GDC Technology (USA) LLC Standalone IMB

Non-Proprietary FIPS 140-2 Security Policy

Version: 1.1

Date: September 16, 2020

Table of Contents

1	Overview	4
	1.1 Cryptographic Boundary	5
2	Cryptographic Functionality	6
	Critical Security Parameters Public Keys	
3	Roles, Authentication and Services	9
	3.1 Assumption of Roles	9
4	Self-tests	12
5	Physical Security Policy	12
6	Operational Environment	13
7	Mitigation of Other Attacks Policy	13
8	Security Rules and Guidance	13
9	References and Definitions	15

List of Tables

Table 1 – Cryptographic Module Configuration	4
Table 2 – Security Level of Security Requirements	4
Table 3 – Ports and Interfaces	5
Table 4 – Approved Algorithms	6
Table 5 – Non-Approved but Allowed Cryptographic Functions	7
Table 6 – Security Relevant Protocols Used in FIPS Mode	7
Table 7 – Critical Security Parameters (CSPs)	7
Table 8 – Public Keys	8
Table 9 – Roles Description	9
Table 10 – Authentication Description	9
Table 11 – Authenticated Services	9
Table 12 – Unauthenticated Services	10
Table 13 – Security Parameters Access Rights within Services	11
Table 14 – Physical Security Inspection Guidelines	13
Table 15 – References	15
Table 16 – Acronyms and Definitions	16
List of Figures	
Figure 1 - Image of the GDC-IMB-v6 (Top)	5
Figure 2 - Image of the GDC-IMB-v6 (Bottom)	5
Figure 3 – Tamper Seal Locations	13

1 Overview

The Standalone Image Media Block (IMB) cryptographic module, hereafter referred to as the Module or cryptographic module, is a Security Processor Block, Type 1, designed in accordance with FIPS 140-2 and the Digital Cinema System Specification [DCI].

Table 1 - Cryptographic Module Configuration

	Module	HW P/N and Version	FW Version
1	Standalone IMB	GDC-IMB-v6	5.0, Security Manager Firmware Version 1.8.5 and 5.1, Security Manager Firmware Version 1.8.6

The FIPS 140-2 security levels for the Module are as follows:

Table 2 – Security Level of Security Requirements

Security Requirement	Security Level
Cryptographic Module Specification	2
Cryptographic Module Ports and Interfaces	2
Roles, Services, and Authentication	3
Finite State Model	2
Physical Security	3
Operational Environment	N/A
Cryptographic Key Management	2
EMI/EMC	2
Self-Tests	2
Design Assurance	3
Mitigation of Other Attacks	N/A
Overall	2

1.1 Cryptographic Boundary

For FIPS 140-2 purposes, the IMB is defined as a multi-chip embedded cryptographic module encased in a hard, opaque, removable enclosure with tamper detection and response circuitry. The cryptographic boundary is defined as the outer perimeter of the PCB. Figures 1 and 2 depict the cryptographic module; all components not contained within the metal enclosure (security region) are explicitly excluded from the requirements of FIPS 140-2 as they are non-security relevant and have no impact on the overall security of the module. Excluded items fall into the following non-security relevant categories:

- Power Supply
- Unconnected Components and Test Points
- Mechanical Connections
- Video and Audio Components

Figure 1 - Image of the GDC-IMB-v6 (Top)

Figure 2 - Image of the GDC-IMB-v6 (Bottom)

1.2 Mode of Operation

The Module only supports and operates in an Approved mode. It is not possible to configure the module into a non-Approved mode of operation. To verify that the Module is the FIPS-Approved version, the operator can verify the firmware version and Security Manager version are consistent with those listed in Table 1. The version information is logged during power-on.

1.3 Ports and Interfaces

The Module's ports and associated FIPS-defined logical interface categories are listed in Table 3.

