
Symantec PGP Cryptographic Engine Security Policy

Page 1

 Symantec Corporation, 2019
May be reproduced only in its entirety (without revision).

Symantec Corporation
Symantec PGP Cryptographic Engine

FIPS 140-2 Non-proprietary

Security Policy

Document Version 1.0

Module Version 4.4
Revision Date 04/13/2020

Author Date Change
Symantec 04/13/2020 Initial release

Symantec PGP Cryptographic Engine Security Policy

Page i

 Symantec Corporation, 2019
May be reproduced only in its entirety (without revision).

Table of Contents
1	 INTRODUCTION .. 2	

2	 MODULE SPECIFICATIONS... 3	

2.1	 APPROVED ALGORITHMS ... 4	
2.2	 NON-APPROVED ALGORITHMS ... 8	
2.3	 CRYPTOGRAPHIC BOUNDARY .. 9	
2.4	 PORTS AND INTERFACES ... 10	
2.5	 SECURITY LEVEL ... 11	
2.6	 OPERATIONAL ENVIRONMENT .. 12	
2.7	 APPROVED MODE OF OPERATION .. 14	

3	 SECURITY RULES .. 15	

3.1	 GUIDANCE FOR USE OF THE APPROVED RSA ALGORITHM .. 15	
3.2	 GUIDANCE FOR USE OF THE APPROVED SHAKE ALGORITHMS 16	
3.3	 GUIDANCE FOR USE OF THE APPROVED DSA ... 16	
3.4	 GUIDANCE FOR USE OF THE APPROVED ECDSA ALGORITHM ... 16	
3.5	 GUIDANCE FOR USE OF THE APPROVED HMAC .. 16	
3.6	 GUIDANCE FOR USE OF THE APPROVED PBKDF .. 16	
3.7	 GUIDANCE FOR USE OF THE APPROVED KBKDF .. 17	
3.8	 ROLES, SERVICES AND AUTHENTICATION ... 18	
3.9	 ACCESS CONTROL POLICY .. 19	
3.10	 CRITICAL SECURITY PARAMETERS AND PUBLIC KEYS ... 19	
3.11	 ACCESSES .. 20	
3.12	 SERVICE TO CSP ACCESS RELATIONSHIP .. 20	

4	 PHYSICAL SECURITY POLICY .. 24	

5	 SELF-TESTS ... 24	

5.1	 POWER-UP TESTS .. 25	
5.2	 CONDITIONAL SELF-TESTS ... 26	
5.3	 ON-DEMAND TESTS .. 26	

6	 MITIGATION OF OTHER ATTACKS .. 27	

7	 APPENDIX A: CSPS ... 28	

8	 APPENDIX B: PUBLIC KEYS ... 34	

Symantec PGP Cryptographic Engine Security Policy

Page 2

 Symantec Corporation, 2019
May be reproduced only in its entirety (without revision).

1 Introduction
The Symantec PGP Cryptographic Engine (SW Version 4.4) (hereafter referred to as the
“cryptographic module” or the “module”) is a software only cryptographic module validated to
the standards set forth by the FIPS PUB 140-2 Security Requirements for Cryptographic
Modules document published by the National Institute of Standards and Technology (NIST). The
module is intended to meet the security requirements of FIPS 140-2 Level 1 overall.

This document, the Symantec PGP Cryptographic Engine FIPS 140-2 Non-proprietary
Security Policy, also referred to as the Security Policy, specifies the security rules under
which the module must operate.

Symantec PGP Cryptographic Engine Security Policy

Page 3

 Symantec Corporation, 2019
May be reproduced only in its entirety (without revision).

2 Module Specifications
The PGP Cryptographic Engine (SW Version 4.4) is a software-only cryptographic module embodied as
a shared library binary that executes on general-purpose computer systems and is available on a number
of operating systems. The specific operating system and version to be validated is specified in the
"Operational Environment" section of this document.

The PGP Cryptographic Engine cryptographic module is accessible to client applications through
an application-programming interface (API). The module provides a FIPS Approved mode of
operation and a non-FIPS mode of operation, both of which are described in the "Approved
Mode of Operation" section of this document.

For the purposes of FIPS 140-2, the PGP Cryptographic Engine is classified as a multi-chip standalone
module.

Symantec PGP Cryptographic Engine Security Policy

Page 4

 Symantec Corporation, 2019
May be reproduced only in its entirety (without revision).

2.1 Approved Algorithms

The PGP Cryptographic Engine implements the following Approved algorithms in the FIPS
Approved mode of operation.

1 Please see Appendix A and B for further details on SP 800-133 Cryptographic Key
Generation.

CAVP Cert Algorithm Standard Mode/
Method

Key Lengths,
Curves or

Moduli

Use Service
Name

C 511, C 512,
C 513, C 514,
C 515, C 516,
C 517, C 518,
C 519, C 520,
C 521, C 522

AES

FIPS 197
SP 800-38A

ECB
CBC

CFB128

128
192
256

Data
Encryption /
Decryption

Symmetric
Cipher

C 511, C 512,
C 513, C 514,
C 515, C 516,
C 517, C 518,
C 519, C 520,
C 521, C 522

AES FIPS 197
SP 800-38D

GCM 128
192
256

Data
Encryption /
Decryption

Authenticated
Encryption

C 511, C 512,
C 513, C 514,
C 515, C 516,
C 517, C 518,
C 519, C 520,
C 521, C 522

AES FIPS 197
SP 800-38F

KW
KWP

128
192
256

Key
Wrapping /
Unwrapping

Key
Wrapping

C 511, C 512,
C 513, C 514,
C 515, C 516,
C 517, C 518,
C 519, C 520,
C 521, C 522

CVL
Partial ECC

CDH

SP 800-56A

ECC P-256
P-384
P-521

Shared Secret
Computation

Shared Secret
Generation

Vendor
Affirmation

CKG SP 800-133 Cryptographic
Key Generation

Various1

C 511, C 512,
C 513, C 514,
C 515, C 516,
C 517, C 518,
C 519, C 520,
C 521, C 522

DRBG SP 800-90A CTR-DRBG with
AES-256 with

Derivation
Function

256 Deterministic
Random Bit
Generation

DRBG

C 511, C 512,
C 513, C 514,
C 515, C 516,
C 517, C 518,
C 519, C 520,

DSA FIPS 186-4 KeyGen and
PQGGen

L=2048, N=256
L=3072, N=256

Digital
Signature

Key
Generation

Digital
Signature

Symantec PGP Cryptographic Engine Security Policy

Page 5

 Symantec Corporation, 2019
May be reproduced only in its entirety (without revision).

2 SHA-1 and SHA-224 are approved only for L=1024,N=160

C 521, C 522

C 511, C 512,
C 513, C 514,
C 515, C 516,
C 517, C 518,
C 519, C 520,
C 521, C 522

DSA FIPS 186-4 SigGen
SHA-256
SHA-384
SHA-512

L=2048, N=256
L=3072, N=256

Digital
Signature

Generation

Digital
Signature

C 511, C 512,
C 513, C 514,
C 515, C 516,
C 517, C 518,
C 519, C 520,
C 521, C 522

DSA FIPS 186-4 SigVer
SHA-12

SHA-2242
SHA-256
SHA-384
SHA-512

L=1024, N=160
L=2048, N=256
L=3072, N=256

Digital
Signature

Verification

Digital
Signature

C 511, C 512,
C 513, C 514,
C 515, C 516,
C 517, C 518,
C 519, C 520,
C 521, C 522

ECDSA FIPS 186-4 KeyGen
KeyVer

P-256
P-384
P-512

Key
Generation
for Digital
Signatures

Digital
Signature

C 511, C 512,
C 513, C 514,
C 515, C 516,
C 517, C 518,
C 519, C 520,
C 521, C 522

ECDSA FIPS 186-4 SigGen
SHA-256
SHA-384
SHA-512

P-256 (SHA-256)
P-384 (SHA-256,

SHA-384)
P-521 (SHA-256,
SHA-384, SHA-

512)

Digital
Signature

Generation

Digital
Signature

C 511, C 512,
C 513, C 514,
C 515, C 516,
C 517, C 518,
C 519, C 520,
C 521, C 522

ECDSA

FIPS 186-4 SigVer
SHA-256
SHA-384
SHA-512

P-256 (SHA-256)
P-384 (SHA-256,

SHA-384)
P-521 (SHA-256,
SHA-384, SHA-

512)

Digital
Signature

Verification

Digital
Signature

C 511, C 512,
C 513, C 514,
C 515, C 516,
C 517, C 518,
C 519, C 520,
C 521, C 522

HMAC FIPS 198-1 HMAC-SHA-1,
HMAC-SHA-224,
HMAC-SHA-256,
HMAC-SHA-384,
HMAC-SHA-512,
HMAC-SHA3-224,
HMAC-SHA3-256,
HMAC-SHA3-384,
HMAC-SHA3-512

112-512 Message
Authentication

Message
Authentication

C 511, C 512,
C 513, C 514,
C 515, C 516,
C 517, C 518,
C 519, C 520,
C 521, C 522

KBKDF SP 800-108 Counter Mode;
HMAC-SHA-1,
HMAC-SHA-224,
HMAC-SHA-256,
HMAC-SHA-384,
HMAC-SHA-512

112 Key
Derivation

Key
Derivation

Symantec PGP Cryptographic Engine Security Policy

Page 6

 Symantec Corporation, 2019
May be reproduced only in its entirety (without revision).

