------|---------------|-----------------------|
| Status Output                  | None          | None                  |
| Get FIPS mode                  | None          | None                  |
| Start Session                  | None          | None                  |
| End Session                    | None          | None                  |
| Generate Random                | DRBG          | Е                     |
| Get Data Store                 | None          | None                  |
| Get                            | None          | None                  |
| Zeroize (TCG Revert)           | CO PIN        | W                     |
|                                | User PIN      | W                     |
|                                | DRBG          | G                     |
|                                | KEK           | G                     |
|                                | MEK           | Z, G, W               |
|                                | AUTH Digest   | Ζ                     |
| SCSI                           | None          | None                  |
| FIPS 140 Compliance Descriptor | None          | None                  |

# 6. Operational Environment

The Cryptographic Module's operating environment is non-modifiable. Therefore, the FIPS 140-2 operational environment requirements are not applicable to this module. While operational, the code working set cannot be added, deleted, or modified. For firmware upgrades, the Cryptographic Module uses an authenticated download service to upgrade its firmware in its entirety. If the download operation is successfully authorized and verified, the Cryptographic Module will begin operating with the new code working set. Firmware loaded into the module that is not on the certificate is out of the scope of this validation and requires a separate FIPS 140-2 validation.

# 7. Security Rules

Ultrastar DC HC530 enforces applicable FIPS 140-2 Level 2 security requirements. This section documents the security rules that the Cryptographic Module enforces.

# 7.1 Invariant Rules

- 1. The Cryptographic Module supports two distinct types of operator roles: Cryptographic Officer and User. The module also supports an additional role, the Maker role. Initialization disables the Maker role.
- 2. Cryptographic module power cycles clear all existing authentications.
- 3. After the Cryptographic Module has successfully completed all self-tests and initialized according to the instructions provided in Section 7.2, it is in FIPS Approved mode. The Cryptographic Officer shall not enable the Maker Authority after the Cryptographic Module enters FIPS Approved mode.
- 4. When the Cryptographic Module is unable to authenticate TCG Credentials, operators do not have access to any cryptographic service other than the unauthenticated Generate Random service.
- 5. The Cryptographic Module performs the following tests. Upon failure of any test, the Cryptographic Module enters a soft error state. The Cryptographic module reports the error condition by transmitting an UEC from the SAS output data port via the [SCSI] protocol. After entering the soft error state, the Cryptographic Module does not process functional commands unless a power cycle occurs.
  - A. Power up Self-Tests
    - 1) Firmware Integrity 32-bit EDC

- 2) Firmware AES Encrypt KAT, Cert. #5944
- 3) Firmware AES Decrypt KAT, Cert. #5944
- 4) RSA 2048 PSS Verify KAT, Cert. #3120
- 5) DRBG KAT<sup>10</sup>, Cert. #2495
- 6) Firmware SHA-256 KAT, Cert. #4695
- 7) HMAC-SHA-256 KAT, Cert. #3917
- 8) Hardware AES Encrypt KAT, Cert. #5943
- 9) Hardware AES Decrypt KAT, Cert. #5943
- 10) HW/FW SHA-256 KAT, Cert. #4696
- B. Conditional Tests
  - 1) The Cryptographic Module performs a Continuous Random Number Generator test on the DRBG.
  - 2) The Cryptographic Module performs a Continuous Random Number Generator test on the hardware NDRNG entropy source.
  - 3) The Cryptographic Module performs an [SP800 90B] compliant Adaptive Proportion test and a Repetition Count test on the hardware NDRNG entropy source.
  - 4) The Cryptographic Module performs a key comparison test on XTS-AES Key<sub>1</sub> and XTS-AES Key<sub>2</sub> that satisfies IG A.9 XTS-AES Key Generation Requirements.
  - 5) Firmware Download Test, RSA 2048 PSS (Cert. #3120), SHA-256 (Cert. #4696)
- 6. An operator can command the Cryptographic Module to perform the power-up self-test by power cycling the device.
- 7. Power-up self-tests do not require operator action.
- 8. Data output is inhibited during key generation, self-tests, zeroization, and error states.
- 9. Status information does not contain CSPs or sensitive data that if misused, could compromise the Cryptographic Module.
- 10. The zeroization service deletes all plaintext keys and CSPs.
- 11. The Cryptographic Module supports a maintenance role. The operator must execute the TCG Revert Method to zeroize the Cryptographic Module before entering and maintenance role. The operator must also execute the TCG Revert Method to zeroize the Cryptographic Module after exiting the maintenance role.
- 12. The Cryptographic Module does not support manual key entry.
- 13. The Cryptographic Module does not have any external input/output devices used for entry/output of data.
- 14. The Cryptographic Module does not output plaintext CSPs.
- 15. The Cryptographic Module does not output intermediate key values.
- 16. The Cryptographic Module does not support concurrent operators.
- 17. The End Session service deletes the current operator's authentication. The Cryptographic Module requires operators to re-authenticate after executing the End Session service.
- 18. The host must re-authenticate to LBA Bands after a power cycle.
- 19. The Cryptographic Officer shall assure that all host issued User PINs are 32-bytes in length.