Table 3 – Ports and Interfaces

Port	Description	Logical Interface Type
RS-232 Exposed Header	Status output serial header	Status Out
UART/GPIO Module header	Module communication	Power Out
Projector Tamper switch (on Molex Connector)	Marriage and door tamper from projector	Control In
Ethernet (4x RJ-45, 1x on Molex Connector)	Control and data network	Control In Data In Data Out Status Out
GPIO (Qty. 8 in and 8 out)	General purpose input and output	Control In Data Out Status Out
AES Audio (3x RJ-45, 12 pairs)	Audio out	Data Out
Video Bus (8 pairs, on Molex Connector)	Video out	Data Out
Video Reference Input (Qty. 1)	Reference input	Control in
LTC Out (Qty. 1)	LTC Out	Data Out
Reset (Qty. 1)	Reset button	Control In
HDMI (Qty. 1)	Video in	Data In
LED (Qty. 4)	Status LEDs	Status Out
Battery (Qty. 2)	Backup power	Power In

Port	Description	Logical Interface Type
USB 3.0 (Qty. 2)	USB connection	Data In Data Out
eSATA (Qty. 1)	External SATA connection	Data In Data Out
Power supply header	Power supply status	Status Out

2 Cryptographic Functionality

The Module implements the FIPS Approved Algorithms and Non-Approved but Allowed cryptographic functions listed in the tables below.

Table 4 – Approved Algorithms

Cert	Algorithm	Mode	Description	Functions/Caveats	
C1064	AES [197]	CBC [38A]	Key Sizes: 128, 256	Encrypt, Decrypt	
C1065	AES [197]	CBC [38A]	Key Sizes: 128	Decrypt	
C890	AES [197]	CBC [38A]	Key Size: 128, 256	Encrypt, Decrypt, Key Wrap	
C1064	CVL: TLS [135]	v1.0/1.1	SHA-1; only TLS 1.0 is used	Key Derivation	
C891	CVL: RSADP [56B]		n = 2048	Decrypt	
C891	DRBG [90A]	Hash_DRBG	SHA-256	Deterministic Random Bit Generation	
C1064	HMAC [198]	SHA-1	Key Sizes: 112 – 2048 bit	Message Authentication, KDF Primitive	
C1066	HMAC [198]	SHA-1	Key Sizes: 512 bit	Message Authentication	
C890, C1064	KTS [38F]	CBC, HMAC	AES Cert. #C890 and HMAC Cert. #C1064	Key establishment methodology provides 128 bits of encryption strength	
		FIPS 186-4	n = 2048	KeyGen	
C891	RSA [186]	PKCS1_v1.5	n = 2048 SHA(256)	SigGen	
		PKCS1_v1.5	n = 2048 SHA(1, 256)	SigVer (Tested, but not used)	
		FIPS 186-4	n = 2048	KeyGen (Tested, but not used)	
C1064	RSA [186]	PKCS1_v1.5	n = 2048 SHA(256)	SigGen (Tested, but not used)	
C1064	K3A [160]	X9.31	n = 2048 SHA(1)	SigVer (Tested, but not used)	
		PKCS1_v1.5	n = 2048 SHA(1, 256)	SigVer	
C1064	SHS [180]	SHA-1, SHA-256		Message Digest Generation	
C1066	SHS [180]	SHA-1		Message Digest Generation	
C890	SHS [180]	SHA-256		Message Digest Generation	

Table 5 – Non-Approved but Allowed Cryptographic Functions

Algorithm	Description	
CKG (no security claimed)	Optional legacy key generation prescribed by [SMPTE ST 429-6] for checking Message Integrity for the purpose of logging only.	
KAS (no security claimed)	EC Diffie-Hellman prescribed by [DCI] to support authentication of legacy equipment. Not used for transmitting or protecting the Module's CSPs.	
Key Wrap CVL #C891, RSA-based key transport per IG D.9 (2048 bit for use in TLS KDMs). Key establishment methodology provides 112 bits of encryptic		
MD5	For use in TLS v1.0 ¹ only [135].	
NDRNG [Annex C]		
	Non-Deterministic RNG; provides 256-bits of security strength for the DRBG. The NDRNG output is used to seed the FIPS Approved DRBG.	