3 Module implements SP 800-56B Section 6.3.1 and Section 9.2.3 (KTS-OAEP-basic).
See “RSA Decryption Primitive” for associated CVL certificates.

Vendor
Affirmation

KTS SP 800-56B3 RSA 2048
3072

Key
Transport

RSA Encrypt/
Decrypt

Vendor
Affirmation

PBKDF SP 800-132 HMAC-SHA-1
HMAC-SHA-224
HMAC-SHA256
HMAC-SHA384
HMAC-SHA512

 Key
Derivation for

Storage
Applications

Key
Derivation

C 383, C 384,
C 385, C 386,
C 387, C 388,
C 389, C 390,
C 391, C 392,
C 393, C 478

RSA
Decryption
Primitive

SP 800-56B 2048 Decryption
Primitive

(Key
Transport)

RSA Encrypt/
Decrypt

C 511, C 512,
C 513, C 514,
C 515, C 516,
C 517, C 518,
C 519, C 520,
C 521, C 522

RSA FIPS 186-4 KeyGen 2048
3072

Key
Generation
for Digital

Signature or
Key

Transport

Digital
Signature

C 511, C 512,
C 513, C 514,
C 515, C 516,
C 517, C 518,
C 519, C 520,
C 521, C 522

RSA FIPS 186-2 SigGen
SHA-256,
SHA-384,
SHA-512;
PKCS 1.5,
PKCS PSS

4096 Digital
Signature

Generation

Digital
Signature

C 632, C 633,
C 634, C 635,
C 636, C 637,
C 638, C 639,
C 640, C 641,
C 642, C 643

RSA FIPS 186-2 SigVer
SHA2-256,
SHA2-384,
SHA2-512,
PKCS 1.5,
PKCS PSS

4096 Digital
Signature

Verification

Digital
Signature

C 511, C 512,
C 513, C 514,
C 515, C 516,
C 517, C 518,
C 519, C 520,
C 521, C 522

RSA FIPS 186-4 SigGen
SHA-256,
SHA-384,
SHA-512;
PKCS 1.5,
PKCS PSS

2048
3072

Digital
Signature

Generation

Digital
Signature

C 511, C 512,
C 513, C 514,
C 515, C 516,
C 517, C 518,
C 519, C 520,
C 521, C 522

RSA FIPS 186-4 SigVer
SHA-1,

SHA-224,
SHA-256,
SHA-384,
SHA-512;
PKCS 1.5,

1024
2048
3072

Digital
Signature

Verification

Digital
Signature

Symantec PGP Cryptographic Engine Security Policy

Page 7

 Symantec Corporation, 2019
May be reproduced only in its entirety (without revision).

The PGP Cryptographic Engine also implements the following Allowed algorithms:

Algorithm Caveat Use

NDRNG No assurance of the
minimum strength of
generated keys. The module
generates 112 bits of
entropy for use in key
generation

Seeding for the
DRBG

Table 2 - Allowed algorithms

PKCS PSS

C 511, C 512,
C 513, C 514,
C 515, C 516,
C 517, C 518,
C 519, C 520,
C 521, C 522

SHS FIPS 180-4
FIPS 202

SHA-1,
SHA-224,
SHA-256,
SHA-384,
SHA-512,

SHA3-224,
SHA3-256,
SHA3-384,
SHA3-512,

SHAKE-128,
SHAKE-256

 Message
Digest

Message
Digest

C 511, C 512,
C 513, C 514,
C 515, C 516,
C 517, C 518,
C 519, C 520,
C 521, C 522

Triple-DES

SP 800-67 TDES-ECB
TDES-CBC

TDES-CFB64

(3-Key) 192 bits Data
Encryption /
Decryption

Symmetric
Cipher

Table 1 - Approved algorithms

Symantec PGP Cryptographic Engine Security Policy

Page 8

 Symantec Corporation, 2019
May be reproduced only in its entirety (without revision).

2.2 Non-Approved Algorithms

The PGP Cryptographic Engine module provides the following non-FIPS approved algorithms
only in non-FIPS mode of operation:

Algorithms Service Role

AES CFB2 Disk Block Encryption / Decryption User/CO
AES EME2 Disk Block Encryption / Decryption User/CO
AES PlumbCFB Encryption / Decryption User/CO
ARC4 Encryption / Decryption User/CO
BlowFish Encryption / Decryption User/CO
CAST5 Encryption / Decryption User/CO
DSA with MD-5, MD-2, RIPEMD160, SHA3-
224, SHA3-256, SHA3-384, SHA3-512,
SHAKE-128, or SHAKE-512 (non-compliant)

Signature Generation and Verification User/CO

DSA with SHA-1 Signature Generation User/CO
DSA with modulus size 1024 and larger than
4096 up to 65536 (non-compliant)

Signature Generation and Verification User/CO

ECDSA with MD-5, MD-2, RIPEMD160,
SHA3-224, SHA3-256, SHA3-384, SHA3-
512, SHAKE-128, or SHAKE-512 (non-
compliant)

Signature Generation and Verification User/CO

ECDSA with SHA-1 or SHA-224 (non-
compliant)

Signature Generation User/CO

ElGamal Encryption / Decryption User/CO
HMAC with MD-5, RIPEMD160, MD-2 Keyed Hash User/CO
HMAC with keys <112 bits in length Keyed Hash User/CO
HMAC with SHAKE-128 or SHAKE-512 Keyed Hash User/CO
IDEA Encryption / Decryption User/CO
KBKDF-SHA3-224, KBKDF-SHA3-256,
KBKDF-SHA3-384, KBKDF-SHA3-512,
KBKDF-SHAKE-128 or KBKDF-SHAKE-
512

Key Derivation User/CO

MD-2 Hashing User/CO
MD-5 Hashing User/CO
OpenPGP S2K Iterated salted Key Derivation User/CO
PBKDF-SHA3-224, PBKDF-SHA3-256,
PBKDF-SHA3-384, PBKDF-SHA3-512,
PBKDF-SHAKE-128 or PBKDF-SHAKE-512

Key Derivation User/CO

RC2 Encryption / Decryption User/CO
RIPEMD160 Hashing User/CO

Symantec PGP Cryptographic Engine Security Policy

Page 9

 Symantec Corporation, 2019
May be reproduced only in its entirety (without revision).

Table 2 – Non-Approved Algorithms

2.3 Cryptographic Boundary

The physical cryptographic boundary is defined as the computer's case that the PGP
Cryptographic Engine is installed in and includes all the accompanying hardware. The module’s
logical cryptographic boundary is defined to be a subset of the PGP Cryptographic Engine binary
software library as defined by the "Roles and Services" section of this document.
An operator is accessing (or using) the module whenever one of the library calls is executed through
the API and thus the module logical interfaces are provided by the API calls.
Note that the dashed line represents the PGP Cryptographic Engine crypto boundary.

