iStorage Ltd. iStorage datAshur PRO² Level 3 Secure Storage Drive

FIPS 140-2 Non-Proprietary Security Policy Document Version 1.4

TABLE OF CONTENTS

1.	Cryptographic Module Specification	2
1	1 Security Level	2
1	2 Modes of Operation	3
1	3 Specifications	3
2.	Module Ports and Interfaces	3
3.	Roles, Services, and Authentication	5
3	1 Roles and Services	5
3	2 Authentication	8
	3.2.1 Initialization	9
	3.2.2 Strength of Authentication	9
	3.2.3 One-Time Recovery Feature	. 10
	3.2.4 Self-Destruct Feature	. 10
3	3 Security Rules	. 10
4.	Physical Security	. 10
5.	Operational Environment	. 11
6.	Cryptographic Key Management	. 11
6	1 CSPs and Keys	. 11
	6.1.1 Zeroization	. 13
6	2 Algorithms	. 14
	6.2.1 FIPS Approved Algorithms	. 14
	6.2.2 FIPS Allowed Algorithms	. 14
7.	EMI/EMC	. 15
8.	Self-Tests	. 15
9.	Appendix A: References	. 18
10.	Appendix B: Abbreviations and Definitions	. 19

INTRODUCTION

The iStorage datAshur PRO² Level 3 Secure Storage Drive (datAshur PRO²) is an encrypted storage device that provides a secure way to store and transfer data. User authentication is self-contained via an on-board keypad. User data is protected by hardware-based 256-bit AES encryption to secure sensitive information in the event that the drive is lost or stolen.

The data encryption key (DEK) and other cryptographic parameters are generated within the module through a NIST approved DRBG (ref: SP 800-90A). The seed for the DRBG is also produced within the module from a hardware-based entropy generator.

Capacity	Hardware Version	EC Firmware Version	SC Firmware Version
4 GB	IS-FL-DP2-256-4		
8 GB	IS-FL-DP2-256-8		
16 GB	IS-FL-DP2-256-16		2.5
32 GB	IS-FL-DP2-256-32	IS EC EW 505 1Y	
64 GB	IS-FL-DP2-256-64	15_EC_FW_505_FX	
128 GB	IS-FL-DP2-256-128	_	
256 GB	IS-FL-DP2-256-256		
512 GB	IS-FL-DP2-256-512		

Table 1 - All iStorage datAshur PRO² Level 3 Versions

1. CRYPTOGRAPHIC MODULE SPECIFICATION

1.1 SECURITY LEVEL

The module meets the overall requirements of FIPS 140-2 Level 3.

Table 2 - Module Security Level

FIPS Area	FIPS Security Requirement	Level
1	Cryptographic Module Specification	3
2	Module Ports and Interfaces	3
3	Roles, Services, and Authentication	3
4	Finite State Model	3
5	Physical Security	3
6	Operational Environment	N/A
7	Cryptographic Key Management	3
8	EMI/EMC	3
9	Self-Tests	3

10	Design Assurance	3
11	Mitigation of Other Attacks	N/A

1.2 MODES OF OPERATION

The iStorage datAshur PRO² Module operates only in a FIPS Approved mode. There does not exist a non-Approved mode of operation. The module indicates that it is in an approved mode of operation by displaying a solid red LED.

1.3 Specifications

The datAshur PRO² is a multi-chip standalone cryptographic module as defined by FIPS 140-2. It consists of a USB 3.0 capable encryption controller, eMMC memory, a security controller, a non-replaceable battery, a keypad controller, a 5V DC Input, and a user interface with three (3) LED status indicators and a user-interface alphanumeric keypad with twelve (12) buttons. The module is encapsulated within an opaque, production grade integrated circuit package. The security components are protected by epoxy against physical tamper attacks. The cryptographic boundary is defined by the datAshur PRO² entire device, which contains all the components.

2. MODULE PORTS AND INTERFACES

The cryptographic module exposes the following physical ports and logical interfaces:

Physical Port	Logical Interface	Description	
USB Port	Data input Data output Control input Status output	The USB port connects the module to the host computer and is used to exchange decrypted user data as well as control and status information for the USB protocol. There is no direct connection between the USB port and the security controller.	
	External power	The USB VBUS (+5) charges the battery and will power the module when it is available.	
Alphanumeric Keypad (0-9)	Data input	The ten (10) alphanumeric labelled keypad buttons, connected to keypad controller button inputs, are used to enter User PINs.	
Key and Shift Buttons	Control input	The two (2) buttons are connected to the keypad controller button inputs, and are used to control UI flow, including selecting the role. The Key button is also used to awaken the module from idle state.	
Red, Green and Blue LEDs	Status output	Refer to Table 4.	

