

Juniper Networks EX2300, EX2300-C and EX3400 Ethernet Switches

Firmware: Junos OS 19.1R2

Non-Proprietary FIPS 140-2 Cryptographic Module Security Policy

Document Version: 1.0 Date: November 10, 2020

Juniper Networks, Inc. 1133 Innovation Way Sunnyvale, California 94089 USA 408.745.2000 1.888 JUNIPER www.juniper.net

Contents

1	Intr	oduction	4
	1.1	Hardware and Physical Cryptographic Boundary	6
	1.2	Modes of Operation	11
	1.2	.1 FIPS Approved Mode	11
	1.2	.2 Non-Approved Mode	12
	1.3	Zeroization	12
2	Cry	ptographic Functionality	14
	2.1	Allowed Algorithms and Protocols	14
	2.2 Di	sallowed Algorithms and Protocols	17
	2.3 Cr	itical Security Parameters	18
3	Rol	es, Authentication and Services	20
	3.1	Roles and Authentication of Operators to Roles	20
	3.2	Authentication Methods	20
	3.3	Services	
	5.5	Jei vices	21
	3.4	Non-Approved Services	
4	3.4		23
4 5	3.4 Self	Non-Approved Services	23 24
	3.4 Self Phy	Non-Approved Services	23 24 26
5	3.4 Self Phy	Non-Approved Services f-tests vsical Security Policy	23 24 26 27
5	3.4 Self Phy Sec 6.1	Non-Approved Services f-tests vsical Security Policy urity Rules and Guidance	23 24 26 27 28
5	3.4 Self Phy Sec 6.1	Non-Approved Services f-tests vsical Security Policy curity Rules and Guidance Cryptographic-Officer Guidance .1 Installing the FIPS-Approved firmware image	23 24 26 27 28 28
5	3.4 Self Phy Sec 6.1 6.1	Non-Approved Services f-tests vsical Security Policy curity Rules and Guidance Cryptographic-Officer Guidance .1 Installing the FIPS-Approved firmware image .2 Enabling FIPS-Approved Mode of Operation	23 24 26 27 28 28 28
5	3.4 Self Phy Sec 6.1 6.1 6.1	Non-Approved Services f-tests vsical Security Policy curity Rules and Guidance Cryptographic-Officer Guidance 1 Installing the FIPS-Approved firmware image 2 Enabling FIPS-Approved Mode of Operation	23 24 26 27 28 28 28 28

List of Tables

Table 1 – EX2300, EX2300-C and EX3400 Ethernet Switches Configurations	5
Table 2 – Security Level of Security Requirements	5
Table 3 – Ports and Interfaces	9
Table 4 – Kernel Approved Cryptographic Functions	14
Table 5 – LibMD Approved Cryptographic Functions	14
Table 6 – OpenSSL Approved Cryptographic Functions	14
Table 7 – Allowed Cryptographic Functions	16
Table 8 – Protocols Allowed in FIPS Mode	16
Table 9 – Critical Security Parameters (CSPs)	18
Table 10 – Public Keys	
Table 11 – Authenticated Services	21
Table 12 – Unauthenticated Services	21
Table 13 – CSP Access Rights within Services	22
Table 14 – Authenticated Services	23
Table 15 – Unauthenticated Services	23
Table 16 – References	
Table 17 – Acronyms and Definitions	31
Table 18 – EX Switches Hardware Guides	32

List of Figures

Figure 1 – EX2300-C-12T/12P	.6
Figure 2 – Front Panel EX2300-24P/24T	.6
Figure 3 – Rear Panel EX2300-C-12T/12P	.6
Figure 4 – Rear Panel EX2300-24P/24T	.7
Figure 5 – Front Panel EX2300-48P/48T	.7
- Figure 6 – Rear Panel EX2300-48P/48T	.7
Figure 7 – Front Panel EX3400-24P/24T	. 8
Figure 8 – Front Panel EX3400-48P/48T	. 8
Figure 9 – Rear Panel EX3400-24P/24T/48P/48T	.8

1 Introduction

EX2300 and EX2300-C Ethernet Switches deliver a compact, high-density, cost-effective solution for small network environments where space and power are at a premium. Featuring a small, 1U footprint, the EX2300 and EX2300-C are ideal for access-layer deployments in micro branches, retail and workgroup environments, and converged network access in larger networks.

The EX2300 offers 24 10/100/1000BASE-T ports in a single platform, while the EX2300-C offers 12 10/100/1000BASE-T ports. Both models are available with or without IEEE 802.3af Power over Ethernet (PoE) or 802.3at PoE+ for powering attached network devices. Optional front panel 10GbE uplink ports support connections to higher-layer devices.

EX3400 Ethernet Switches are a cost-effective solution for today's most demanding converged data, voice, and video enterprise access networks. The compact, fixed configuration 1U devices offer levels of performance and management previously available only with high-end access switches.

Featuring models offering either 24 or 48 10/100/1000BASE-T ports, the EX3400 switches also support IEEE 802.3af Power over Ethernet (PoE) or 802.3at PoE+ for powering networked telephones, video cameras, wireless LAN access points, and other IP devices. Four front-panel dual-mode (GbE/10GbE) SFP/SFP+ uplink ports and two 40GbE QSFP+ ports are also available for connecting the switches to upstream devices.

1.1 Module Overview

This is a non-proprietary Cryptographic Module Security Policy for the Juniper Networks EX2300, EX2300-C and EX3400 Ethernet Switches Cryptographic Module from Juniper Networks. It provides detailed information relating to each of the FIPS 140-2 security requirements relevant to the Juniper Networks EX2300, EX2300-C and EX3400 Ethernet Switches Cryptographic Module along with instructions on how to run the module in a secure FIPS 140-2 mode.