#### 7.2 Initialization Rules

The Cryptographic Officer shall follow all instructions provided in the FIPS140 Cryptographic Module Acceptance and Provisioning section of the <u>Ultrastar DC HC530 SAS OEM Product Specification</u>. Acceptance instructions include:

• Establish authentication data for the TCG Authorities by replacing the MSID (default PIN value).

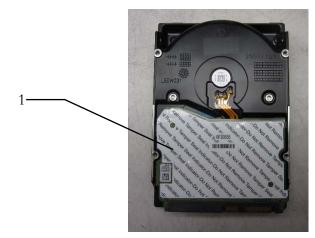
<sup>10</sup> The DRBG KAT is inclusive of the instantiate, generate and reseed function health tests required in SP 800-90A rev 1

- Erase all LBA Bands. When the Cryptographic Module erases an LBA band it also erases the band's Media Encryption Key.
- Establish LBA Bands. Whenever the Cryptographic Module establishes an LBA band it also generates a Media Encryption Key for that band.
- Disable the Maker Authority
- Lock the Firmware Download service and set the Firmware Download service to lock automatically after a power cycle. The Cryptographic Module automatically locks the Firmware Download service after downloading new firmware.

At completing the acceptance and provisioning instruction, the Cryptographic Module transitions to FIPS Approved Mode of operation. While in FIPS Approved mode, only an authenticated Cryptographic Officer can change the state of the firmware download service.

#### 7.3 Zeroization Rules

The Cryptographic Officer shall use the TCG Revert Method to perform the zeroization function. Reverting the Cryptographic Module zeroizes all Critical Security Parameters.


# 8. Physical Security Policy

#### 8.1 Mechanisms

The Cryptographic Module does not make claims in the Physical Security area beyond FIPS 140-2 Security Level 2.

- All components are production-grade materials with standard passivation.
- The enclosure is opaque.
- Engineering design supports opacity requirements.
- Western Digital applies one (1) tamper-evident security seal during manufacturing.
- The tamper-evident security seal cannot be penetrated or removed and reapplied without evidence of tampering. In addition, the tamper-evident security seal is difficult to replicate.

#### Figure 2: Tamper-Evident Seal



# 8.2 Operator Responsibility

The Cryptographic Officer and/or User shall inspect the Cryptographic Module enclosure for evidence of tampering at least once a year. If the inspection reveals evidence of tampering, the Cryptographic Officer should return the module to Western Digital.

#### Figure 3: Tamper Evidence on Tamper Seal



# 9. Mitigation of Other Attacks Policy

The Cryptographic Module is not designed to mitigate any specific attacks beyond the scope of the requirements within FIPS 140-2.

