

Samsung NVMe TCG Opal SSC SEDs PM983 Series

FIPS 140-2 Non-Proprietary Security Policy Document Revision: 1.0

H/W version: MZ1LB960HAJQ-00AHE [1], MZ1LB1T9HALS-00AHE [1] and MZ1LB3T8HMLA-00AHE [2]

F/W version: EDA700AQ [1] and EDB700AQ [2]

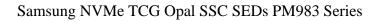
Revision History

Author(s)	Version	Updates
Seungjae Lee	1.0	Initial Version

Page 2 of 23

Table of Contents

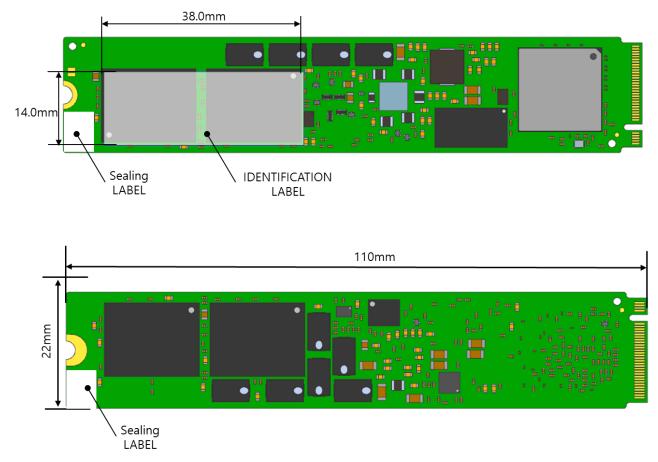
1.	Introduction	
	1.1. Hardware and Physical Cryptographic Boundary	
	1.2. Firmware and Logical Cryptographic Boundary	6
2.	Acronym	
3.	Security Level Specification	
4.	Cryptographic Functionality	9
	4.1. Approved Algorithms	9
	4.2. Non-Approved Algorithm	
	4.3. Critical Security Parameters	11
	4.4. Public Security Parameters	
5.	Physical Ports and Logical Interfaces	
6.	Roles, Services and Authentication	14
	6.1. Roles	14
	6.2. Authentication	15
	6.3. Services	16
	6.3.1. Authenticated Services	
	6.3.2. Unauthenticated Services	17
7.	Physical security policy	
8.	Electromagnetic Interference/Electromagnetic Compatibility (EMI/EMC)	
9.	Mitigation of Other Attacks Policy	
10.	Security rules	
	10.1. Secure Installation	
	10.2. Operational description of Module	
	10.3. Power-on Self-Tests	


1. Introduction

Samsung Electronics Co., Ltd. ("Samsung") NVMe TCG Opal SSC SEDs PM983 Series, herein after referred to as a "cryptographic module" or "module", SSD (Solid State Drive), satisfies all applicable FIPS 140-2 Security Level 1 requirements, supporting TCG Opal SSC based SED (Self-Encrypting Drive) features, designed to protect unauthorized access to the user data stored in its NAND Flash memories. The built-in AES HW engines in the cryptographic module's controller provide on-the-fly encryption and decryption of the user data without performance loss. The SED's nature also provides instantaneous sanitization of the user data via cryptographic erase.

Module Name	Hardware Version	Firmware Version	Drive Capacity
	MZ1LB960HAJQ-00AHE		960GB
Samsung NVMe TCG Opal SSC SEDs PM983 Series	MZ1LB1T9HALS-00AHE	EDA700AQ	1.9TB
Series	MZ1LB3T8HMLA-00AHE	EDB700AQ	3.8TB

Exhibit 1 – Versions of Samsung NVMe TCG Opal SSC SEDs PM983 Series.



1.1. Hardware and Physical Cryptographic Boundary

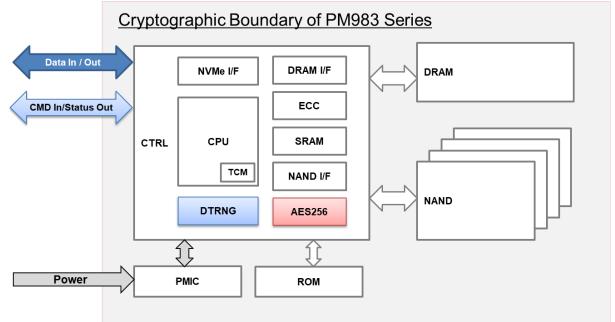
The following mechanical drawings show the cryptographic module's top and bottom views. The multiple-chip embedded cryptographic module consists of hardware and firmware components.