RSA with MD-5, MD-2, RIPEMD160, SHA3-
224, SHA3-256, SHA3-384, SHA3-512,
SHAKE-128, or SHAKE-512

Signature Generation and Verification User/CO

RSA with SHA-1 and SHA-224 (non-
compliant)

Signature Generation User/CO

RSA with modulus size 1024 and larger than
4096 up to 65536 (non-compliant)

Signature Generation and Verification User/CO

RSA with X509_RAW packing format Signature Generation and Verification User/CO
TwoFish Encryption / Decryption User/CO

GPC

Client
Application

Module

P
rogram

m
ing A

P
I

- Triple-DES
- AES
- ECC CDH
- RSA
- RSADP
- DSA
- ECDSA
- HMAC
- SHS
- DRBG
- AES GCM
- AES KW / KWP
- SHA-3 / SHAKE
- SP800-108 KDF
- SP800-132 PBKDF

Figure 1 - Module Cryptographic Boundary

Symantec PGP Cryptographic Engine Security Policy

Page 10

 Symantec Corporation, 2019
May be reproduced only in its entirety (without revision).

2.4 Ports and Interfaces

The module restricts all access to its Critical Security Parameters (CSPs) through the API calls as
enumerated in the "Roles and Services" section of this document. This API acts as the logical
interface to the module.

Although the computer’s physical ports such as keyboards, mouse, displays, and network
interfaces provide a means to interact with the GPC, the interface to the cryptographic module is
via the module API.

For the purpose of FIPS 140-2, the logical interfaces can be modeled as described in the
following table.

Data Input Parameters passed to the module via API calls.
Data Output Data returned by the module via API calls.
Control Input Control Input – API function calls.
Status Output Error and status codes returned by API calls.

Table 3 - PGP Cryptographic Engine Logical Ports

Input and output data can consist of plain-text, cipher-text, and cryptographic keys as well as
other parameters. The module does not support a cryptographic bypass mode.
All data output is inhibited during an error state. Data output is also inhibited during the self-test
process.

Symantec PGP Cryptographic Engine Security Policy

Page 11

 Symantec Corporation, 2019
May be reproduced only in its entirety (without revision).

2.5 Security Level

The PGP Cryptographic Engine Module meets the overall security requirements of FIPS 140-2
Level 1.
Security Requirements Area Level

Cryptographic Module Specification 1
Cryptographic Module Ports and Interfaces 1
Roles, Services and Authentication 1
Finite State Model 1
Physical Security N/A
Operational Environment 1
Cryptographic Key Management 1
EMI/EMC 1
Self-Tests 1
Design Assurance 3
Mitigation of Other Attacks N/A

Table 4 - Module Security Level Specification

Symantec PGP Cryptographic Engine Security Policy

Page 12

 Symantec Corporation, 2019
May be reproduced only in its entirety (without revision).

2.6 Operational Environment

The following Operating Systems were used to operationally test and validate the PGP
Cryptographic Engine to the requirements of FIPS-140-2.

Label PAA Operating Environment for testing Software Operating System
OE #1 AESNI-

Enabled
Windows 10 Pro (32-bit) on VMWare ESXi 6.5.0
on Intel® Xenon® CPU E5-2620 v3 @ 2.4GHz
with AES-NI enabled

Windows 10 Pro (32-bit) on VMWare
ESXi 6.5.0 running on Dell Precision
Tower 7910

OE #2 none Windows 10 Pro (32-bit) on VMWare ESXi 6.5.0
on Intel® Xenon® CPU E5-2620 v3 @ 2.4GHz
with AES-NI disabled

Windows 10 Pro (32-bit) on VMWare
ESXi 6.5.0 running on Dell Precision
Tower 7910

OE #3 AESNI-
Enabled

macOS High Sierra 10.13.6 (64-bit) on 2 GHz Intel
Core i7 with AES-NI enabled

macOS High Sierra 10.13.6 (64-bit)
running on Mac mini Server (Mid 2011)

OE #4 none macOS High Sierra 10.13.6 (64-bit) on 2 GHz Intel
Core i7 with AES-NI disabled

macOS High Sierra 10.13.6 (64-bit)
running on Mac mini Server (Mid 2011)

OE #5 AESNI-
Enabled

RHEL 7.5 (64-bit) on VMWare ESXi 6.5.0 on
Intel® Xenon® CPU E5-2620 v3 @ 2.4GHz with
AES-NI enabled

Red Hat Enterprise Linux 7.5 (64-bit) on
VMWare ESXi 6.5.0 running on Dell
Precision Tower 7910

OE #6 none RHEL 7.5 (64-bit) on VMWare ESXi 6.5.0 on
Intel® Xenon® CPU E5-2620 v3 @ 2.4GHz with
AES-NI disabled

Red Hat Enterprise Linux 7.5 (64-bit) on
VMWare ESXi 6.5.0 running on Dell
Precision Tower 7910

OE #7 AESNI-
Enabled

Windows 10 Pro (64-bit) on VMWare ESXi 6.5.0
on Intel® Xenon® CPU E5-2620 v3 @ 2.4GHz
with AES-NI enabled

Windows 10 Pro (64-bit) on VMWare
ESXi 6.5.0 running on Dell Precision
Tower 7910

OE #8 none Windows 10 Pro (64-bit) on VMWare ESXi 6.5.0
on Intel® Xenon® CPU E5-2620 v3 @ 2.4GHz
with AES-NI disabled

Windows 10 Pro (64-bit) on VMWare
ESXi 6.5.0 running on Dell Precision
Tower 7910

OE #9 AESNI-
Enabled

Windows 10 Pro (32-bit) kernel on VMWare ESXi
6.5.0 on Intel® Xenon® CPU E5-2620 v3 @
2.4GHz with AES-NI enabled

Windows 10 Pro (32-bit) kernel on
VMWare ESXi 6.5.0 running on Dell
Precision Tower 7910

OE #10 none Windows 10 Pro (32-bit) kernel on VMWare ESXi
6.5.0 on Intel® Xenon® CPU E5-2620 v3 @
2.4GHz with AES-NI disabled

Windows 10 Pro (32-bit) kernel on
VMWare ESXi 6.5.0 running on Dell
Precision Tower 7910

OE #11 AESNI-
Enabled

Windows 10 Pro (64-bit) kernel on VMWare ESXi
6.5.0 on Intel® Xenon® CPU E5-2620 v3 @
2.4GHz with AES-NI enabled

Windows 10 Pro (64-bit) kernel on
VMWare ESXi 6.5.0 running on Dell
Precision Tower 7910

OE #12 none Windows 10 Pro (64-bit) kernel on VMWare ESXi
6.5.0 on Intel® Xenon® CPU E5-2620 v3 @
2.4GHz with AES-NI disabled

Windows 10 Pro (64-bit) kernel on
VMWare ESXi 6.5.0 running on Dell
Precision Tower 7910

As per FIPS Implementation Guidance (Section G.5), the PGP Cryptographic Engine module
will remain compliant in all operational environments for which the binary executable remains
unchanged. The Cryptographic Module Validation Program (CMVP) makes no statement as to
the correct operation of the module or the security strengths of the generated keys if the specific
operational environment is not listed on the validation certificate.

Symantec PGP Cryptographic Engine Security Policy

Page 13

 Symantec Corporation, 2019
May be reproduced only in its entirety (without revision).

The following is list of representative examples of compliant operational environments:

 Microsoft Windows 7, 8, 8.1 32-bit

 Microsoft Windows 7, 8, 8.1 64-bit

 Any Microsoft Windows version where the module binary executable remains unchanged

 Microsoft Windows 7, 8, 8.1 Kernel 32-bit

 Microsoft Windows 7, 8, 8.1 Kernel 64-bit

 Any Microsoft Windows Kernel version where the module binary executable remains
unchanged

 Apple Mac OS X/macOS 10.8, 10.9, 10.10, 10.11, 10.12, 10.13+

 Any Apple macOS version where the module binary executable remains unchanged

 RHEL 6.x and 7.x

 Centos 6.x and 7.x

 Any Linux-based distribution where the module binary executable remains unchanged

The tested operating systems segregate user processes into separate process spaces. Each process
space is logically separated from all other processes by the operating system software and
hardware. The non-kernel module functions entirely within the process space of the calling
application, and implicitly satisfies the FIPS 140-2 requirement for a single user mode of
operation.