# **10. Definitions**

- Allowed: NIST approved, i.e., recommended in a NIST Special Publication, or acceptable, i.e., no known security risk as opposed to deprecated, restricted and legacy-use. [SP800 131A] for terms
- Anybody: A formal TCG term for an unauthenticated role. [TCG Core]
- **Approved**: [FIPS140] approved or recommended in a NIST Special Publication.
- **Approved mode of operation**: A mode of the Cryptographic Module that employs only approved security functions. [FIPS140]
- Authenticate: Prove the identity of an Operator or the integrity of an object.
- Authorize: Grant an authenticated Operator access to a service or an object.
- **Ciphertext**: Encrypted data transformed by an Approved security function.
- **Confidentiality**: A cryptographic property in which sensitive information is not disclosed to unauthorized parties.
- Credential: A formal TCG term for data used to authenticate an Operator. [TCG Core]
- Critical Security Parameter (CSP): Security-related information (e.g., secret and private cryptographic keys, and authentication data such as credentials and PINs) whose disclosure or modification can compromise the security of a cryptographic module. [FIPS140]
- **Cryptographic Boundary**: An explicitly defined continuous perimeter that establishes the physical bounds of a cryptographic module and contains all the hardware, software, and/or firmware components of a cryptographic module. [FIPS140]
- Cryptographic key (Key): An input parameter to an Approved cryptographic algorithm
- **Cryptographic Module**: The set of hardware, software, and/or firmware used to implement approved security functions contained within the cryptographic boundary. [FIPS140]
- **Cryptographic Officer**: An Operator performing cryptographic initialization and management functions. [FIPS140]
- Data at Rest: User data residing on the storage device media when the storage device is powered off.
- Discovery: A TCG method that provides the properties of the TCG device. [TCG Enterprise]

- Flash Internal Data (FID): A binary file stored in the flash memory and contains drive customization data. Data stored in the flash is required to spin up the drive and enable read write capability.
- **Integrity**: A cryptographic property, which assures sensitive data has not been modified or deleted in an unauthorized and undetected manner.
- Interface: A logical entry or exit point of a cryptographic module that provides access to the cryptographic module for logical information flows. [FIPS140]
- Key Derivation Function (KDF): An Approved cryptographic algorithm by which one or more keys are derived from a shared secret and other information.
- Key Encrypting Key (KEK): A cryptographic key, which is used to encrypt or decrypt other keys.
- **Key management:** The activities involving the handling of cryptographic keys and other related security parameters (e.g., authentication data) during the entire life cycle of the Cryptographic Module.
- Key Wrap: An Approved cryptographic algorithm that uses a KEK to provide Confidentiality and Integrity.
- LBA Band: A formal [TCG Core] term that defines a contiguous logical block range (sequential LBAs) to store encrypted User Data; bands do not overlap, and each has its own unique encryption key and other settable properties.
- **Manufactured SID (MSID)**: A unique default value that vendors assign to each SED during manufacturing. An externally visible MSID value is not required if the user can derive the MSID from other information printed on the drive. The MSID is readable with the TCG protocol. It is the initial and default value for all TCG credentials. [TCG Core]
- Method: A TCG command or message. [TCG Core]
- **Operator**: A consumer, either human or automation, of cryptographic services that is external to the Cryptographic Module. [FIPS140]
- **Personal Identification Number (PIN)**: A formal TCG term for a string of octets used to authenticate an identity. [TCG Core]
- **Plaintext**: Unencrypted data.
- **Port**: A physical entry or exit point of a cryptographic module that provides access to the Cryptographic Module for physical signals. [FIPS140]
- **PSID (Physical Security Identifier)**: A value, which is unique to a SED that is printed on a cryptographic module's label and used as authentication data and proof of physical presence for the Zeroize service.
- **Public Security Parameters (PSP)**: Public information whose modification can compromise the security of the cryptographic module (e.g., a public key of a public/private key pair).
- **Read Data**: An external request to transfer User Data from the SED. [SCSI Block]
- **Reserved Area**: Private data on the Storage Medium that is not accessible outside the Cryptographic Boundary.
- **Reserved area Internal Data (RID)**: A binary file stored on the media and contains drive customization data. Data stored in the reserved area is required to spin up the drive and enable read write capability.
- Security Identifier (SID): A TCG authority used by the Cryptographic Officer. [TCG Core]
- Self-Encrypting Drive (SED): A storage device that provides encrypted data storage services, which automatically encrypts all user data written to the device and automatically decrypts all user data read from the device.
- Session: A formal TCG term that envelops the lifetime of an Operator's authentication. [TCG Core]
- Small Form Factor (SFF): Small form factor is a computer form factor designed to minimize the volume and footprint of a desktop computer