The cryptographic module provides for an encrypted connection, using SSH, between the management console and the switches. All other data input or output from the switches is considered plaintext for this FIPS 140-2 validation.

The EX switches run JUNOS. The validated version of JUNOS OS is 19.1R2; the image for the EX2300, EX2300-C and EX3400 Ethernet Switches hardware platforms is: junos-arm-32-19.1R2.5.tgz.

The Juniper Networks EX2300, EX2300-C and EX3400 Ethernet Switches are cryptographic modules that are defined as multi-chip standalone modules that execute JUNOS OS 19.1R2 firmware on the EX2300, EX2300-C and EX3400 Ethernet Switches listed in Table 1. The cryptographic boundaries for the EX2300, EX2300-C and EX3400 Ethernet Switches are defined as the outer edge of each switch. The cryptographic modules' operational environment is a limited operational environment.

Table 1 gives a list of the hardware versions that are part of the module validation and the basic configuration of the hardware.

Models	Hardware Versions	Processor	RAM	Ethernet Ports (10/100/1000 BASE-T GbE ports, 10GbE uplink ports)
EX2300	EX2300-C-12P, EX2300-C-12T		2GB DDR	12, 2
	EX2300-24P, EX2300-24T	1.25GHz ARM Cortex A9		24, 4
	EX2300-48P, EX2300-48T			48, 4
EX3400	EX3400-24P, EX3400-24T	Dual Core 1 GHz	2GB DDR with ECC	24, 4
	EX3400-48P, EX3400-48T	ARM Cortex A9		48, 4

Table 1 – EX2300, EX2300-C and EX3400 Ethernet Switches Configurations

The cryptographic modules meet the overall requirements applicable to Level 1 security of FIPS 140-2. The following table lists the level of validation for each area in FIPS 140-2:

Area	Description	Level
1	Module Specification	1
2	Ports and Interfaces	1
3	Roles, Services, and 3 Authentication	
4	Finite State Model	1
5	Physical Security	1
6	Operational Environment	N/A
7	Key Management	1
8	EMI/EMC	1
9	Self-test	1
10	Design Assurance	3
11	Mitigation of Other Attacks	N/A
	Overall	1

Table 2 – Security Level of Security Requirements

The modules have a limited operational environment as per the FIPS 140-2 definitions. It includes a firmware load service to support necessary updates. New firmware versions within the scope of this validation must be validated through the FIPS 140-2 CMVP. Any other firmware loaded into the modules are out of the scope of this validation and require a separate FIPS 140-2 validation.

The modules do not implement any mitigations of other attacks as defined by FIPS 140-2.

1.1 Hardware and Physical Cryptographic Boundary

The physical forms of the module's various models are depicted in Figures 1-6 below. For all models, the cryptographic boundary is defined as the outer edge of the chassis. The modules exclude the power supplies from the requirements of FIPS 140-2. The power supplies do not contain any security relevant components and cannot affect the security of the module.

Figure 1 – EX2300-C-12T/12P

Figure 2 – Front Panel EX2300-24P/24T

Figure 3 – Rear Panel EX2300-C-12T/12P

- 1. CLEI code label
- 2. Serial number ID label
- 3. Protective earthing terminal
- 4. AC power cord inlet

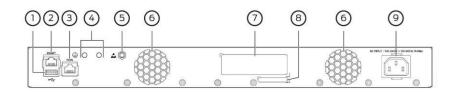


Figure 4 – Rear Panel EX2300-24P/24T

1. USB port	5. ESD point
2. Management Ethernet port	6. Air exhaust openings
3. RJ-45 console port	7. Serial number ID label
4. Protective earthing terminal	8. CLEI code label
	9. AC power cord inlet
	1

Figure 5 – Front Panel EX2300-48P/48T

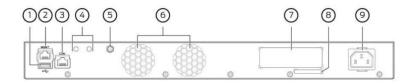


Figure 6 – Rear Panel EX2300-48P/48T

1. USB port	5. ESD point
2. Management Ethernet port	6. Air exhaust openings
3. RJ-45 console port	7. Serial number ID label
4. Protective earthing terminal	8. CLEI code label
_	9. AC power cord inlet
	_

Figure 7 – Front Panel EX3400-24P/24T

	2122.21.21.21.21.2
TTTTTTTT	

Figure 8 – Front Panel EX3400-48P/48T

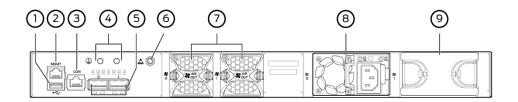


Figure 9 – Rear Panel EX3400-24P/24T/48P/48T

1 USB port	6 ESD point
2 Management Ethernet port	7 Fan modules
3 RJ-45 console port	8 AC power supply
4 Protective earthing terminal	9 Empty slot for power supply covered
5 QSFP+ uplink ports	by a blank panel

The cryptographic module supports the physical ports and corresponding logical interfaces identified below. The flow of the data, control and status through the interfaces is controlled by the cryptographic module. The interfaces can be categorized into the following logical interfaces defined by FIPS 140-2:

- Data Input Interface
- Data Out Interface
- Control Input Interface
- Status Output Interface
- Power Interface

The physical ports can be mapped to the logical interfaces. The mapping of the logical interfaces to the physical ports is shown in the following table:

Table 3 – Ports and Interfaces

Port	Device (# of ports)	Description	Logical Interface Type
Ethernet (PFE)	EX2300/ EX2300-C:	LAN	Control in, Data in, Status out,
(data)		Communications	Data out
	10/100/1000 BASE-T		
	Gigabit Ethernet ports:		
	EX2300-24T(24), EX2300-		
	24P(24), EX2300-48T(48),		
	EX2300-48P(48), EX2300-C-		
	12T(12), EX2300-C-12P(12)		
	10GbE small form-factor		
	pluggable transceiver (SFP/		
	SFP+) uplink ports:		
	EX2300-24T(4), EX2300-		
	24P(4), EX2300-48T(4),		
	EX2300-48P(4), EX2300-C-		
	12T (12), EX2300-C-12P (12)		
	EX3400:		
	10/100/1000 BASE-T		
	Gigabit Ethernet ports:		
	EX3400-24T(4), EX3400-		
	24P(4), EX3400-48T(4),		
	EX3400-48P(4)		
	Dual-mode (GbE/10GbE)		
	small form-factor pluggable		
	transceiver (SFP/ SFP+)		
	uplink ports:		
	EX3400-24T(4) <i>,</i> EX3400-		
	24P(4), EX3400-48T(4),		
	EX3400-48P(4)		
	40GbE QSFP+ ports:		
	EX3400-24T(2), EX3400-		
	24P(2), EX3400-48T(2),		

	EX2400 48P(2)	INE I WORKS	
	EX3400-48P(2)		
Ethernet (mgmt.)	EX2300-24T(1), EX2300-	Remote	Control in, Data in, Status out,
	24P(1), EX2300-48T(1),	Management	Data out
	EX2300-48P(1), EX2300-C-		
	12T(1), EX2300-C-12P(1),		
	EX3400-24T(1), EX3400-		
	24P(1), EX3400-48T(1),		
	EX3400-48P(1)		
	. ,		
Serial	EX2300-24T(1), EX2300-	Console serial port	
	24P(1), EX2300-48T(1),		Data out
	EX2300-48P(1), EX2300-C-		
	12T(1), EX2300-C-12P(1),		
	EX3400-24T(1), EX3400-		
	24P(1), EX3400-48T(1),		
	EX3400-48P(1)		
Power	EX2300-24T(1), EX2300-	Power connector	Power input, Power over Ethernet
	24P(1), EX2300-48T(1),		
	EX2300-48P(1), EX2300-C-		
	12T(1), EX2300-C-12P(1),		
	EX3400-24T(2), EX3400-		
	24P(2), EX3400-48T(2),		
	EX3400-48P(2)		
Reset Button	EX2300-24T(1), EX2300-	Reset	Control in
	24P(1), EX2300-48T(1),		
	EX2300-48P(1), EX2300-C-		
	12T(1), EX2300-C-12P(1),		
	EX3400-24T(1), EX3400-		
	24P(1), EX3400-48T(1),		
	EX3400-48P(1)		

		-	
LEDs	EX2300-24T(6), EX2300- 24P(7), EX2300-48T(6), EX2300-48P(7), EX2300-C- 12T(7), EX2300-C-12P(7), EX3400-24T(3), EX3400- 24P(3), EX3400-48T(3), EX3400-48P(3)	Status indicator lighting	Status out
USB	EX2300-24T(1), EX2300- 24P(1), EX2300-48T(1), EX2300-48P(1), EX2300-C- 12T(1), EX2300-C-12P(1), EX3400-24T(1), EX3400- 24P(1), EX3400-48T(1), EX3400-48P(1)	Console mini-USB port Load Junos Image	Control in, Data in
	EX2300-24T(0), EX2300- 24P(0), EX2300-48T(0), EX2300-48P(0), EX2300-C- 12T(1), EX2300-C-12P(1), EX3400-24T(0), EX3400- 24P(0), EX3400-48T(0), EX3400-48P(0)	USB Type A Load Junos Image	Control In, Data in

The flow of input and output of data, control, and status is managed by the cryptographic module.

Details of each model's hardware are available in the guides listed in Table 18.

1.2 Modes of Operation

The module supports one FIPS Approved mode of operation and a non-Approved mode of operation. The module must always be zeroized when switching between a FIPS Approved mode of operation and the non-Approved mode of operation and vice versa.

1.2.1 FIPS Approved Mode

The EX switches with Junos OS 19.1R2 installed, contain one FIPS-Approved mode of operation and a non-Approved mode of operation. The Junos OS 19.1R2 firmware image must be installed on the devices. The modules are configured during initialization to operate in the approved mode or the non-approved mode.

The cryptographic officer can configure the module to run in a FIPS Approved mode of operation by following the instructions in the crypto-officer guidance (section 6.1).

The Crypto-Officer can verify that the cryptographic module is in an Approved mode by observing the console prompt and running the "show version local" command. When operating in FIPS mode, the prompt will read "<user>@<device name>:fips#" (e.g. crypto-officer@EX2300:fips#). The "show version local" command will allow the Crypto-Officer to verify that the validated firmware version is running on the module. The Crypto-Officer can also use the "show system fips level" command to determine if the module is operating in FIPS mode.

1.2.2 Non-Approved Mode

The cryptographic module supports a non-Approved mode of operation. When operated in the non-Approved mode of operation, the module supports the algorithms identified in Section 2.2 as well as the algorithms supported in the Approved mode of operation.

The Crypto-Officer can place the module into a non-approved mode of operation by following the instructions in the crypto-officer guidance (section 6.1).

1.3 Zeroization

The cryptographic module provides a non-Approved mode of operation in which non-Approved cryptographic algorithms are supported. When transitioning between the non-Approved mode of operation and the FIPS-Approved mode of operation, or vice-versa, the cryptographic officer shall zeroize all keys and CSPs.