Table 3 - Physical Ports and Logical Interfaces

Table 4 - LED Status Output

LED Behaviour	Module State	Status Description
LEDs off	Locked	The module is in idle state requiring wake by connecting to a powered USB port or pressing SHIFT button.
Red LED solid	Locked	Standby State. Waiting for keypad commands to start Admin or User PIN entry process.
Red LED solid	Reset	Reset State. Waiting for setting up an Administrative User PIN.
GREEN and BLUE LEDs blinking together	Locked	Waiting for Admin PIN entry.
All three LEDs solid	Locked	Waiting for obtaining additional 3 Admin PIN attempts
All three LEDs blink alternately when pressing KEY button	Locked	Waiting for obtaining additional 2 Admin PIN attempts
GREEN and RED LEDs blinking together	Locked	Waiting for OTR PIN entry.
All three LEDs blink simultaneously	Locked	Waiting for Standard User/Self-destruct PIN to unlock. Administrative User PIN is set.
RED and GREEN solid	Locked	Initial Shipment. Waiting for configuration of an Admin PIN
Red Green and Blue blink alternatively when pressing "0" button	Locked	Factory reset is initiated. Module waiting for confirmation code.
Blue LED solid	Locked	Administrative User Mode. Ready to accept Administrator commands.
The LEDs illuminate alternately from Red to Green and then to Blue, followed by Red LED blinking two seconds, same pattern repeats	Failed	SC KATs fail
A faded illumination of Red and Blue LEDs	Failed	SC Firmware Integrity Test fail
The LEDs illuminate alternately from Red to Green to Blue, then the flashing Green LED, same pattern repeats	Failed	NDRNG tests fail
Green LED blinks constantly when a valid Admin PIN is entered and the device is not connected to a powered USB port	Unlocked	Unlocked by a valid Admin PIN and not connected to a powered USB port.
Green LED blinking quickly	Locked	Adding Standard User/Self-Destruct PINs in progress
Blue LED blinking quickly	Locked	Adding Administrative User PIN in progress

LED Behaviour	Module State	Status Description
Blue LED solid and Green Blinking	Locked	Ready to accept new PIN.
Green and Blue LEDs blink alternately	Locked	Unlocking in progress
Green LED solid	Unlocked	Unlocked and connected. No communication or data transfer or via USB
Green LED blinks	Unlocked	Unlocked. Communicating or transferring data in progress
RED blinks 3 times and off	Locked	Low Battery Level. Charge on a powered USB port for 15-30 minutes
RED - Fade Out	Locked	Device turning off to the Idle State
BLUE blinking every 5 seconds	Locked	Battery starts charging after 30 seconds when device is locked and connected to a USB port

3. ROLES, SERVICES, AND AUTHENTICATION

3.1 ROLES AND SERVICES

The iStorage datAshur PRO² supports three distinct and separate identities and roles: Standard User, Administrative User, and OTR User. All three users can access the private partition and user data stored in the device when they are authenticated successfully.

The role is explicitly selected during authentication (refer to Table 6).

Table 5 defines all services and operations that can be performed by the datAshur PRO² module. CSP access refers to CSP access by the module, not the operator. No CSPs are output by the module.

Table 5 - Services Authorized for Each Role

Operator	Services	Accessible CSP	CSP Access by Module
Standard User Role	Open private partition for read/write access of user data	Standard User PIN Standard User KEK	
	Read or write private partition with user data	Standard User PBKDF SALT DEK	READ
	Configure the partition as write-protect		
	Check Firmware Version		

Operator	Services	Accessible CSP	CSP Access by Module
	Change User PIN	Standard User PIN	
		SP 800-90A state variables	
		Standard User KEK	READ/WRITE
		Standard User PBKDF SALT	
		DEK	
	Lock private partition to prevent read/write access to user data	N/A	N/A
Administrative	Open private partition for	Administrative User PIN	
User Role	read/write access of user data	Administrative User KEK	
	Read or write private	Administrative User PBKDF SALT	
	partition with user data	DEK	
	Configure the partition as write-protect		
	Check Firmware Version		
	Set unattended auto-lock time		
	Check unattended auto-lock		
	time		READ
	Set User PIN policy		
	Check User PIN policy		
	Set User PIN Brute Force Limitation		
	Check User PIN Brute Force Limitation		
	Configure datAshur PRO ² as Bootable		
	Disable the datAshur PRO ² Bootable feature		
	Check the Bootable setting		
	Change Admin/User/SD/OTR PIN	Standard User PIN Administrative User PIN SD PIN	READ/WRITE