The kernel mode module is a Windows Kernel export driver and is loaded into the kernel by the
kernel on demand when API calls are made that require it to be loaded. In this context, the
Windows Kernel is the single operator for the module.

Symantec PGP Cryptographic Engine Security Policy

Page 14

 Symantec Corporation, 2019
May be reproduced only in its entirety (without revision).

2.7 Approved Mode of Operation

The PGP Cryptographic Engine provides a FIPS 140-2 compliant mode of operation. It is
required that applications using the module use only approved algorithms (see Table 1 -
Approved algorithms) and follow all security rules in section 3 in order to remain complaint.
There are no configuration requirements to operate in FIPS mode – by using approved
algorithms and following the security rules you will use the module in FIPS mode. It is possible
to use various non-approved algorithms (see section 2.2). This results in using the module in
non-FIPS mode; in this case the FIPS 140-2 self-tests are still required to be run and pass
validation prior to using the non-approved algorithms.
The client application can, at any time, verify the status by performing the PGPceGetSDKErrorState
API call. This function will return either 0 (kPGPError_NoErr) which represents no error or -
11446 (kPGPError_SelfTestFailed) which represents the module is in an error state. No other status
is returned by this API.
An application can also check the module error state and run all or any specific self-test through
making the proper API calls.

Symantec PGP Cryptographic Engine Security Policy

Page 15

 Symantec Corporation, 2019
May be reproduced only in its entirety (without revision).

3 Security Rules
Following is a list of security requirements that specify the Approved mode of operation and
must be adhered to when complying with FIPS 140-2.
1. PGP Cryptographic Engine must be used as described in this document.
2. Installation of the module is the responsibility of the Crypto Officer.
3. The cryptographic module provides a FIPS 140-2 compliant mode of operation. Before the

module can be used, it must be initialized as described in the "Approved Mode of Operation"
section of this document.

4. The cryptographic module conforms to the EMI/EMC requirements specified by 47 Code of
Federal Regulations, Part 15, Subpart B, Unintentional Radiators, Digital Devices, Class B
(i.e., for Home use) which vacuously satisfies Class A.

5. Only FIPS approved or allowed cryptographic algorithms as enumerated in the "Supported
Algorithms" section of this document are to be used.

6. The cryptographic module inhibits data output during self-tests and error states. The data
output interface is logically disconnected from the processes performing zeroization.

7. The zeroization process can be achieved using the appropriate API function:
PGPceFreeObject. Note, this function must be called for each key or CSP object created. There
is no one single function to zeroize all CSP objects.

8. PGP Cryptographic Engine is designed to meet FIPS 140-2, security Level 1, therefore the
module does not provide authentication mechanisms.

9. For those algorithms and modes that required an IV (AES CBC and AES CFB), the
consuming application is responsible for generating and supplying an IV which meets SP
800-38A requirements; this can be done by generating a random IV using the approved SP
800-90A DRBG via API call PGPceContextGetRandomBytes.

10. In accordance with FIPS 140-2 IG D.12, the cryptographic module performs Cryptographic
Key Generation (CKG) as per SP 800-133 (Vendor Affirmed). The resulting generated
symmetric key and/or generated seed for asymmetric key generation, are from the
unmodified output of the SP 800-90A DRBG via API call PGPceContextGetRandomBytes.

11. In accordance with SP 800-57, AES Keys used for one encryption mode (eg. CFB) must not
be re-used in another mode (eg. ECB).

12. In accordance with SP 800-67rev2, a single Triple-DES key must not be used to encrypt
more than 216 64-bit data blocks. The application using this module is responsible for
ensuring that no more than 216 64-bit data blocks are encrypting using a single Triple-DES
key in order to remain complaint.

3.1 Guidance for use of the Approved RSA Algorithm

RSA Signature Generation and Verification must be done using the PGPceSign and PGPceVerify
APIs. Only RSA keys generated with kPGPcePublicKeyAlgorithm_RSASignOnly can be
used for RSA digital signatures. Please refer to Section 2.1 for approved algorithms and Section
2.2 for non-approved algorithms.

Symantec PGP Cryptographic Engine Security Policy

Page 16

 Symantec Corporation, 2019
May be reproduced only in its entirety (without revision).

RSA Key Transport and Key Wrapping (encrypt and decrypt) can only use RSA keys generated
with kPGPcePublicKeyAlgorithm_RSAEncryptOnly.

3.2 Guidance for use of the Approved SHAKE Algorithms

The SHAKE Algorithms must only be used as standalone hash algorithms. They cannot be used
with other higher-level algorithms like HMAC, Digital Signatures, PBKDF, or KBKDF. Please
refer to Section 2.1 for approved algorithms and Section 2.2 for non-approved algorithms.

3.3 Guidance for use of the Approved DSA

DSA Signature Generation and Verification must be done using the PGPceSign and PGPceVerify
APIs. Please refer to Section 2.1 for approved algorithms and Section 2.2 for non-approved
algorithms.

3.4 Guidance for use of the Approved ECDSA Algorithm

ECDSA Signature Generation and Verification must be done using the PGPceSign and PGPceVerify
APIs. Only ECDSA keys generated with kPGPcePublicKeyAlgorithm_ECSign can be used for
ECDSA digital signatures. Please refer to Section 2.1 for approved algorithms and Section 2.2
for non-approved algorithms.

ECDH secret generation can only use ECDH keys generated with
kPGPcePublicKeyAlgorithm_ECEncrypt.

3.5 Guidance for use of the Approved HMAC

HMAC Keys must be a minimum of 112 bits in length. In addition, keys must be at least half the
size of the hash used in the HMAC algorithm. For example, when using SHA-256, the key must
be at least 128 bits in length.
The following algorithms are not allowed for use in the approved HMAC: MD5, RIPEMD160,
and MD2.

3.6 Guidance for use of the Approved PBKDF

For Password-based Key Derivation, the following restrictions apply:

 Keys generated using PBKDF2 shall only be used in data storage applications.
 The minimum password length input shall be 14 characters, which has a strength of

approximately 112 bits, assuming a randomly selected password using the extended
ASCII printable character set is used.

 For random passwords (that is, a string of characters from a given set of characters in
which each character is equally likely to be selected), the strength of the password is
given by: S=L*(log N/log 2) where N is the number of possible characters (for example,
for the ASCII printable character set N = 95, for the extended ASCII printable character
set N = 218) and L is the number of characters. A password of the strength S can be
guessed at random with the probability of 1 in 2S.

 The minimum length of the randomly-generated portion of the salt shall be 16 bytes.

Symantec PGP Cryptographic Engine Security Policy

Page 17

 Symantec Corporation, 2019
May be reproduced only in its entirety (without revision).

 The random portion of the salt must be generated using the unmodified output of the SP
800-90A DRBG using API call PGPceContextGetRandomBytes.

 The iteration count shall be as large as possible, with a minimum of 1000 iterations
recommended as per SP800-132.

 The maximum key length is (232 -1) * hLen, where hLen is the digest size of the message
digest function.

 The minimum key length shall be 112 bits as per SP800-132.
 Derived keys can be used as specified in NIST Special Publication 800-132, Section 5.4,

options 1 and 2.
 The following approved hash functions are supported for PBKDF: SHA1, SHA256,

SHA384, and SHA512.

3.7 Guidance for use of the Approved KBKDF

For Key-based Key Derivation, the following restrictions apply:

 The input Key Derivation Key (KDK) shall be generated using the unmodified output of
the SP 800-90A DRBG using API call PGPceContextGetRandomBytes. The KDK shall be
112 bits or greater.

 Per SP 800-108, the Derived Keying Material (DKM) shall not be used as a key stream
for a stream cipher. The DKM shall be 112 bits or greater.

 The following approved keyed hash functions are supported for KBKDF: HMAC-SHA1,
HMAC-SHA-224, HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512.

Symantec PGP Cryptographic Engine Security Policy

Page 18

 Symantec Corporation, 2019
May be reproduced only in its entirety (without revision).

3.8 Roles, Services and Authentication

The module operator is defined as any client application that is linked to the PGP Cryptographic
Engine shared library (PGPce.dll on the Windows platforms, PGPce.sys for the Windows kernel
module, libPGPCE.dylib on OS X platforms, and libPGPCE.so.4 on Linux platforms)

The cryptographic module supports two roles (described below). An operator accesses both roles
while using the module and the means of access is the same for both roles. A role is implicitly
assumed based on the services that are accessed.