- **Storage Medium**: The non-volatile, persistent storage location of a SED; it is partitioned into two disjoint sets, a User Data area and a Reserved Area.
- User: An Operator that consumes cryptographic services. [FIPS140]
- User Data: Data transferred from/to a SED using the Read Data and Write Data commands. [SCSI Block]
- Vendor Unique Command: A SCSI command that is available at the discretion of an implementer.
- Write Data: An external request to transfer User Data to a SED. [SCSI Block]
- Zeroize: Invalidate a Critical Security Parameter. [FIPS140]

#### 11. Acronyms

- **CO**: Cryptographic Officer [FIPS140]
- **CRC**: Cyclic Redundancy Check
- **CSP**: Critical Security Parameter [FIPS140]
- **DRAM**: Dynamic Random Access Memory
- **DRBG**: Deterministic Random Bit Generator
- **EDC:** Error Detection Code
- **EMI**: Electromagnetic Interference
- **FID**: Flash Internal Data
- FIPS: Federal Information Processing Standard
- HDD: Hard Disk Drive
- **KAT**: Known Answer Test
- **KDF**: Key Derivation Function
- LBA: Logical Block Address
- MEK: Media Encryption Key
- MSID: Manufactured Security Identifier
- NDRNG: Non-deterministic Random Number Generator
- NIST: National Institute of Standards and Technology
- **PIN**: Personal Identification Number
- **PSID**: Physical Security Identifier
- **PSP**: Public Security Parameter
- **RID**: Reserved area Internal Data
- **SAS**: Serial Attached SCSI
- SCSI: Small Computer System Interface
- **SED**: Self encrypting Drive
- **SFF:** Small Form Factor
- SID: TCG Security Identifier, the authority representing the cryptographic module owner
- **SSD**: Solid-state Drive
- **TCG**: Trusted Computing Group
- **VUC**: Vendor Unique Command

- **UEC**: Universal Error Code
- **XTS**: A mode of AES that utilizes "Tweakable" block ciphers

#### 12. References

#### 12.1 NIST Specifications

- [AES] Advanced Encryption Standard, FIPS PUB 197, NIST, November 2001
- [DSS] Digital Signature Standard, FIPS PUB 186-4, NIST, July 2013
- [FIPS140] Security Requirements for Cryptographic Modules, FIPS PUB 140-2, NIST, December 2002
- [HMAC] The Keyed-Hash Message Authentication Code, FIPS PUB 198-1, July 2008
- [SHA] Secure Hash Standard (SHS), FIPS PUB 180-4, NIST, August 2015
- [SP800 38A] Recommendation for Block Cipher Modes of Operation: Methods and Techniques, NIST, December 2001
- [SP800 38E] Recommendation for Block Cipher Modes of Operation: The XTS-AES Mode for Confidentiality on Storage Devices, SP800 38E, NIST, January 2010
- [SP800 38F] Recommendation for Block Cipher Modes of Operation: Methods for Key Wrapping, NIST, December 2012
- [SP800 57] Recommendation for Key Management Part I General (Revision 4), NIST, January 2016
- [SP800 90A] Recommendation for Random Number Generation Using Deterministic Random Bit Generators (Revision 1), NIST, June 2015
- [SP800 90B] Recommendation for Entropy Sources Used for Random Bit Generation, NIST, January 2018
- [SP800 131A] Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms and Key Lengths (Revision 1), NIST, November 2015
- [SP800 132] Recommendation for Password-Based Key Derivation, NIST, December 2010
- [SP800 133] Recommendation for Cryptographic Key Generation, NIST, December 2012

#### 12.2 Trusted Computing Group Specifications

- [TCG Core] TCG Storage Architecture Core Specification, Version 2.0 Revision 1.0 (April 20, 2009)
- [Enterprise] TCG Storage Security Subsystem Class: Enterprise Specification, Version 1.00 Revision 3.00 (January 10, 2011)
- [TCG App Note] TCG Storage Application Note: Encrypting Storage Devices Compliant with SSC: Enterprise, Version 1.00 Revision 1.00 Final
- [TCG Opal] TCG Storage Security Subsystem Class: Opal Specification, Version 2.00 Final Revision 1.00 (February 24, 2012)
- TCG Storage Interface Interactions Specification (SIIS), Version 1.02, (2011)

# 12.3 International Committee on Information Technology Standards T10 Technical Committee Standards

- [SCSI Core] SCSI Primary Commands-4 (SPC-4)
- [SCSI Block] SCSI Block Commands-4 (SBC-4)