Table 6 – Security Relevant Protocols Used in FIPS Mode

Protocol	Key Exchange	Auth	Cipher	Integrity
TLS v1.0 ¹	[IG D.8 and SP 800-135]	RSA	AES 128	SHA1
	Cipher Suites: TLS_RSA_WITH_AES_128_CBC_SHA			

¹ No parts of this protocol, other than the KDF, have been tested by the CAVP and CMVP.

2.1 Critical Security Parameters

All CSPs used by the Module are described in this section. All usage of these CSPs by the Module (including all CSP lifecycle states) is described in the services detailed in Section 4.

Table 7 – Critical Security Parameters (CSPs)

CSP	Description / Usage
CONT-ENC	Content Encryption Key. AES CBC 128-bit key. Used to decrypt content data.
CONT-ENC-HMAC	Provides data integrity over CONT-ENC using HMAC
DRBG-EI	DRBG entropy input
DRBG-State	Hash_DRBG internal state (C and V are 55-bytes – see 800-90A)
AES-K81	K81 storage encryption key. AES 256-bit for key storage
MB-PRIV	Media Block Private Key. RSA 2048-bit Private Key. Used to decrypt KDMs, sign security logs, and perform TLS
STOR-AES	Storage Encryption Key. AES CBC 128-bit key. Used to encrypt the CONT-ENC and CONT-ENC-HMAC for persistent storage.
TLS-MS	(TLS Master Secret) 384-bit secret key material
TLS-PMS	(TLS Pre-Master Secret) 384-bit secret key material
TLS-SENC	TLS Session Encryption Keys. AES CBC 128-bit key. Protects TLS session data.

CSP	Description / Usage	
TLS-SMAC	TLS Session Authentication Keys. HMAC-SHA-1 (160-bit). Provide data TLS session data integrity.	

2.2 Public Keys

Table 8 – Public Keys

Key	Description / Usage
CONT-PUB	Content Provider Public Keys. RSA 2048-bit Public Key. Used to verify signatures on KDMs and CPLs.
GDC-Root-CA-Chain	Root CA Public Key Certificate Chain. RSA 2048-bit Public Key. Used to verify the validity of SMS-TLS-PUB received during a TLS session.
FW-LOAD-PUB	Firmware Load Public Key. RSA 2048-bit Public Key. Used for firmware signature verification.
MB-PUB	Media Block Public Key. RSA 2048-bit Public Key. Provided to external entities to encrypt KDMs or verify security logs.
PROJ-PUB	Projector Public Keys. RSA 2048-bit Public Key. Used during the DCI marriage process.
SMS-TLS-PUB	Screen Management System TLS Public Key. RSA 2048-bit Public Key. Used to verify the SMS during a TLS session.

3 Roles, Authentication and Services

3.1 Assumption of Roles

The Module supports two distinct operator roles, User and Cryptographic Officer (CO). Table 9 lists all operator roles supported by the module. The Module does not support a maintenance role, changing of roles, or concurrent operators. Operator authentication is performed via digital signature verification; the private keys used to create the signatures are not contained within the Module.

Table 9 - Roles Description

Role ID	Role Description	Authentication Type	Authentication Data
СО	Cryptographic Officer – Assumed by GDC Technology (USA) LLC	Identity-based	Digital Signature Verification
User	User – Assumed by the SMS	Identity-based	Digital Signature Verification

3.2 Authentication Method

Operators are authenticated via verification of digital signatures created using RSA 2048 keys. The strength of a 2048-bit RSA key is known to be 112 bits. Therefore, the strength of a 2048-bit digital signature is 1/2^112, which is less than 1/1,000,000.

The performance capacities of the Module restrict the total number of signature verifications per minute to 142932 —which does not include network limitations or timing constraints. Therefore, the probability that multiple attacks within a given minute will be successful is 142932/2^112, which is less than 1/100,000.

Table 10 - Authentication Description

Authentication Method	Probability	Justification
Digital Signature Verification	1/2^112	142932/2^112

3.3 Services

All services implemented by the Module are listed in the tables below.