The Crypto Officer (CO) is any entity that can install the module library onto the computer
system, configure the operating system, and validate the compliance of the module. The Crypto
Officer’s role is implicitly selected when installing the module or configuring the operating
system.

Installation is accomplished by copying the module library file, (one of libPGPCE.so.4,
libPGPCE.dylib, or PGPce.dll) and the module signature file, (one of libPGPCE.so.4.sig,
libPGPCE.dylib.sig, or PGPce.dll.sig). The location of the directory is not critical to the
installation of the module, except for the Windows kernel module.

The Windows kernel module (PGPce.sys) and signature file (PGPce.sys.sig) must be installed
into the Windows system32\drivers directory (typically C:\Windows\System32\drivers).

The Crypto Officer should call PGPceGetVersion inside the module to verify the version. The
expected return code is 0x04040000 for this version of the module.

The roles are defined as the following:

 User: Shall be allowed to perform all services provided by the module.
 Crypto Officer: Shall be allowed to perform all services provided by the module and

additionally is responsible for the installation of the module.

Role Authentication Type Authentication Data
User N/A N/A

Crypto Officer (CO) N/A N/A

Table 5 – Roles and Required Identification and Authentication

Authentication Mechanism Strength of Mechanism

N/A N/A

Table 6 – Strength of Authentication Mechanisms

Symantec PGP Cryptographic Engine Security Policy

Page 19

 Symantec Corporation, 2019
May be reproduced only in its entirety (without revision).

3.9 Access Control Policy

In the PGP Cryptographic Engine, access to critical security parameters is controlled. A module
User or Crypto Officer can only read, modify, or otherwise access the security relevant data
through the cryptographic module services provided by the module API interface. This section
details the Critical Security Parameters (CSPs) in the cryptographic module that a User or Crypto
Officer can access, how the CSPs can be accessed in the cryptographic module, and which
services are used for access to the data item.

3.10 Critical Security Parameters and Public Keys

The Critical Security Parameters (CSPs) used by the PGP Cryptographic Engine module are
protected from unauthorized disclosure, modification, and substitution.
Definition of CSPs and Public Keys:

 Triple-DES Key - used to Triple-DES encrypt/decrypt data.
 AES Key - used to AES encrypt/decrypt data; used for SP800-38F AES KeyWrap; used

for AES GCM Authenticated Encryption.
 AES GCM IV – used for AES GCM Authenticated Encryption.
 RSA Key Pairs (RSA private and public key) - used for signing and verification; used for

encrypt/decrypt (SP800-56B KTS).
 DSA Key Pairs (DSA private and public key) - used for signing and verification.
 ECDSA Key Pairs (ECDSA private and public key) - used for signing and verification.
 ECDSA secret k value – used for signing (per FIPS 186-4)
 ECC CDH Key Pairs (ECC CDH private and public key) – used to generate a shared

secret.
 ECC CDH Shared Secret – output of the “Shared Secret Generation” service.
 DRBG Entropy Input, Nonce, Personalization String – used for random bit generation.
 DRBG Internal State – The values of V and Key.
 HMAC Key - used for message authentication of data.
 PBKDF Internal State – used for SP800-132 PBKDF Key Derivation.
 PBKDF Password – used for SP800-132 PBKDF Key Derivation.
 PBKDF MK - output of the SP800-132 PBKDF Key Derivation.
 KBKDF Internal State – used for SP800-108 KBKDF Key Derivation.
 KBKDF KDK – used for SP800-108 KBKDF Key Derivation.
 KBKDF DKM – output of the SP800-108 KBKDF Key Derivation.
 Module Integrity Authentication Key – ECDSA P-384 public key used to authenticate the

software image of the module.

Symantec PGP Cryptographic Engine Security Policy

Page 20

 Symantec Corporation, 2019
May be reproduced only in its entirety (without revision).

3.11 Accesses

The types of access to CSPs in the Symantec PGP Cryptographic Engine module are listed in the
following table. Note, for the module read and execute are the same access – references to read
access apply equally to execute.

Access Description

create The item is created.
destroy The item is destroyed, in other words the data is cleared (actively overwritten) from any

memory in the cryptographic module and then that memory is released.
read The item is accessed for reading and use.
write The item is modified or changed.

Table 7 - CSP Access Types

3.12 Service to CSP Access Relationship

The following table shows which CSPs are accessed by each service, the role(s) the operator
must be in for access, and how the CSP is accessed on behalf of the operator when the service is
performed.
Several services provided by the PGP Cryptographic Engine module do not access any CSPs and
are included here for completeness.

Symantec PGP Cryptographic Engine Security Policy

Page 21

 Symantec Corporation, 2019
May be reproduced only in its entirety (without revision).

Service CO User CSPs and Public Keys create destroy read write

Symmetric Cipher X X
Triple-DES Key

AES Key

 Digital Signature
X X

RSA Key Pairs

DSA Key Pairs

ECDSA Key Pairs

X X ECDSA secret k value
Message Authentication X X HMAC Key

RSA Encrypt/Decrypt X X RSA Key Pairs
Shared Secret
Generation

X X ECC CDH Key Pairs

X X
ECC CDH Shared
Secret

Show status X X N/A

Run self-tests
X X

Module Integrity
Authentication Key

Authenticated
Encryption

X X
AES Key

AES GCM IV

Symantec PGP Cryptographic Engine Security Policy

Page 22

 Symantec Corporation, 2019
May be reproduced only in its entirety (without revision).

Service CO User CSPs and Public Keys create destroy read write
Zeroize

X X

Triple-DES Key

AES Key

AES GCM IV

RSA Key Pairs

DSA Key Pairs

ECDSA Key Pairs

ECDSA secret k value

ECC CDH Key Pairs

ECC CDH Shared
Secret

DRBG Entropy Input,
Nonce, Personalization
String

DRBG Internal State

HMAC Key

PBKDF Internal State

PBKDF Password

PBKDF MK

KBKDF Internal State

KBKDF KDK

KBKDF DKM

Random Number
Generation X X

DRBG Entropy Input,
Nonce, Personalization
String

X X DRBG Internal State

Key Wrapping X X AES Key

Key Derivation

X X PBKDF Password

X X PBKDF MK

X X PBKDF Internal State

X X KBKDF KDK

Symantec PGP Cryptographic Engine Security Policy

Page 23

 Symantec Corporation, 2019
May be reproduced only in its entirety (without revision).

Service CO User CSPs and Public Keys create destroy read write

X X KBKDF DKM

X X KBKDF Internal State

Message Digest X X N/A

Module Initialization
X X

Module Integrity
Authentication Key

Cryptographic Padding X X N/A

Object Management X X N/A

Context Management X X N/A

Memory Management X X N/A

Table 8 - Module Services vs Role Access

Symantec PGP Cryptographic Engine Security Policy

Page 24

 Symantec Corporation, 2019
May be reproduced only in its entirety (without revision).

4 Physical Security Policy
The PGP Cryptographic Engine is implemented as a software module, and as such the physical
security section of FIPS 140-2 is not applicable.

Physical Security
Mechanisms

Recommended Frequency
of Inspection/Test

Inspection/Test Guidance
Details

N/A N/A N/A
Table 9 - Inspection/Testing of Physical Security Mechanisms

5 Self-Tests
The PGP Cryptographic Engine provides for two forms of self-tests: power-on, and on-demand.

Software integrity test is performed using ECDSA P-384 with SHA-384 signature verification.

The FIPS integrity check and self-test are a mandatory operation and run automatically without
operator intervention. The results of the integrity check and self-tests are reported by
PGPceGetSDKErrorState().

All data output is prohibited during the self-test process.
If any of these test fail, the module will enter an error state, which can only be cleared by
powering down the module. Once in an error state, all further cryptographic operations and data
output is disabled.
A client application can also ascertain module at any time by using the PGPceGetSDKErrorState()
function. Possible error codes returned by the self-test routines include:

 kPGPError_NoErr (0) – self-test was successful.
 kPGPError_SelfTestFailed (‐11446) – self-test Failed.

Symantec PGP Cryptographic Engine Security Policy

Page 25

 Symantec Corporation, 2019
May be reproduced only in its entirety (without revision).