Zeroization completely erases all configuration information on the EX2300/EX2300-C/EX3400. The Crypto Officer initiates the zeroization process by entering the *"request system zeroize"* operational command from the CLI after enabling FIPS mode. Use of this command is restricted to the Crypto Officer (To zeroize the system *before* enabling FIPS mode, use the *"request system zeroize media"* command.)

Use of the zeroize command is restricted to the Cryptographic Officer. The cryptographic officer shall perform zeroization in the following situations:

- 1. Before FIPS Operation: To prepare the device for operation as a FIPS cryptographic module by erasing all CSPs and other user-created data on a device before its operation as a FIPS cryptographic module.
- 2. Before non-FIPS Operation: To conduct erasure of all CSPs and other user-created data on a device in preparation for repurposing the device for non-FIPS operation.

CAUTION: Perform system zeroization with care. After the zeroization process is complete, no data is left on the Routing Engine. The switch is returned to the factory default state, without any configured users or configuration files.

To zeroize your switch:

1. From the CLI, enter

root@switch> request system zeroize

warning: System will be rebooted and may not boot without configuration

Erase all data, including configuration and log files? [yes, no] (no)

2. To initiate the zeroization process, type yes at the prompt: Erase all data, including configuration and log files? [yes, no] (no) yes

3. When the system finishes rebooting the system will be in a factory default state.

Note: The Cryptographic Officer must retain control of the module while zeroization is in process.

Note: In case the system does not boot-up correctly post zeroization and instead enters a continual boot loop, a USB bootable image can be used to recover the system from this condition.

2 Cryptographic Functionality

2.1 Allowed Algorithms and Protocols

The module implements the FIPS Approved and Non-Approved but Allowed cryptographic functions listed in Tables 4, 5, 6, and 7 below. Table 8 summarizes the high-level protocol algorithm support. There are some algorithm modes that were tested but not implemented by the module. Only the algorithms, modes, and key sizes that are implemented by the module are shown in this/these table(s).

		// 0			
CAVP Cert.	Algorithm	Standard	Mode	Key Lengths, Curves, or Moduli	Functions
C1374	DRBG	SP800-90A	HMAC SHA-256	SP800-90A HMAC SHA- 256 DRBG	Random Bit Generation
C1274			SHA-1	Key size: 160 bits, λ = 96	
C1374	HMAC	PUB 198	SHA-256	Key size: 256 bits, λ = 128	Message Authentication
C1374	SHS	PUB 180-4	SHA-1		Message Digest
C1374	5115	F UD 160-4	SHA-256		Generation

Table 4 – Kernel Approved Cryptographic Functions

Table 5 – LibMD Approved Cryptographic Functions

		/1 0			
CAVP Cert.	Algorithm	Standard	Mode	Key Lengths, Curves, or Moduli	Functions
C1275			SHA-1	Key size: 160 bits, λ = 160	Decoverd Lleshing
C1375	HMAC	PUB 198	SHA-256	Key size: 256 bits, λ = 256	Password Hashing
			SHA-1		Massaga Digast
C1375	SHS	PUB 180-4	SHA-256		Message Digest Generation
			SHA-512		Generation

Table 6 – OpenSSL Approved Cryptographic Functions

CAVP Cert.	Algorithm	Standard	Mode	Key Lengths, Curves, or Moduli	Functions
C1376	AES	PUB 197-38A	CBC, CTR	Key Sizes: 128, 192, 256	SSH Encrypt, Decrypt
N/A ¹	СКБ	SSH-PUB 133	Section 6.1 Section 6.2		Asymmetric seed generation using unmodified DRBG output

¹ Vendor Affirmed

C1376	CVL (SSH KDF)	SP 800-135	SSHv2	Key Sizes: 128, 192, 256 ²	SSH Key Derivation
C1376	DRBG	SP 800-90A	HMAC	SHA-256	Random Bit Generation
C1376	ECDSA	PUB 186-4		P-256 (SHA 256) P-384 (SHA 384) P-521 (SHA 512)	SSH KeyGen, KeyVer, SigVer, SigGen
C1376	ктѕ			AES Cert. # C1376 and HMAC Cert. # C1376	Key establishment methodology provides between 128 and 256 bits of encryption strength
				Triple-DES Cert. # C1376and HMAC Cert. # C1376	Key establishment methodology provides 112 bits of encryption strength
			SHA-1	Key size: 160 bits, λ = 160	
			SHA-384	Key size: 384 bits, λ = 384	SSH Message Authentication
C1376	НМАС	PUB 198	SHA-512	Key size: 512 bits, $\lambda = 512$	
			SHA-256	Key size: 256, bits, λ = 256	SSH Message Authentication, DRBG Primitive
C1376	SHS	PUB 180-4	SHA-1 SHA-256 SHA-384 SHA-512		Hash for HMAC, Sig Gen, Sig Ver
C1376	Triple-DES	SP 800-67	ТСВС	Key Sizes: 168 Key Strength: 112	SSH Encrypt, Decrypt
			-	n=2048 n=3072	KeyGen
C1376	RSA	PUB 186-4	PKCS1.5	n=2048 (SHA-256, SHA- 512) n=3072 (SHA-256, SHA- 512) n=4096 (SHA-256, SHA- 512)	SigGen ³ , SigVer ⁴

² The strength of the SSH KDF is the minimum of the Key Agreement method and the HMAC used.

³ RSA 186-2 4096 SigGen has been tested by the CAVP and is Approved for use per CMVP guidance, because testing for RSA 186-4 4096 SigGen was not available at the time of validation.

⁴ RSA 4096 SigVer was not tested by the CAVP; however, it is Approved for use per CMVP guidance, because RSA 2048 SigVer was tested and testing for RSA 4096 SigVer is not available.