Table 11 – Authenticated Services

Service	Description	со	U
Load Firmware	Install firmware	X	
Load File	Install a file	Х	
Get Time	Get current time		Х
Update Time	Adjust current time		Х
Import KDM	Import a new Key Delivery Message (KDM)		Х
Purge KDM	Remove one KDM		Х
Check KDM	Check availability of a valid KDM for CPL playback		Х
Setup CPL	Prepare to playback a Composition Playlist (CPL)		Х
Purge All KDM	Remove all KDMs		Х
Query KDM All	List all currently ingested KDMs		Х

Service	Description	СО	U
Get Logs	Retrieve logs from the Security Manager		Х
Get Log Info	Retrieve logging device information (event class, type, and sub-type)		Х
Get Log Sig	Retrieve the log report digital signature		X
Install Status	Query installation status		Х
Play Control	Notify the Security Manager of playback events		Х
SM Status	Retrieve Security Manager status		Х
SM Projector Tamper Control	Manage the tamper control of the projector		Х
SM Heartbeat	Verify the Security Manager is still active		Х
Get Build Info	Retrieve Security Manager version information		Х
SM Sys Log	Set logging IP address		Х
SM Playerd Log	Request Security Manager to log playback		Х
Load Asset Map	Load asset locations required for playback		Х
IMB GPIO Output	Trigger hardware GPIO output		Х
Reload Config	Reload player configuration		Х
Get HW Serial	Get IMB hardware serial number		Х
Get SM Pub Cert	Get SM Public Certificate		Х
Get SM Mode	Get SM operating mode		Х
Get Projector Info	Get status information from projector		Х

Table 12 – Unauthenticated Services

Service	Description					
Module Reset	Reset the Module by power cycle, which will invoke the Power-On Self-Tests					
(Self-test)						
Show Status	Provides status via the LEDs					
Network Configuration	Non-security relevant configuration of the module and establishment of the TLS session					

Table 13 defines the relationship between access to Security Parameters and the different module services. Individual services access to Security Parameters is represented independent of TLS - although all services are performed over a TLS session. The modes of access shown in the table are defined as:

- G = Generate: The service generates the Security Parameter.
- O = Output: The service outputs the Security Parameter.
- E = Execute: The service uses the Security Parameter in an algorithm.
- I = Input: The service inputs the Security Parameter.

• Z = Zeroize: The service zeroizes the Security Parameter. Note that complete zeroization will occur if power and batteries are removed; the module will cease to function.

Table 13 – Security Parameters Access Rights within Services

	CSPs and Public Keys																
Service	DRBG EI	DRBG-State	MB-PRIV	AES-K81	TLS-MS	TLS-PMS	TLS-SENC	TLS-SMAC	STOR-AES	CONT-ENC	CONT-ENC-HMAC	MB-PUB	SMS-TLS-PUB	GDC-Root-CA-Chain	CONT-PUB	PROJ-PUB	FW-LOAD-PUB
Load Firmware		Δ	2	⋖	-	—	—	F	S	O	O	2	S	0	O	В	E
Load File																	Е
Get Time																	
Update Time																	
Import KDM			E	E					Е	ı	Е				I, E		
Purge KDM										Z							
Check KDM																	
Setup CPL									Е						I, E		
Purge All KDM										Z							
Query KDM All																	
Get Logs																	
Get Log Info																	
Get Log Sig			Е	Е								Е					
Install Status																	
Playback Control																	
SM Status																	
SM Projector																	
Tamper Control																	
SM Heartbeat																	
Get Build Info																	
SM Sys Log																	
SM Playerd Log																	
Load Asset Map									Е	E	E						
IMB GPIO Output																	
Reload Config																	
Get HW Serial																	
Get SM Pub Cert												0					
Module Reset	G, E	G, E			Z	Z	Z	Z									
Get SM Mode																	
Get Projector Info																	
Show Status																	
Network Configuration	G, E	G, E	E	E	G, E	I, E	G, E	G, E				O, E	I, E	Е		I, E	

4 Self-Tests

The Module performs self-tests to ensure the proper operation of the module. Per FIPS 140-2, these are categorized as either power-up self-tests or conditional self-tests. Power-up self-tests are available on demand by power-cycling the Module.