5.1 Power-Up Tests

The following self-tests will run and in the following order until all the tests have been
completed successfully or until one of the tests fail.

Algorithm Test Attributes
Software Integrity Test ECDSA P-384/SHA-384 signature

verification
TDES Encrypt, ECB mode, 3 key KAT4

Encrypt, CFB mode, 3-key KAT
Encrypt, CBC mode, 3-key KAT

TDES Decrypt, ECB mode, 3 key KAT
Decrypt, CFB mode, 3 key KAT
Decrypt, CBC mode, 3 key KAT

DSA Sign, Verify (using SHA-256) Pair-wise
consistency

AES Encrypt, CBC mode, 128-bit KAT
Encrypt, CFB mode, 128-bit KAT
Encrypt, ECB mode, 256-bit KAT

AES Decrypt, CBC mode, 128-bit KAT
Decrypt, CFB mode, 128-bit KAT
Decrypt, ECB mode, 256-bit KAT

AES GCM Encrypt, GCM, 128-bit, 192-bit, 256-bit
KAT

AES GCM Decrypt, GCM, 128-bit, 192-bit, 256-bit
KAT

AES KW KW-AE 128-bit, 192-bit, 256-bit KAT
AES KW KW-AD 128-bit, 192-bit, 256-bit KAT
AES KWP KWP-AE 128-bit, 192-bit, 256-bit KAT
AES KWP KWP-AD 128-bit, 192-bit, 256-bit KAT
RSA Sign, Verify using 2048-bit with SHA-256

KAT
RSA 2048-bit Encrypt KAT
RSA 2048-bit Decrypt KAT
SHA SHA-1, SHA-2-256, SHA-2-512 from FIPS

180-4 KAT
HMAC HMAC-SHA-1, HMAC-SHA-2-256,

HMAC-SHA-2-512
SHA-3 HMAC-SHA3-256 KAT
SHAKE SHAKE-256 KAT
ECDSA Sign, Verify (using SHA-256) Pair-wise

consistency

4 Known Answer Test

Symantec PGP Cryptographic Engine Security Policy

Page 26

 Symantec Corporation, 2019
May be reproduced only in its entirety (without revision).

DRBG CTR_DRBG: AES, 256-bit KAT
SP800-90A section 11.3 self-test

ECC CDH ECC CDH P-256 Primitive “Z” computation
KAT

SP 800-132 PBKDF SP 800-132 with SHA-256 KAT
SP 800-108 KBKDF SP 800-108 KBKDF with HMAC-SHA-1,

HMAC-SHA-256 and HMAC-SHA-512
KAT

Table 10 - Power On Self Tests

5.2 Conditional self-tests

Algorithm Test Attributes

ECDSA Sign, Verify (using SHA-256)
Pair-wise consistency

RSA Sign, Verify (using SHA-256)
Pair-wise consistency

RSA Encrypt, Decrypt
Pair-wise consistency

DSA Sign, Verify (using SHA-256)
Pair-wise consistency

NDRNG Continuous Random Number
Generation test

DRBG Per FIPS 140-2 Implementation
Guidance (Section 9.8)
allowances, the DRBG does not
perform the Continuous
Random Number Generation
test

Table 11 - Conditional self-tests

5.3 On-Demand Tests

Power-up tests can be initiated on-demand by power cycling the module. The client application
can optionally initiate a specific test or all tests on demand by using the PGPceRunSelfTest() or
PGPceRunAllSelfTests() functions respectively. Note that if the on-demand tests fail, the module
will enter an error state in a manner identical to the power-on self-tests.

Symantec PGP Cryptographic Engine Security Policy

Page 27

 Symantec Corporation, 2019
May be reproduced only in its entirety (without revision).

6 Mitigation of Other Attacks
The Mitigation of Other attacks security section of FIPS 140-2 is not applicable to the PGP
Cryptographic Engine module. The module is not designed to mitigate against attacks outside the
scope of FIPS 140-2.

Other Attacks Mitigation
Mechanism

Specific Limitations

N/A N/A N/A

Table 12 – Mitigation of Other Attacks

Symantec PGP Cryptographic Engine Security Policy

Page 28

 Symantec Corporation, 2019
May be reproduced only in its entirety (without revision).

7 Appendix A: CSPs
Triple-DES Key

 Description/Usage: Used to encrypt & decrypt operator data. Key Length Supported is 192 bits (3
keys of length 64bits). Used in modes ECB, CBC, CFB.

 Generation: Supplied by caller from the unmodified output of the SP 800-90A DRBG. As per
SP800-133 Section 7.1, key generation is performed as per the “Direct Generation” of Symmetric
Keys which is an Approved key generation method.

 Storage: Stored in plaintext internally in structure pointed to by PGPceSymmetricCipherContext.
 Input: Input: Keys may be input into the module via PGPceInitSymmetricCipher, however, per IG

7.7 “CM Software to/from App Software via GPC INT Path” – Input is N/A.
 Output: N/A.
 Key-to-Entity: Symmetric Cipher Operations.
 Zeroization: Whenever the PGPceSymmetricCipherContext structure is deallocated either by the

Application (PGPceFreeObject) or when module is powered down.

AES Key

 Description/Usage: Used to encrypt & decrypt operator data. Key lengths supported are 128, 192,
and 256 bits. Used in modes ECB, CBC, CFB. Used for SP800-38F AES KeyWrap and used for
AES GCM Authenticated Encryption.

 Generation: Supplied by caller from the unmodified output of the SP 800-90A DRBG. As per
SP800-133 Section 7.1, key generation is performed as per the “Direct Generation” of Symmetric
Keys which is an Approved key generation method.

 Storage: Stored in plaintext internally in structure pointed to by PGPceSymmetricCipherContext.
 Input: Input: Keys may be input into the module via PGPceInitSymmetricCipher, however, per IG

7.7 “CM Software to/from App Software via GPC INT Path” – Input is N/A.
 Output: N/A.
 Key-to-Entity: Symmetric Cipher Operations; Authenticated Encryption; Key Wrapping.
 Zeroization: Whenever the PGPceSymmetricCipherContext structure is deallocated either by the

application (PGPceFreeObject) or when module is powered down.

AES GCM IV

 Description/Usage: Used for GCM Authenticated Encryption. Size is fixed to 96 bits.
 Generation: The resulting generated IV are from the unmodified output of the SP 800-90A DRBG.
 Storage: Stored in plaintext internally in structure pointed to by PGPceGCMContext.
 Input: No Entry for encryption; Input as parameter to PGPceInitGCM API call for decryption.

However, per IG 7.7 “CM Software to/from App Software via GPC INT Path” – Input is N/A.
 Output: Output: Per IG 7.7 “CM Software to/from App Software via GPC INT Path” – Output is

N/A.
 Key-to-Entity: Authenticated Encryption.
 Zeroization: Whenever the PGPceGCMContext structure is deallocated either by the application

(PGPceFreeObject) or when module is powered down.

Symantec PGP Cryptographic Engine Security Policy

Page 29

 Symantec Corporation, 2019
May be reproduced only in its entirety (without revision).

RSA private key

 Description/Usage: Used to sign operator data. Key lengths supported are 2048, 3072, 4096.
Signature modes supported are PKCS 1.5 and PSS. Used to decrypt data per SP800-56B KTS
with mode KTS-OAEP-basic.

 Generation: The resulting generated seed for asymmetric key generation is from the unmodified
output of the SP 800-90A DRBG. Generated using PGPceGeneratePublicKey API call. As per
SP800-133 Sections 6.1 and 6.2, key generation is performed as per FIPS 186-4 and SP800-56B
which are Approved key generation methods.

 Storage: Stored in plaintext internally in structure pointed to by PGPcePublicKeyContext.
 Input: Keys may be input into the module via PGPceNewPublicKeyContext, however, per IG 7.7

“CM Software to/from App Software via GPC INT Path” – Input is N/A.
 Output: The key may be exported via API, however, per IG 7.7 “CM Software to/from App

Software via GPC INT Path” – Output is N/A.
 Key-to-Entity: Digital Signature; RSA Encrypt/Decrypt.
 Zeroization: Whenever the PGPcePublicKeyContext structure is deallocated either by the

application (PGPceFreeObject) or when module is powered down.