N/A ⁵	KAS-SSC	SP 800- 56Arev3	ECDH	P-256 (SHA 256) P-384 (SHA 384) P-521 (SHA 512)	Key Agreement Scheme - Key Agreement Scheme Shared Secret Computation (KAS- SSC) per SP 800- 56Arev3, Key Derivation per SP 800-135 (CVL Cert. #C1376)
------------------	---------	--------------------	------	---	---

The cryptographic module also supports the following non-Approved algorithms, which are allowed for use in FIPS mode:

Table 7 – Allowed Cryptographic Functions

Algorithm	Caveat	Use
NDRNG [IG] 7.14 Scenario 1a	Provides 256 bits of security for the EX2300/EX2300 C and 192 bits of security for the EX3400.	Seeding the HMAC-DRBG

Table 8 – Protocols Allowed in FIPS Mode

Protocol	Key Exchange	Key Derivation	Auth	Cipher	Integrity
SSHv2 ⁶	EC Diffie-Hellman P-256, P-384, P-521	KDF (SHA-256, SHA-384, SHA- 512)	Host Authentication: ECDSA P-256 with SHA-256 RSA 2048, 4096 Client Authentication (optional): ECDSA P-256 with SHA-256, P-384 with SHA-384, P-521 with SHA-512 RSA 2048, 4096	Triple-DES CBC AES CBC 128/192/256 AES CTR 128/192/256	HMAC-SHA-1 HMAC-SHA-256 HMAC-SHA-512

The cryptographic module supports the commercially available SSHv2 protocol. No parts of this

⁵ Vendor Affirmed per IG D.1rev3 (per IG D.8 Scenario X1).

⁶ RFC 4253 governs the generation of the Triple-DES encryption key for use with the SSHv2 protocol

protocol, other than the KDF, have been tested by the CAVP and CMVP. The SSH algorithms allow independent selection of key exchange, authentication, cipher and integrity. In Table 8 above, each column of options for a given protocol is independent and may be used in any viable combination.

2.2 Disallowed Algorithms and Protocols

The non-Approved mode of operation supports the same algorithms that are supported in the Approved mode of operation; however, the non-Approved mode of operation supports plaintext protocols.

The module supports the following non-Approved and non-Compliant algorithms when it is configured in the non-FIPS Approved mode:

Algorithms

- ARCFOUR
- AES-GCM (non-compliant)
- Blowfish
- CAST
- ChaCha20
- DSA (non-compliant)
- Diffie-Hellman (non-compliant)
- EC Diffie-Hellman (ed25519)
- ECDSA (ed25519)
- HMAC-MD5
- HMAC-SHA1-96
- MD5
- Poly1305
- RIPEMD160
- RSA with key size less than 2048
- UMAC

Protocols

- finger
- ftp
- rlogin
- telnet
- tftp
- rsh

2.3 Critical Security Parameters

All CSPs and public keys used by the module are described in this section.

Name	Description and usage
DRBG_Seed	Seed material used to seed or reseed the DRBG
DRBG_State	Values V and Key which comprise the HMAC_DRBG state
Entropy Input	256 bits entropy (min) input used to instantiate the DRBG
ECDH Shared Secret	The shared secret used in Elliptic Curve Diffie Hellman (ECDH) key exchange. 256, 384 or 521 bits. Established per the Elliptic Curve Diffie-Hellman key agreement.
SSH PHK	SSH Private host key. 1st time SSH is configured, the key is generated. RSA 2048,4096, ECDSA P-256. Used to identify the host.
SSH ECDH	Ephemeral EC Diffie-Hellman private key used in SSH. ECDH P-256, P-384, or P-521
SSH-SEKs	SSH Session Keys: Session keys used with SSH-2, TDES-CBC (3 key), AES-CBC/CTR 128, 192, 256, HMAC-SHA- 512, HMAC-SHA-256, HMAC-SHA-1 key (160)
HMAC Key	The LibMD HMAC keys: message digest for hashing password and critical function test.
User Password	Passwords used to authenticate Users to the module (Stored Salted and hashed with SHA-1, SHA-256, or SHA-512).
CO Password	Passwords used to authenticate COs to the module (Stored Salted and hashed with SHA-1, SHA-256, or SHA-512).

Table 9 – Critical Security Parameters (CSPs)

Table 10 – Public Keys

Name	D	Description and usage
SSH-PUB		SSH Public Host Key used to identify the host. RSA 2048, 4096, ECDSA P-256.
SSH-ECDH-PUI	В	Ephemeral EC Diffie-Hellman public key used in SSH key establishment. ECDH P-256, P-384, or P-521
Auth-User Pub	C	User Authentication Public Keys. Used to authenticate users to the module. ECDSA P-256, P-384 or P-521 or RSA 2048, 4096
Auth-CO Pub		CO Authentication Public Keys. Used to authenticate CO to the module. ECDSA P-256, P- 384, or P-521 or RSA 2048, 4096
JuniperRootCA	4	The Junos OS uses four-level certificate hierarchies for firmware signature validation. At the root of the chain of trust is a self-signed certificate authority (CA) known as the JuiperRootCA which uses ECDSA-256/SHA-256. It is used to sign the EngineeringCA.
EngineeringCA	Ą	The EngineeringCA which uses ECDSA P-256 w/ SHA-256 X.509 certificate and is used to sign the PackageCA.

PackageCA	The PackageCA which uses ECDSA P-256 w/ SHA-256 X.509 Certificate and is used to sign the PackageProduction public/private key pair.
PackageProduction	ECDSA P-256 w/ SHA-256 X.509 certificate; Certificate that holds the public key of the signing key that was used to generate all the signatures used on the packages and signature lists.