All algorithm Known Answer Tests (KATs) must be completed successfully prior to any other use of cryptography by the Module. If the firmware integrity test fails, the Module will be unresponsive with no LEDs lit. If one of the KATs fails, the Module enters the error state and outputs status of either a red or orange (top left) LED; otherwise, it indicates successful completion by a green (top left) LED.

The Module performs the following algorithm KATs on power-up:

- Firmware Integrity (Bootloader): 32-bit CRC performed over all code on NAND
- Firmware Integrity (Security Manager): HMAC-SHA-1 (Cert. #C1064)
- Firmware Integrity (K81): 16-bit CRC performed over all code on NAND
- AES-CBC-128 Encrypt/Decrypt KATs (Cert. #C1064)
- AES-CBC-128 Decrypt KAT (Cert. #C1065)
- AES-CBC-128 Encrypt KAT, 256 Encrypt/Decrypt KATs (Cert. #C890)
- Hash_DRBG KAT (Cert. #C891)
- Security Manager HMAC SHA-1 KAT (HMAC Cert. #C1064 and SHS Cert. #C1064)
- HMAC SHA-1 KAT (HMAC Cert. #C1066 and SHS Cert. #C1066)
- RSA 2048-bit Signature Generation/Verification KATs (RSA Cert. #C1064 and SHS Cert. #C1064)
- RSA 2048-bit Signature Generation/Verification KATs (RSA Cert. #C891 and SHS Cert. #C1066)
- RSA Decryption KAT (Cert. #C891)
- SHA-1 KAT (Cert. #C1066)
- SHA-256 KAT (Cert. #C890)

The Module performs the following conditional self-tests as indicated:

- Continuous RNG Test –performed on NDRNG
- Firmware Load: RSA 2048 signature verification of SHA-256 based signature
- SP 800-90A DRBG Health Tests (Instantiate, Reseed)

5 Physical Security Policy

The IMB is a multi-chip embedded cryptographic module which includes the following physical security mechanisms:

- Production-grade components
- Hard, opaque, removable enclosure with tamper detection and response
- Tamper evidence provided by four (4) tamper-evident seals that are applied during manufacturing (Figure 3 provides the correct locations of the tamper seals.)

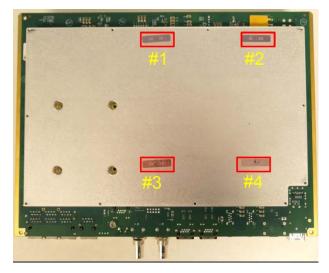


Figure 3 – Tamper Seal Locations

Table 14 – Physical Security Inspection Guidelines

Physical Security Mechanism	Recommended Frequency of Inspection/Test	Inspection/Test Guidance Details
Tamper-Evident Seals	Monthly	Verify the four seals placed on the bottom heat sink cover show no signs of tamper. If evidence of tamper is identified, notify your organization's Security Administration.

6 Operational Environment

The Module has a non-modifiable operational environment under the FIPS 140-2 definitions. The Module includes a firmware load service to support necessary updates. New firmware versions within the scope of this validation must be validated through the FIPS 140-2 CMVP. Any other firmware loaded into this module is out of the scope of this validation and requires a separate FIPS 140-2 validation.

7 Mitigation of Other Attacks Policy

The Module has not been designed to mitigate attacks beyond the scope of FIPS 140-2 requirements.

8 Security Rules and Guidance

This section documents the security rules for the secure operation of the cryptographic module to implement the security requirements of FIPS 140-2.

- 1. The Module provides two distinct operator roles: User and Cryptographic Officer.
- 2. The Module provides identity-based authentication.
- 3. The Module clears previous authentications on power cycle.
- 4. An operator does not have access to any cryptographic services prior to assuming an authorized role.