The cryptographic boundary of the module is the physical perimeter of the PCB, please see Exhibit 2 for more information.

New firmware versions within the scope of this validation must be validated through the FIPS 140-2 CMVP. Any other firmware loaded into this module is out of the scope of this validation and requires a separate FIPS 140-2 validation.

<u>Exhibit 2</u> – Specification of the Samsung NVMe TCG Opal SSC SEDs PM983 Series Cryptographic Boundary (From top to bottom).

SAMSUNG ELECTRONICS


Śĸmsung

Page 5 of 23

1.2. Firmware and Logical Cryptographic Boundary

The PM983 series use a single chip controller with a NVMe interface on the system side and Samsung NAND flash internally. The following figure depicts the Module operational environment.

<u>Exhibit 3</u> – Block Diagram for Samsung NVMe TCG Opal SSC SEDs PM983 Series.

2. Acronym

Acronym	Description		
CTRL	EPiC2 Controller (SAMSUNG EPiC2 NVMe TLC/MLC		
	SSD Controller)		
NVMe I/F	Non-Volatile Memory Express Interface		
CPU	Central Processing Unit (ARM-based)		
DRAM I/F	Dynamic Random Access Memory Interface		
ECC	Error Correcting Code		
SRAM	Static Random Access Memory		
TCM	Tightly Coupled Memory		
NAND I/F	NAND Flash Interface		
PMIC	Power Management Integrated Circuit		
ROM	Read-only Memory		
DRAM	Dynamic Random Access Memory		
NAND	NAND Flash Memory		
LBA	Logical Block Address		
MEK	Media Encryption Key		
MSID	Manufactured SID(Security Identifier)		

<u>Exhibit 4</u> – Acronym and Descriptions for Samsung NVMe TCG Opal SSC SEDs PM983 Series.

3. Security Level Specification

The module meets an overall FIPS 140-2 Security Level 1:

Security Requirements Area	Level
Cryptographic Module Specification	1
Cryptographic Module Ports and Interfaces	1
Roles, Services, and Authentication	2
Finite State Model	1
Physical Security	1
Operational Environment	N/A
Cryptographic Key Management	1
EMI/EMC	3
Self-tests	1
Design Assurance	2
Mitigation of Other Attacks	N/A

Exhibit 5 – Security Level Table.

Page 8 of 23

4. Cryptographic Functionality

4.1. Approved Algorithms

The cryptographic module supports the following Approved algorithms for secure data storage:

CAVP	Algorithm	Standard	Mode /	Key Lengths,	Use
Cert.			Method	Curves or Moduli	
#C1086	AES	FIPS 197	XTS	256-bit	Data Encryption
		SP 800-38E			/ Decryption
					Note: AES-ECB is the pre-requisite for AES- XTS; AES-ECB alone is NOT supported by the cryptographic module in FIPS Mode.
Vendor Affirmed	CKG	SP800-133			Cryptographic Key Generation
#C1047	DRBG	SP 800-90A	Hash_ DRBG		Deterministic
		Revision 1	(SHA-256)		Random Bit
					Generation
#C1048	ECDSA	FIPS 186-4	SigVer	P-256	Digital Signature
					Verification
#C1038	SHS	FIPS 180-4	SHA-256		Message Digest

<u>Exhibit 6 -</u> Samsung NVMe TCG Opal SSC SEDs PM983 Series Approved Algorithms.

NOTE 1: This module supports AES-XTS which is only approved for storage applications.

4.2. Non-Approved Algorithm

The cryptographic module supports the following non-Approved but allowed algorithms:

Algorithm	Use
NDRNG	Non-deterministic Random Number Generator
	(only used for generating seed materials for the
	Approved DRBG)
	NDRNG provides a minimum of 440 bits of entropy
	for DRBG seed

<u>Exhibit 7 -</u> Samsung NVMe TCG Opal SSC SEDs PM983 Series non-Approved but allowed algorithms.