3 Roles, Authentication and Services

3.1 Roles and Authentication of Operators to Roles

The module supports two operator roles: Cryptographic Officer (CO) and User. The module supports concurrent operators but does not support a maintenance role and/or bypass capability. The module enforces the separation of roles using identity-based operator authentication.

The Cryptographic Officer role configures and monitors the module via a console or SSH connection. As root or super-user, the Cryptographic Officer has permission to view and edit secrets within the module. Descriptions of the services available to the Crypto-Officer role are provided in Table 11.

The User role accesses the module's cryptographic services that include monitoring the EX Switch via the console or SSH. The User role cannot change the configuration. Table 11 lists the services available to the User Role.

3.2 Authentication Methods

The module implements two forms of Identity-Based authentication, username and password over the console and SSH as well as username and ECDSA or RSA public key over SSH.

Password authentication: The module enforces 10-character passwords (at minimum) chosen from the 96 human readable ASCII characters. The maximum password length is 20-characters. Thus, the probability of a successful random attempt is 1/96^10, which is less than 1/1 million.

The module enforces a timed access mechanism as follows: For the first two failed attempts (assuming 0 time to process), no timed access is enforced. Upon the third attempt, the module enforces a 5-second delay. Each failed attempt thereafter results in an additional 5-second delay above the previous (e.g. 4th failed attempt = 10-second delay, 5th failed attempt = 15-second delay, 6th failed attempt = 20-second delay, 7th failed attempt = 25-second delay).

This leads to a maximum of 7 possible attempts in a one-minute period for each getty. The best approach for the attacker would be to disconnect after 4 failed attempts and wait for a new getty to be spawned. This would allow the attacker to perform roughly 9.6 attempts per minute (576 attempts per hour/60 mins); this would be rounded down to 9 per minute, because there is no such thing as 0.6 attempts. The probability of a success with multiple consecutive attempts in a one-minute period is 9/(96^10), which is less than 1/100,000.

ECDSA signature verification: SSH public-key authentication. The module supports ECDSA (P-256, P-384, and P-521), which has a minimum equivalent computational resistance to attack of either 2^128, 2^192 or 2^256 depending on the curve. Thus, the probability of a successful random attempt is 1/ (2^128), which is less than 1/1,000,000. Configurable SSH connection establishment rate limits the number of connection attempts, and thus failed authentication attempts in a one-minute period to a maximum of 15,000 attempts. The probability of a success with multiple consecutive attempts in a one-minute period

is 15,000/(2^128), which is less than 1/100,000.

RSA signature verification: SSH public-key authentication. The module supports RSA (2048, 4096), which has a minimum equivalent computational resistance to attack of 2^112 (2048). Thus, the probability of a successful random attempt is 1/ (2^112), which is less than 1/1,000,000. Configurable SSH connection establishment rate limits the number of connection attempts, and thus failed authentication attempts in a one-minute period to a maximum of 15,000 attempts. The probability of a success with multiple consecutive attempts in a one-minute period is 15,000/ (2^112), which is less than 1/100,000.

3.3 Services

All services implemented by the module are listed in the tables below. Table 13 lists the access to CSPs by each service.

Service	Description	СО	User
Configuration management	Allows the CO to configure the switch.	x	
Switch Control	Allows the CO to modify the state of the switch. (Example: shutdown, reboot)	х	
Status Checks	Show status	х	х
Zeroize	Destroy all CSPs	х	
SSH connect	Initiate SSH connection for SSH monitoring and control (CLI)	x	х
Console access	Console monitoring and control (CLI)	х	х
Load Juniper Image	Verification and loading of a validated firmware	х	
Account Management	Create administrative accounts	х	
Self-tests	Allows the crypto-officer to perform cryptographic self-tests by restarting the module	х	
Change Mode	Configure the module to run in a non-Approved mode	х	

Table 11 – Authenticated Services

Table 12 – Unauthenticated Services

Service	Description
Show Status	Provides the current status of the cryptographic module (LEDs and LCD)
Local reset	Hardware reset ; reverts the module to a factory-default configuration

Table 13 – CSP Access Rights within Services

	CSPs									
Service	DRBG_Seed	DRBG_State	Entropy Input String	ECDH Shared Secret	ХНЧ HSS	SSH ECDH	SSH-SEK	HMAC Key	CO-PW	User-PW
Configuration Management	E	E	E	GWR	GWR	WR	WR	G	W	W
Switch Control										
Status Checks										
Zeroize	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z
SSH connect		E		ER	E	GE	GE		E	E
Console access									E	E
Load Juniper Image										
Account Management									W	W
Local Reset	GZ	GZ	GZ	Z		Z	Z			
Self-tests										

Table 13 defines the relationship between access to CSPs and the different module services. The modes of access shown in the table are defined as follows:

G = Generate: The module generates the CSP

R = Read: The CSP is read from the module (e.g. the CSP is output)

W = Write: The CSP is updated or written to the module (persistent

storage)

E = Execute: The module executes using the CSP

Z = Zeroize: The module zeroizes the CSP.

3.4 Non-Approved Services

The following services are available in the non-Approved mode of operation. The security functions provided by the non-Approved services are identical to the Approved counterparts with the exception of SSH Connect (non-compliant). SSH Connect (non-compliant) supports the security functions identified in Section 2.2 and the SSHv2 row of Table 8.