- 5. The Module allows the operator to initiate power-up self-tests by power-cycling power or resetting the Module.
- 6. Power-up self-tests do not require any operator action.
- 7. Data output are inhibited during key generation, self-tests, zeroization, and error states.
- 8. Status information does not contain CSPs or sensitive data that if misused could lead to a compromise of the module.
- 9. The Module does not support concurrent operators.
- 10. The Module does not support a maintenance interface or role.
- 11. The Module does not support manual key entry.
- 12. The Module does not have any proprietary external input/output devices used for entry/output of data.
- 13. The Module does not enter or output plaintext CSPs.
- 14. The Module does not output intermediate key values.
- 15. Upon detection of a tamper event, all CSPs are immediately destroyed and the Module will cease to function.

9 References and Definitions

The following standards are referred to in this Security Policy.

Table 15 – References

Abbreviation	Full Specification Name
[FIPS140-2]	Security Requirements for Cryptographic Modules, May 25, 2001
[IG]	Implementation Guidance for FIPS PUB 140-2 and the Cryptographic Module Validation Program
[131AR2]	Transitioning the Use of Cryptographic Algorithms and Key Lengths, March 2019
[133R1]	NIST Special Publication 800-133, Recommendation for Cryptographic Key Generation, July 2019
[135]	National Institute of Standards and Technology, Recommendation for Existing Application-Specific Key Derivation Functions, Special Publication 800-135rev1, December 2011.
[186]	National Institute of Standards and Technology, Digital Signature Standard (DSS), Federal Information Processing Standards Publication 186-4, July, 2013.
[197]	National Institute of Standards and Technology, Advanced Encryption Standard (AES), Federal Information Processing Standards Publication 197, November 26, 2001
[198]	National Institute of Standards and Technology, The Keyed-Hash Message Authentication Code (HMAC), Federal Information Processing Standards Publication 198-1, July, 2008
[180]	National Institute of Standards and Technology, Secure Hash Standard, Federal Information Processing Standards Publication 180-4, August, 2015
[38A]	National Institute of Standards and Technology, Recommendation for Block Cipher Modes of Operation, Methods and Techniques, Special Publication 800-38A, December 2001
[38F]	National Institute of Standards and Technology, Recommendation for Block Cipher Modes of Operation: Methods for Key Wrapping, Special Publication 800-38F, December 2012
[56Br2]	NIST Special Publication 800-56A Revision 2, Recommendation for Pair-Wise Key Establishment Schemes Using Integer Factorization Cryptography, March 2019
[90AR1]	National Institute of Standards and Technology, Recommendation for Random Number Generation Using Deterministic Random Bit Generators, Special Publication 800-90A Revision 1, June 2015.
[DCI]	Digital Cinema Initiatives, LLC, Digital Cinema System Specification, Version 1.3 with Errata as of 7 December 2018 Incorporated
[SMPTE ST 429-6]	The Society of Motion Picture and Television Engineers, D-Cinema Packaging – MXF Track File Essence Encryption, October 3, 2006

Table 16 – Acronyms and Definitions

Acronym	Definition
AES	Advanced Encryption Standard
AES-Audio	Audio Engineering Society Audio
СО	Cryptographic Officer
CPL	Composition Playlist
CSP	Critical Security Parameter
DCI	Digital Cinema Initiative
DRBG	Deterministic Random Bit Generator
EMI/EMC	Electromagnetic Interference/Electromagnetic Compatibility
FIPS	Federal Information Processing Standard
GPIO	General Purpose Input/Output
НМАС	Hash Message Authentication Code
IMB	Image Media Block
KAT	Known Answer Test
KDM	Key Delivery Message
N/A	Not Applicable
NDRNG	Non-Deterministic Random Number Generator
RNG	Random Number Generator
RSA	Rivest, Shamir, Adleman
SHA	Secure Hash Algorithm
SM	Security Manager
SMS	Screen Management System