Page 10 of 23

4.3. Critical Security Parameters

The cryptographic module contains the following Keys and CSPs:

CSPs	Generation, Storage and Zeroization Methods			
DRBG Internal State	Generation: SP 800-90A HASH_DRBG (SHA-256) Storage: Plaintext in TCM			
Note: The values of V and C are the "secret values" of the internal state.	Zeroization: via "Initialization", "Erase an LBA Range's Data" and "Zeroize" service			
DRBG Seed	Generation: NDRNG Storage: Plaintext in DRAM Zeroization: via "Initialization", "Erase an LBA Range's Data" and "Zeroize" service			
DRBG Entropy Input String	Generation: NDRNG Storage: Plaintext in DRAM Zeroization: via "Initialization", "Erase an LBA Range's Data" and "Zeroize" service			
CO Password	Generation: N/A Storage: Plaintext in Flash Memory and used in TCM Zeroization: via "Initialization" and "Zeroize" service			
User Password	Generation: N/A Storage: Plaintext in Flash Memory and used in TCM Zeroization: via "Initialization" and "Zeroize" service			
MEK	Generation: SP 800-90A HASH_DRBG (SHA-256) As per SP 800-133 Section 6.1, key generation is performed as per the "Direct Generation: of Symmetric Keys" which is an Approved key generation method			
	Key Type: AES-XTS 256 Storage: Plaintext in Flash Memory and used in TCM Zeroization: via "Initialization", "Lock an LBA Range", "Erase an LBA Range's Data", "Erase Data" and "Zeroize" service			

Exhibit 8– CSPs and details on Generation, Storage and Zeroization Methods.

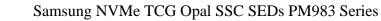
NOTE 2: In accordance with FIPS 140-2 IG D.12, the cryptographic module performs Cryptographic Key Generation (CKG) as per SP 800-133 (Vendor Affirmed). The resulting generated symmetric key is the unmodified output from SP 800-90A DRBG.

4.4. Public Security Parameters

Public Keys	Generation, Storage and Zeroization Methods
FW Verification Key	Generation: N/A
(ECDSA Public Key)	Key Type: ECDSA P-256
	Storage: Plaintext in Flash Memory and used in TCM
	Zeroization: N/A

<u>Exhibit 9</u> – Public Keys and details on Generation, Storage and Zeroization Methods

Page 12 of 23


Physical Port Logical Interface NVMe Connector Data Input/Output Status Output Control Input Power Input Data Input/Output UART (latent functionality) Data Input

5. Physical Ports and Logical Interfaces

NOTE 3: UART Physical Port is latent functionality and not supported by the module in the FIPS Approved Mode of Operation.

<u>Exhibit 10</u> – Specification of the Samsung NVMe TCG Opal SSC SEDs PM983 Series Cryptographic Module Physical Ports and Logical Interfaces.

6. Roles, Services and Authentication

6.1. Roles

The following table defines the roles, type of authentication, and associated authenticated data types supported by the cryptographic module:

Role	Identities	TryLimit	Authentication Data
CO Role	Admin1~4	5	Password
User Role	User1~9	5	Password
FW Loader	N/A	N/A	ECDSA Signature
Anybody	N/A	N/A	N/A

Exhibit 11 - Roles and Required Identification and Authentication (FIPS 140-2 Table C1).

Page 14 of 23

6.2. Authentication

The authentication mechanism allows a minimum 6-byte length or longer (32-byte) Password, where each byte can be any of 0x00 to 0xFF, for every Cryptographic Officer and User role supported by the module, which means a single random attempt can succeed with the probability of $1/2^{48}$ or lower.

Each Password authentication attempt takes at least 1ms and the number of attempts is limited to TryLimit, which is set to 5 in manufacturing time.

Each authentication attempt takes at least 1ms and the number of attempts is limited to TryLimit, which is set to 5 in manufacturing time. Since the module takes at least 8 seconds to be ready after power-on and 5 authentication failures require a power-cycle, it takes 8005ms for every 5th authentication attempt. It means, it can be 35 attempts per 1 minute.

 $((60000ms/8005ms) \times 5 \text{ attempts} = 35$

Therefore, the probability of multiple random attempts to succeed in one minute is $35 / 2^{48}$, which is much less than the FIPS 140-2 requirement 1/100,000. Even if the TryLimit is greater than 5 the probability of random attempts always satisfies the requirement.

The authentication mechanism for FW Loader role is ECDSA P-256 with SHA256 digital signature verification, which means a single random attempt, can succeed with the probability of $1/2^{128}$.