DSA private key

 Description/Usage: Used to sign operator data per DSA FIPS 186-4. Sizes supported are: L =
2048, N = 224; L = 2048, N = 256; L = 3072, N = 256.

 Generation: The resulting generated seed for asymmetric key generation is from the unmodified
output of the SP 800-90A DRBG. Generated using PGPceGeneratePublicKey API call. As per
SP800-133 Sections 6.1, key generation is performed as per FIPS 186-4 which is an Approved
key generation method.

 Storage: Stored in plaintext internally in structure pointed to by PGPcePublicKeyContext.
 Input: Keys may be input into the module via PGPceNewPublicKeyContext, however, per IG 7.7

“CM Software to/from App Software via GPC INT Path” – Input is N/A.
 Output: The key may be exported via API, however, per IG 7.7 “CM Software to/from App

Software via GPC INT Path” – Output is N/A.
 Key-to-Entity: Digital Signature.
 Zeroization: Whenever the PGPcePublicKeyContext structure is deallocated either by the

application (PGPceFreeObject) or when module is powered down.

ECDSA private key

 Description/Usage: Used to sign operator data per FIPS 186-4. Curves supported are P-256, P-
384, P-521.

 Generation: The resulting generated seed for asymmetric key generation is from the unmodified
output of the SP 800-90A DRBG. Generated using PGPceGeneratePublicKey API call. As per
SP800-133 Sections 6.1, key generation is performed as per FIPS 186-4 which is an Approved
key generation method.

 Storage: Stored in plaintext internally in structure pointed to by PGPcePublicKeyContext.
 Input: Keys may be input into the module via PGPceNewPublicKeyContext, however, per IG 7.7

“CM Software to/from App Software via GPC INT Path” – Input is N/A.
 Output: The key may be exported via API, however, per IG 7.7 “CM Software to/from App

Software via GPC INT Path” – Output is N/A.
 Key-to-Entity: Digital Signature.
 Zeroization: Whenever the PGPcePublicKeyContext structure is deallocated either by the

application (PGPceFreeObject) or when module is powered down.

Symantec PGP Cryptographic Engine Security Policy

Page 30

 Symantec Corporation, 2019
May be reproduced only in its entirety (without revision).

ECDSA secret k value

 Description: Used to create a digital signature per FIPS 186-4. Curves supported are P-256, P-
384, P-521.

 Generation: The k value is generated internally from the unmodified output of the SP 800-90A
DRBG. As per SP800-133 Sections 6.1, key generation is performed as per FIPS 186-4 which is
an Approved key generation method.

 Storage: Stored in plaintext in working memory in a temporary data structure.
 Input: N/A.
 Output: N/A.
 Key-to-Entity: Digital Signature.
 Zeroization: The temporary data structures are cleared with bnEnd or when module is powered

down.

ECC CDH private key

 Description/Usage: ECC CDH private key used to generate a shared secret. Curves supported
are P-256, P-384, P-521.

 Generation: The resulting generated seed for asymmetric key generation is from the unmodified
output of the SP 800-90A DRBG. Generated using PGPceGeneratePublicKey API call. As per
SP800-133 Section 6.2, the random value (K) needed to generate key pairs for the elliptic curve
is the output of the SP800-90 DRBG; this is Approved as per SP800-56A.

 Storage: Stored in plaintext internally in structure pointed to by PGPcePublicKeyContext.
 Input: Keys may be input into the module via PGPceNewPublicKeyContext, however, per IG 7.7

“CM Software to/from App Software via GPC INT Path” – Input is N/A.
 Output: The key may be exported via API, however, per IG 7.7 “CM Software to/from App

Software via GPC INT Path” – Output is N/A.
 Key-to-Entity: Shared Secret Generation.
 Zeroization: Whenever the PGPcePublicKeyContext structure is deallocated either by the

application (PGPceFreeObject) or when module is powered down.

ECC CDH shared secret

 Description/Usage: ECC CDH shared secret per SP 800-56A. Curves supported are P-256, P-
384, P-521.

 Generation: Internally generated via SP 800-56A ECC CDH shared secret generation.
 Storage: Stored in plaintext in working memory in temporary data structures.
 Input: N/A.
 Output: The shared secret is output as derived, however, per IG 7.7 “CM Software to/from App

Software via GPC INT Path” – Output is N/A.
 Key-to-Entity: Shared Secret Generation.
 Zeroization: The temporary data structures are cleared with ecPointFree or when module is

powered down.

Symantec PGP Cryptographic Engine Security Policy

Page 31

 Symantec Corporation, 2019
May be reproduced only in its entirety (without revision).

DRBG Entropy Input, Nonce, Personalization String

 Description/Usage: Used for DRBG Instantiation and Random Bit Generation. AES 256 CTR with
Derivation Function. Entropy Input: 256 bits; Nonce: 128 bits; Personalization String Length: 0-
256 bits.

 Generation: Entropy Input & Nonce supplied by caller from the unmodified output of the NDRNG.
Personalization String is provided by the calling application.

 Storage: Stored in plaintext internally in structure pointer to by PGPceDRBG.
 Input: Input as parameters to PGPceDRBGAddEntropy API call, however, per IG 7.7 “CM

Software to/from App Software via GPC INT Path” – Input is N/A.
 Output: N/A.
 Key-to-Entity: Random Bit Generation.
 Zeroization: Whenever the PGPceDRBG structure is deallocated either by the application

(PGPceFreeObject) or when module is powered down.

DRBG Internal State

 Description/Usage: Used for DRBG Instantiation and Random Bit Generation. AES 256 CTR with
Derivation Function internal state V and Key. V is 128 bits; Key is 256 bits.

 Generation: Internally generated via SP 800-90A DRBG.
 Storage: Stored in plaintext internally in structure pointer to by PGPceDRBG.
 Input: N/A.
 Output: N/A.
 Key-to-Entity: Random Bit Generation.
 Zeroization: Whenever the PGPceDRBG structure is deallocated either by the application

(PGPceFreeObject) or when module is powered down.

HMAC key

 Description/Usage: Used for HMAC Message Authentication. Key lengths supported are 112 to
512 bits. The following SHA functions are supported: SHA1, SHA224, SHA256, SHA384,
SHA512, SHA3-224, SHA3-256, SHA3-384, SHA3-512.

 Generation: Supplied by caller from the unmodified output of the SP 800-90A DRBG. As per
SP800-133 Section 7.1, key generation is performed as per the “Direct Generation” of Symmetric
Keys which is an Approved key generation method.

 Storage: Stored in plaintext internally in structure pointer to by PGPceHMACContext.
 Input: Keys may be input into the module via PGPceNewHMACContext, however, per IG 7.7 “CM

Software to/from App Software via GPC INT Path” – Input is N/A.
 Output: N/A.
 Key-to-Entity: Message Authentication.
 Zeroization: Whenever the PGPceNewHMACContext structure is deallocated either by the

application (PGPceFreeObject) or when module is powered down.

Symantec PGP Cryptographic Engine Security Policy

Page 32

 Symantec Corporation, 2019
May be reproduced only in its entirety (without revision).

PBKDF Internal State

 Description: Used for SP800-132 PBKDF Key Derivation. The following HMAC SHA functions are
supported: HMAC-SHA-1, HMAC-SHA-256, HMAC-SHA-384, HMAC-SHA-512.

 Generation: Internally generated via SP800-132 PBKDF Key Derivation algorithm.
 Storage: Stored in plaintext in working memory in structure pointer to by PGPceHMACContext.
 Input: N/A.
 Output: N/A.
 Key-to-Entity: Key Derivation.
 Zeroization: Whenever the PGPceNewHMACContext structure is deallocated either by the

application via PGPceFreeObject or when module is powered down.

PBKDF Password

 Description: Used for SP800-132 PBKDF Key Derivation. The minimum password length input
shall be 14 characters.

 Generation: The password is supplied by the calling application.
 Storage: Stored in plaintext in working memory in structure pointer to by PGPceHMACContext.
 Input: Input as parameter to PGPceDeriveKey API call, however, per IG 7.7 “CM Software to/from

App Software via GPC INT Path” – Input is N/A.
 Output: N/A.
 Key-to-Entity: Key Derivation.
 Zeroization: Whenever the PGPceNewHMACContext structure is deallocated either by the

application via PGPceFreeObject or when module is powered down.