• [SAS] Serial Attached SCSI-3 (SAS-3)

#### 12.4 Corporate Documents

- [Product Specification] Ultrastar DC HC530 SAS OEM Product Specification version 1.1, September 27, 2018, <u>https://www.westerndigital.com/products/data-center-drives/ultrastar-dc-hc500-series-hdd</u>
- [Datasheet] Ultrastar DC HC530 Datasheet, (August 2019), <u>https://www.westerndigital.com/products/data-center-drives/ultrastar-dc-hc500-series-hdd</u>
- [D&O] Delivery & Operation (Cryptographic Officer) Manual, Version: 0.12 (January 7, 2017)

#### 12.5 SCSI Commands

| Description                 | Code    | Description            | Code    |
|-----------------------------|---------|------------------------|---------|
| FORMAT UNIT                 | 04h     | RESERVE                | 16h     |
| INQUIRY                     | 12h     | RESERVE                | 56h     |
| LOG SELECT                  | 4Ch     | REZERO UNIT            | 01h     |
| LOG SENSE                   | 4Dh     | SANITIZE               | 48h     |
| MODE SELECT                 | 15h     | SEEK (6)               | 0Bh     |
| MODE SELECT                 | 55h     | SEEK (10)              | 2Bh     |
| MODE SENSE                  | 1Ah     | SEND DIAGNOSTIC        | 1Dh     |
| MODE SENSE                  | 5Ah     | SET DEVICE IDENTIFIER  | A4h/06h |
| PERSISTENT RESERVE IN       | 5Eh     | START STOP UNIT        | 1Bh     |
| PERSISTENT RESERVE OUT      | 5Fh     | SYNCHRONIZE CACHE (10) | 35h     |
| PRE-FETCH (16)              | 90h     | SYNCHRONIZE CACHE (16) | 91h     |
| PRE-FETCH (10)              | 34h     | TEST UNIT READY        | 00h     |
| READ (6)                    | 08h     | UNMAP                  | 42h     |
| READ (10)                   | 28h     | VERIFY (10)            | 2Fh     |
| READ (12)                   | A8h     | VERIFY (12)            | AFh     |
| READ (16)                   | 88h     | VERIFY (16)            | 8Fh     |
| READ (32)                   | 7Fh/09h | VERIFY (32)            | 7Fh/0Ah |
| READ BUFFER                 | 3Ch     | WRITE (6)              | 0Ah     |
| READ CAPACITY (10)          | 25h     | WRITE (10)             | 2Ah     |
| READ CAPACITY (16)          | 9Eh/10h | WRITE (12)             | AAh     |
| READ DEFECT DATA            | 37h     | WRITE (16)             | 8Ah     |
| READ DEFECT DATA            | B7h     | WRITE (32)             | 7Fh/0Bh |
| READ LONG (16)              | 9Eh/11h | WRITE AND VERIFY (10)  | 2Eh     |
| READ LONG                   | 3Eh     | WRITE AND VERIFY (12)  | AEh     |
| REASSIGN BLOCKS             | 07h     | WRITE AND VERIFY (16)  | 8Eh     |
| RECEIVE DIAGNOSTICS RESULTS | 1Ch     | WRITE AND VERIFY (32)  | 7Fh/0Ch |
| RELEASE                     | 17h     | WRITE BUFFER           | 3Bh     |
| RELEASE                     | 57h     | WRITE LONG (10)        | 3Fh     |

#### Table 14 - SCSI Commands

FIPS 140- 2 Security Policy

| Ultrastar <sup>®</sup> DC HC530 TCG Enterprise HD | D       |                 |         |
|---------------------------------------------------|---------|-----------------|---------|
| REPORT DEVICE IDENTIFIER                          | A3h/05h | WRITE LONG (16) | 9Fh/11h |
| REPORT LUNS                                       | A0h     | WRITE SAME (10) | 41h     |
| REPORT SUPPORTED OPERATION CODES                  | A3h/0Ch | WRITE SAME (16) | 93h     |
| REPORT SUPPORTED TASK MANAGEMENT<br>FUNCTIONS     | A3h/0Dh | WRITE SAME (32) | 7Fh/0Dh |
| REQUEST SENSE                                     | 03h     |                 |         |