Service	Description	СО	User
Configuration management (non-compliant)	Allows the CO to configure the switch.	x	
Switch Control (non-compliant)	Allows the CO to modify the state of the switch. (Example: shutdown, reboot)	х	
Status Checks (non-compliant)	Show status	х	х
Zeroize (non-compliant)	Destroy all CSPs	х	
SSH connect (non-compliant)	Initiate SSH connection for SSH monitoring and control (CLI)	x	x
Console access (non-compliant)	Console monitoring and control (CLI)	х	x
Load Juniper Image (non-compliant)	Verification and loading of a validated firmware image into the switch.	х	
Account Management (non-compliant)	Create administrative accounts.	х	
Self-tests (non-compliant)	Allows the crypto-officer to perform cryptographic self-tests by restarting the	х	
Change Mode (non-compliant)	Configure the module to run in a FIPS Approved mode	х	

Table 14 – Authenticated Services

Table 15 – Unauthenticated Services

Service	Description
Show Status	Provides the current status of the cryptographic module (LEDs and LCD).
Local reset	Hardware reset ; reverts the module to a factory-default configuration

4 Self-tests

Each time the module is powered up it tests that the cryptographic algorithms still operate correctly, and that sensitive data have not been damaged. Power-up self-tests are available on demand by power cycling the module (Self-tests service).

On power up or reset, the module performs the self-tests described below. All KATs must be completed successfully prior to any other use of cryptography by the module in the FIPS Approved Mode of operation. If one of the KATs fails, the module enters the Critical Failure error state.

The module performs the following power-up self-tests:

- Firmware Integrity check using ECDSA P-256 with SHA-256
- Kernel KATs
 - SP 800-90A HMAC DRBG KAT
 - Health-tests initialize, re-seed, and generate
 - HMAC-SHA-1 KAT
 - o HMAC-SHA-256 KAT
- OpenSSL KATs
 - o AES-CBC (128/192/256) Encrypt KAT
 - AES-CBC (128/192/256) Decrypt KAT
 - SP 800-90A HMAC DRBG KAT
 - Health-tests initialize, re-seed, and generate
 - ECDSA P-256 Sign/Verify PCT
 - o ECDH P-256 KAT
 - Derivation of the expected shared secret.
 - HMAC-SHA-1 KAT
 - HMAC-SHA2-256 KAT
 - o HMAC-SHA2-512 KAT
 - KDF-SSH KAT
 - RSA 2048 w/ SHA-256 Sign KAT
 - RSA 2048 w/ SHA-256 Verify KAT
 - Triple-DES-CBC Encrypt KAT
 - Triple-DES-CBC Decrypt KAT
- LibMD KATs
 - o HMAC SHA-1
 - o HMAC SHA-256
 - o SHA-512
- Critical Function Test
 - The cryptographic module performs a verification of a limited operational environment, and verification of optional non-critical packages.

The module also performs the following conditional self-tests:

- Continuous RNG Test on the OpenSSL SP 800-90A HMAC-DRBG.
- Continuous RNG test on the NDRNG.
- Pairwise consistency test when generating ECDSA and RSA key pairs.
- Firmware Load Test (ECDSA signature verification; ECDSA P-256 with SHA-256).

5 Physical Security Policy

The modules physical embodiment is that of a multi-chip standalone device that meets the FIPS 140-2 Level 1 physical security requirements. The module is completely enclosed in rectangular, cold rolled steel, plated steel, and brushed aluminum enclosure with a nickel or clear zinc coating. There are no ventilation holes, gaps, slits, cracks, slots, or crevices that would allow for any sort of observation of any component contained within the cryptographic boundary.

6 Security Rules and Guidance

The module design corresponds to the security rules below. The term *must* in this context specifically refers to a requirement for correct usage of the module in the Approved mode; all other statements indicate a security rule implemented by the module.

- 1. If any of the power-up self-tests fail, the module enters a panic state (error state) .
- 2. Any time the cryptographic module is in an idle state, the operator is capable of commanding the module to perform the power-up self-test by power-cycling the module.
- 3. The module clears previous authentications on power cycle.
- 4. Data output is inhibited during key generation, self-tests, zeroization, and error states.
- 5. Status information does not contain CSPs or sensitive data that if misused could lead to a compromise of the module.
- 6. The module supports concurrent operators.
- 7. The module is validated with JUNOS OS 19.1R2 firmware. The loading of non-validated firmware nullifies the FIPS 140-2 validation.
- 8. When the module has not been placed in a valid role, the operator does not have access to any cryptographic services.
- 9. Power up self-tests do not require any operator action.
- 10. There are no restrictions on which keys or CSPs are zeroized by the zeroization service.
- 11. The module does not support a maintenance interface or role.
- 12. The module does not support manual key entry.
- 13. The module does not output intermediate key values.
- 14. The module requires two independent internal actions to be performed prior to outputting plaintext CSPs.
- 15. The cryptographic officer must retain control of the module while zeroization is in process.
- 16. The Triple-DES encryption key is generated as part of recognized IETF protocols (RFC 4253 SSH). The operator shall ensure that the number of 64-bit blocks encrypted by the same key does not exceed 2^20.
- 17. Virtual Chassis is not supported in FIPS mode and shall not be configured on the modules.
- 18. RSA key generated shall only be 2048 bits or greater.
- 3-key Triple-DES has been implemented in the module and is FIPS approved until December 31, 2023. Usage of Triple-DES post December 31, 2023 is disallowed, and users must not configure Triple-DES.

6.1 Cryptographic-Officer Guidance

The cryptographic officer must check to verify the firmware image on the switch is the FIPS 140-2 validated image. If the image is the FIPS 140-2 validated image, then proceed to section 6.1.2.