PBKDF MK

 Description: Output of the SP800-132 PBKDF Key Derivation; Minimum: 112 bits; Maximum: (232-
1) x hash length. The following HMAC SHA functions are supported: HMAC-SHA-1, HMAC-SHA-
256, HMAC-SHA-384, HMAC-SHA-512.

 Generation: Internally generated via SP800-132 PBKDF Key Derivation algorithm. As per SP800-
133 Section 7.5, SP800-132 PBKDF is an approved method for deriving keys from passwords for
storage applications only.

 Storage: Stored in plaintext in working memory in temporary data structures.
 Input: N/A.
 Output: The MK is output as derived, however, per IG 7.7 “CM Software to/from App Software via

GPC INT Path” – Output is N/A.
 Key-to-Entity: Key Derivation.
 Zeroization: The temporary data structures are cleared with pgpClearMemory or when module is

powered down.

KBKDF Internal State

 Description: Used for SP800-108 KBKDF Key Derivation. The following HMAC SHA functions are
supported: HMAC-SHA-1, HMAC-SHA-256, HMAC-SHA-384, HMAC-SHA-512.

 Generation: Internally generated via SP800-108 KBKDF Key Derivation algorithm.
 Storage: Stored in plaintext in working memory in structure pointer to by PGPceHMACContext.
 Input: N/A.
 Output: N/A.
 Key-to-Entity: Key Derivation.
 Zeroization: Whenever the PGPceNewHMACContext structure is deallocated either by the

application via PGPceFreeObject or when module is powered down.

Symantec PGP Cryptographic Engine Security Policy

Page 33

 Symantec Corporation, 2019
May be reproduced only in its entirety (without revision).

KBKDF KDK

 Description: Used for SP800-108 KBKDF Key Derivation. Minimum of 112 bits (per the output of
the DRBG).

 Generation: Supplied by caller from the unmodified output of the SP 800-90A DRBG. As per
SP800-133 Section 7.1, key generation is performed as per the “Direct Generation” of Symmetric
Keys which is an Approved key generation method.

 Storage: Stored in plaintext in working memory in structure pointer to by PGPceHMACContext.
 Input: Input as parameter to PGPceDerive API call, however, per IG 7.7 “CM Software to/from

App Software via GPC INT Path” – Input is N/A.
 Output: N/A.
 Key-to-Entity: Key Derivation.
 Zeroization: Whenever the PGPceNewHMACContext structure is deallocated either by the

application via PGPceFreeObject or when module is powered down.

KBKDF DKM

 Description: Output of the SP800-108 KBKDF Key Derivation; Minimum: 112 bits; Maximum: (232-
1) x hash length. The following HMAC SHA functions are supported: SHA1, SHA256, SHA384,
SHA512

 Generation: Internally generated via SP800-108 KBKDF Key Derivation algorithm. As per SP800-
133 Section 7.4, SP800-108 KBKDF is an approved method for deriving keys from a key
derivation key.

 Storage: Stored in plaintext in working memory in temporary data structures.
 Input: N/A.
 Output: DKM output as derived, however, per IG 7.7 “CM Software to/from App Software via GPC

INT Path” – Output is N/A.
 Key-to-Entity: Key Derivation.
 Zeroization: The temporary data structures are cleared with memset or when module is powered

down.

Symantec PGP Cryptographic Engine Security Policy

Page 34

 Symantec Corporation, 2019
May be reproduced only in its entirety (without revision).

8 Appendix B: Public Keys
RSA public key

 Description/Usage: Used to verify signed data. Key lengths supported are 2048, 3072, 4096.
Signature modes supported are PKCS 1.5 and PSS. Used to encrypt data per SP800-56B KTS
with mode KTS-OAEP-basic.

 Generation: The resulting generated seed for asymmetric key generation is from the unmodified
output of the SP 800-90A DRBG. Generated using PGPceGeneratePublicKey API call. As per
SP800-133 Sections 6.1 and 6.2, key generation is performed as per FIPS 186-4 and SP800-56B
which are Approved key generation methods.

 Storage: Stored in plaintext internally in structure pointed to by PGPcePublicKeyContext.
 Input: Keys may be input into the module via PGPceNewPublicKeyContext, however, per IG 7.7

“CM Software to/from App Software via GPC INT Path” – Input is N/A.
 Output: The key may be exported via API, however, per IG 7.7 “CM Software to/from App

Software via GPC INT Path” – Output is N/A.
 Key-to-Entity: Digital Signature; RSA Encrypt/Decrypt.
 Zeroization: Whenever the PGPcePublicKeyContext structure is deallocated either by the

application (PGPceFreeObject) or when module is powered down.

DSA public key

 Description/Usage: Used to verify signed data. Sizes supported are: L = 2048, N = 224; L = 2048,
N = 256; L = 3072, N = 256.

 Generation: The resulting generated seed for asymmetric key generation is from the unmodified
output of the SP 800-90A DRBG. Generated using PGPceGeneratePublicKey API call. As per
SP800-133 Sections 6.1, key generation is performed as per FIPS 186-4 which is an Approved
key generation method.

 Storage: Stored in plaintext internally in structure pointed to by PGPcePublicKeyContext.
 Input: Keys may be input into the module via PGPceNewPublicKeyContext, however, per IG 7.7

“CM Software to/from App Software via GPC INT Path” – Input is N/A.
 Output: The key may be exported via API, however, per IG 7.7 “CM Software to/from App

Software via GPC INT Path” – Output is N/A.
 Key-to-Entity: Digital Signature.
 Zeroization: Whenever the PGPcePublicKeyContext structure is deallocated either by the

application (PGPceFreeObject) or when module is powered down.

ECDSA public key

 Description/Usage: Used to verify signed data. Curves supported are P-256, P-384, P-521.
 Generation: The resulting generated seed for asymmetric key generation is from the unmodified

output of the SP 800-90A DRBG. Generated using PGPceGeneratePublicKey API call. As per
SP800-133 Sections 6.1, key generation is performed as per FIPS 186-4 which is an Approved
key generation method.

 Storage: Stored in plaintext internally in structure pointed to by PGPcePublicKeyContext.
 Input: Keys may be input into the module via PGPceNewPublicKeyContext, however, per IG 7.7

“CM Software to/from App Software via GPC INT Path” – Input is N/A.
 Output: The key may be exported via API, however, per IG 7.7 “CM Software to/from App

Software via GPC INT Path” – Output is N/A.
 Key-to-Entity: Digital Signature.
 Zeroization: Whenever the PGPcePublicKeyContext structure is deallocated either by the

application (PGPceFreeObject) or when module is powered down.

Symantec PGP Cryptographic Engine Security Policy

Page 35

 Symantec Corporation, 2019
May be reproduced only in its entirety (without revision).

ECC CDH public key

 Description/Usage: ECC CDH public key used to generate a shared secret. Curves supported are
P-256, P-384, P-521.

 Generation: The resulting generated seed for asymmetric key generation is from the unmodified
output of the SP 800-90A DRBG. Generated using PGPceGeneratePublicKey API call. As per
SP800-133 Section 6.2, the random value (K) needed to generate key pairs for the elliptic curve
is the output of the SP800-90 DRBG; this is Approved as per SP800-56A.

 Storage: Stored in plaintext internally in structure pointed to by PGPcePublicKeyContext.
 Input: Keys may be input into the module via PGPceNewPublicKeyContext, however, per IG 7.7

“CM Software to/from App Software via GPC INT Path” – Input is N/A.
 Output: The key may be exported via API, however, per IG 7.7 “CM Software to/from App

Software via GPC INT Path” – Output is N/A.
 Key-to-Entity: Shared Secret Generation.
 Zeroization: Whenever the PGPcePublicKeyContext structure is deallocated either by the

application (PGPceFreeObject) or when module is powered down.

Module Integrity Authentication Key

 Description/Usage: P-384 ECDSA public key used to authenticate the software image of the
module.

 Generation: N/A – Generated externally by Symantec.
 Storage: Stored in plaintext internally in module code.
 Input: N/A.
 Output: N/A.
 Key-to-Entity: Integrity Self-Test.
 Zeroization: N/A.