Each ECDSA Signature Verification authentication attempt takes at least 320ms. Since the module takes at least 8 seconds to be ready after power-on, it would take a total of 8320ms for every FW download attempt. This enforces the maximum number of attempts to be no more than 7 attempts (60000ms/8320ms) in a minute period. Therefore, the probability of multiple random attempts to succeed in one minute is $7/2^{128}$, which is much less than the FIPS 140-2 requirement 1/100,000.

Authentication Mechanism	Strength of Mechanism
Password (Min: 6 bytes, Max: 32 bytes) Authentication	 Probability of 1/2⁴⁸ in a single random attempt Probability of 35/2⁴⁸ in multiple random attempts in a minute
ECDSA Signature Verification	 Probability of 1/2¹²⁸ in a single random attempt Probability of 7/2¹²⁸ in multiple random attempts in a minute

<u>Exhibit 12</u> - Strengths of Authentication Mechanisms (FIPS 140-2 Table C2).

6.3. Services

6.3.1. Authenticated Services

The following table lists roles, services, cryptographic keys, CSPs and Public Keys and the types of access that are available to each of the authorized roles via the corresponding services:

	Service	Cryptographic Keys, CSPs and Public Keys		Type(s) of Access			
Role			R=	W=	G=	Z=	
			Read	Write	Generate	Zeroize	
		DRBG Internal State	0		0	0	
		DRBG Seed	0		0	0	
	Initialization	DRBG Entropy Input String	0		0	0	
		CO Password		0		0	
		MEK			0	0	
	Drive Extended Status	N/A		N	I/A		
Cryptographic	Admin/User Authority Enable/Disable	N/A			I/A		
Officer	Lock an LBA Range	MEK				0	
	Unlock an LBA Range	MEK	0				
	Configure an LBA Range	N/A		N/A			
		DRBG Internal State	0		0	0	
	Erase an LBA Range's	DRBG Seed	0		0	0	
	Data	DRBG Entropy Input String	0		0	0	
		MEK			0	0	
	Change the Password.	CO Password		0		0	
	Unlock an LBA Range	MEK	0				
User	Set User Password	User Password		0			
0.501	Lock an LBA Range	MEK				0	
	Configure an LBA Range	N/A		N	I/A		
FW Loader	Update the firmware	FW Verification Key	0				

* Type(s) of Access indicated using "O" marker.

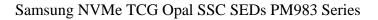
Exhibit 13 – Services Authorized for Roles, Access Rights within Services (FIPS 140-2 Table C3, Table C4).

SAMSUNG ELECTRONICS

Page 16 of 23

6.3.2. Unauthenticated Services

The following table lists the unauthenticated services:


* Type(s) of Access indicated using "O" marker.

	Cryptographic Keys & CSPs	Type(s) of Access			
Unauthenticated Service		R=	W=	G=	Z=
Service		Read	Write	Generate	Zeroize
Zeroize	DRBG Internal State				0
	DRBG Seed				0
	DRBG Entropy Input String				0
	CO Password				0
	User Password				0
	MEK				0
Get Random Number	DRBG Internal State	0		0	0
	DRBG Seed	0		0	0
	DRBG Entropy Input String	0		0	0
Get MSID	N/A	N/A			
Show Status	N/A	N/A			
Self-test	N/A	N/A			
IO Command Management	N/A	N/A			
Show Status	N/A	N/A			
Cancel the operation	N/A	N/A			
Set / Get Device Feature	N/A	N/A			
Configure Namespace	N/A	N/A			
Self-Test	N/A	N/A			
Erase Data	MEK		0	0	0

Exhibit 14 – Unauthenticated Service, Cryptographic Keys & CSPs and Type(s) of Access.

Page 17 of 23

7. Physical security policy

The following physical security mechanisms are implemented in a cryptographic module:

• Production grade components.

The following table summarizes the actions required by the Cryptographic Officer Role to ensure that physical security is maintained:

Physical Security Mechanisms	Recommended Frequency of Inspection/Test	Inspection/Test Guidance Details
Production grade components	N/A	N/A

Exhibit 18 - Inspection/Testing of Physical Security Mechanisms (FIPS 140-2 Table C5)

Page 18 of 23

8. Electromagnetic Interference/Electromagnetic Compatibility (EMI/EMC)

The cryptographic module conforms to the EMI/EMC requirements specified by 47 Code of Federal Regulations, Part 15, Subpart B, Unintentional Radiators, Digital Devices, Class B.