6.1.1 Installing the FIPS-Approved firmware image

Download the validated firmware image from the

<u>https://www.juniper.net/support/downloads/junos.html</u>. Log in to the Juniper Networks authentication system using the username (generally your e-mail address) and password supplied by Juniper Networks representatives. Select the validated firmware image. Download the firmware image to a local host or to an internal software distribution site.

Connect to the console port on the switch from your management device and log in to the Junos OS CLI. Copy the firmware package to the switch to the /var/tmp/ directory. Install the new package on the switch:

root@switch> request system software add /var/tmp/package.tgz.

NOTE: If you need to terminate the installation, do not reboot your switch; instead, finish the installation and then issue the request system software delete *package*.tgz command, where *package*.tgz is, for example, junos-arm-32-19.1R2.tgz. This is your last chance to stop the installation.

Reboot the switch to load the installation and start the new firmware image: root@swicth> request system reboot

After the reboot has completed, log in and use the show version local command to verify that the new version of the firmware is successfully installed.

6.1.2 Enabling FIPS-Approved Mode of Operation

The crypto-officer is responsible for initializing the module in a FIPS Approved mode of operation. The FIPS-Approved mode of operation is not automatically enabled. The crypto-officer should follow the steps found in the *Junos OS for EX Series Ethernet Switches, Release 19.1R2* FIPS document Chapter 2.

To enable FIPS mode in Junos OS on the switch:

- 1. Establish the root password access according to the FIPS guidelines and configure the cryptoofficer.
- 2. Enter configuration mode:

{master: 0} [edit]
crypto-officer@switch #

 Enable FIPS mode on the switch by setting the FIPS level to 1, and verify the level: {master: 0} [edit]
 crypto-officer@switch # set system fips level 1

crypto-officer@switch# show system fips level
level 1;

4. Commit the configuration.

{master: 0} [edit]
crypto-officer@switch# commit
configuration check succeeds
 Generating RSA key /etc/ssh/fips_ssh_host_key
 Generating RSA2 key /etc/ssh/fips_ssh_host_rsa_key
 Generating ECDSA key /etc/ssh/fips_ssh_host_ecdsa_key
 [edit]
 'system'
 reboot is required to transition to FIPS level 1
 commit complete

5. Reboot the switch:

{master: 0} [edit]
crypto-officer@switch> request system reboot
Reboot the system ? [yes,no] (no) yes
During the reboot, the router runs Known Answer Tests (KATS). It returns a login
prompt:
crypto-officer@ switch:fips>

6. After the reboot has completed, log in and use the show version local command to verify the firmware version is the validated version.

crypto-officer@ switch:fips> show version local

The Crypto-Officer (CO) must create a backup image of the firmware by issuing the *request system snapshot recovery* command. This will create a recovery snapshot on the OAM volume.

6.1.3 Placing the Module in a Non-Approved Mode of Operation

As Crypto Officer, the operator may need to disable FIPS mode of operation on the switch to return it to non-FIPS operation. To disable FIPS mode on the switch follow the steps found in the *Junos OS for EX Series Ethernet Switches, Release 19.1R2* FIPS document Chapter 2 in the section titled Disabling FIPS Mode. The steps from the aforementioned document have been repeated in Section 1.3 (Zeroization) of this document.

6.2 User Guidance

The user should verify that the module is operating in the desired mode of operation (FIPS-Approved mode or non-Approved mode) by observing the command prompt when logged into the switch. If the string ":fips" is present then the router is operating in a FIPS-Approved mode. Otherwise it is operating in a non-Approved mode.

login: fips-user1 Password:

--- JUNOS 19.1R2 built 2019-10-02 09:51:00 UTC {master:0} fips-user1@ ex3400:fips>

All FIPS users, including the Crypto Officer, must observe security guidelines at all times.

All FIPS users must:

- Keep all passwords confidential.
- Store switches and documentation in a secure area.
- Deploy switches in secure areas.
- Check audit files periodically.
- Conform to all other FIPS 140-2 security rules.
- Follow these guidelines:
 - Users are trusted.
 - Users abide by all security guidelines.
 - Users do not deliberately compromise security.
 - Users behave responsibly at all times.

7 References and Definitions

The following standards are referred to in this Security Policy.

Table 16 – References				
Abbreviation	Full Specification Name			
[FIPS140-2]	Security Requirements for Cryptographic Modules, May 25, 2001			
[SP800-131A]	Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms and Key Lengths, January 2011			
[IG]	Implementation Guidance for FIPS PUB 140-2 and the Cryptographic Module Validation Program			

Table 16 – References

Table 17 – Acronyms and Definitions

Acronym	Definition			
AES	Advanced Encryption Standard			
DSA	Digital Signature Algorithm			
CLI	Command Line Interface			
ECDH	Elliptic Curve Diffie-Hellman			
ECDSA	Elliptic Curve Digital Signature Algorithm			
EMC	Electromagnetic Compatibility			
EMI	Electromagnetic Interference			
FIPS	Federal Information Processing Standard			
HMAC	Keyed-Hash Message Authentication Code			
MD5	Message Digest 5			
PFE	Packet Forwarding Engine			
RE	Routing Engine			
RSA	Public-key encryption technology developed by RSA Data Security, Inc.			
SHA	Secure Hash Algorithms			
SSH	Secure Shell			
Triple-DES	Triple - Data Encryption Standard			

Table 18 – EX Switches Hardware Guides

Model	Download location
EX2300/	https://www.juniper.net/documentation/en_US/release-
EX2300-C	independent/junos/topics/topic-map/ex2300-system-
	overview.html
EX3400	https://www.juniper.net/documentation/en_US/release- independent/junos/information-products/pathway- pages/ex-series/ex3400/ex3400.pdf