Page 19 of 23

9. Mitigation of Other Attacks Policy

The cryptographic module has not been designed to mitigate any specific attacks beyond the scope of FIPS 140-2.

Other	Mitigation	Specific
Attacks	Mechanism	Limitations
N/A	N/A	N/A

Exhibit 15 - Mitigation of Other Attacks (FIPS 140-2 Table C6)

Page 20 of 23

10. Security rules

The following specifies the security rules under which the cryptographic module shall operate in accordance with FIPS 140-2:

- The cryptographic module operates always in FIPS Mode once shipped from the vendor's manufacturing site.
- The steps necessary for the secure installation, initialization and start-up of the cryptographic module as per FIPS 140-2 VE10.03.01 are as follows:

10.1. Secure Installation

- Step1. User should examine the Sealing Label
 - Inspect the Sealing Label.
 - If there is any sign of tampering, do not use the product and contact Samsung.
- Step2. Identify the firmware version in the device
 - Confirm that the firmware version is equivalent to the version(s) listed in this document via NVM express Identify Controller command.
- Step3. Take the drive's ownership
 - Disable Admin SP's Admin1 authority
 - Change SID's PIN by setting a new PIN
 - Activate the Locking SP by using the Activate method.
 - Change LockingSP Admin1~4's PIN by setting a new PIN.
 - Configure the Locking Global Range by setting ReadLockEnabled and WriteLockEnabled columns to True.
 - Don't change LockOnReset column in Locking Table so that the drive always gets locked after a power cycle
- Step4. Periodically examine the Sealing Label
 - If there is any sign of tampering, stop using the product to avoid a potential security hazard or information leakage.

10.2. Operational description of Module

- The cryptographic module shall maintain logical separation of data input, data output, control input, status output, and power.
- The cryptographic module shall not output CSPs in any form.
- The cryptographic module shall use the Approved DRBG for generating all cryptographic keys.
- The cryptographic module shall enforce role-based authentication for security relevant services.
- The cryptographic module shall enforce a limited operational environment by the secure firmware load test using ECDSA P-256 with SHA-256.
- The cryptographic module shall provide a production-grade cryptographic boundary.
- The cryptographic module enters the error state upon failure of Self-tests. All commands from the Host (General Purpose Computer (GPC) outside the cryptographic boundary) are rejected in the error state and the cryptographic module returns an Internal Error (SC=0x6, SCT=0x0) defined in NVMe specification via the status output. Cryptographic services and data output are explicitly inhibited when in the error state.
- If FW integrity failure occurs during booting process of the module, it will be reported as a response via theidentify command.
 - Serial Number : SM_ROM_DEFAULT_SN
 - Model Number : SM_NVMeROM
 - FW Version : PNXROM01

In this case, there is no way to recover the module. Module shall be sent back to Samsung for RMA.

- The cryptographic module satisfies the requirements of FIPS 140-2 IG A.9 (i.e. key_1 ≠ key_2)
- The module generates at a minimum 256 bits of entropy for use in key generation.

10.3. Power-on Self-Tests

11. Algorithm	Test		
AES	Encrypt KAT and Decrypt KAT for AES-256-ECB at power-on		
AES	Encrypt KAT and Decrypt KAT for AES-256-XTS at power-on		
DRBG	KAT for Hash_DRBG (SHA-256) at power-on		
DRBG	SP 800-90A Section 11.3 Health Tests		
ECDSA	KAT for ECDSA P-256 SHA-256 signature verification at power-on. ¹		

Exhibit 23 – Power-on Self-tests.

- F/W integrity check
 - F/W integrity check is performed by using 128-bit error detection code & CRC-16 at power-on
- Conditional Self-tests
 - Pairwise consistency: N/A
 - Bypass Test: N/A
 - Manual key entry test: N/A
 - o F/W load test
 - F/W load test is performed by using ECDSA algorithm with P-256 and SHA-256
 - o Continuous random number generator test on Approved DRBG
 - o Continuous random number generator test on NDRNG

¹ As per FIPS 140-2 IG 9.2, SHA-256 KAT is covered under this test.