Operator	Services	Accessible CSP	CSP Access by Module
	Add User/SD/OTR PIN	OTR PIN	
		SP 800-90A state variables	
		Standard User KEK	
	Delete User/SD/OTR PIN	Standard User PBKDF SALT	
		Administrative User KEK	
		Administrative User PBKDF SALT	
		SD KEK	
		SD PBKDF SALT	
		OTR KEK	
		OTR PBKDF SALT	
		DEK	
	Lock private partition to prevent read/write access to user data	N/A	N/A
OTR User	One-time recovery	OTR PIN	
		OTR KEK	
		OTR PBKDF SALT	
		SP 800-90A state variables	READ/WRITE
		Standard User PIN	
		Standard User KEK	
		Standard User PBKDF SALT	
		DEK	READ
Unauthenticated Services (no	Show locked/unlocked status	N/A	
role required)	Show whether an Administrative User PIN has been set		N/A
	Run test functions		
	Self-destruct	SD PIN	
		SD KEK	READ
		SD SD PBKDF SALT	

Operator	Services	Accessible CSP	CSP Access by Module
		Standard User PBKDF SALT	
		Administrative User PBKDF SALT	
		SD PBKDF SALT	WRITE
		OTR PBKDF SALT	
		DEK	
	Factory reset to clear all	Standard User KEK	
	Critical Security Parameters (CSPs)	Standard User PBKDF SALT	
		Administrative User KEK	
		Administrative User PBKDF SALT	
		SD KEK	
		SD PBKDF SALT	
		OTR KEK	1470 1975
		OTR PBKDF SALT	WKIIE
		Standard User PIN	
		Administrative User PIN	
		OTR PIN	
		SD PIN	
		DEK	
		SP 800-90A state variables	

3.2 AUTHENTICATION

The datAshur PRO² supports identity-based authentication. The module supports a single Administrative User, a single Standard User, and a single OTR User who are authenticated via the module's keypad interface. The module does not output authentication data outside of the cryptographic boundary.

From the factory, the datAshur PRO² drive is supplied in the 'Initial Shipment State' with no pre-set Admin PIN. A 7-15 digit Admin PIN must be configured before the drive can be used. The procedure for configuring an Admin PIN under 'Initial Shipment State' is specified in the User Manual. Once an Admin PIN has been successfully configured, it is then not possible to switch the drive back to the 'Initial Shipment State'.

Table 6 - Authentication for IDs

Identity	Identification	Authentication	Description
Administrative User	Identified by pressing the KEY button	Enters 7 to 15 digit PIN	This identity has full access to all Administrative User services.

Identity	Identification	Authentication	Description
Standard User	Identified by entering the KEY + SHIFT buttons combination	Enters 7 to 15 digit PIN	This identity has full access to all Standard User services.
OTR User	Identified by entering the KEY + 4 buttons combination	Enters 7 to 15 digit PIN	This identity has full access to the OTR User services

3.2.1 INITIALIZATION

After zeroization such as a factory reset, the module must be initialized before it can operate in an approved mode. The procedure is initiated differently for first time use and for initialization after factory reset. Additional detail on all procedures is specified in the User Manual.

- On first time use:
 - Press and hold "SHIFT" button for one second until solid red and green LEDs display
 - Press and hold "Key + 1" buttons
- To initialize after factory reset:
 - In Standby state, press and hold "Shift + 1" buttons until solid red LED changes to blinking green LED and solid blue LED.
- Enter new Admin PIN and press the "key" button. Module displays solid blue LED and blinking green LED.
- Reenter new Admin PIN and press the "key" button again. Module displays a blinking green LED (first time use) or solid blue LED (after factory reset).

3.2.2 STRENGTH OF AUTHENTICATION

Authentication strength is determined by PIN which must be between 7 (minimum) and 15 (maximum) digits long. The PIN is comprised of numeric digits (0-9). The SHIFT key can be used for additional combinations, "SHIFT+1" is a separate value than just "1". Therefore, the probability of a successful, random guess of a PIN is approximately one in 20^7 or 1: 1,280,000,000.

The Standard User will be locked out of the module after ten (10) consecutive failed authentication attempts. If the Administrative User makes ten (10)¹ consecutive failed authentication attempts, zeroization will be triggered (refer to Section 6.1.1). The OTR User can also authenticate an OTR PIN and set up a new User PIN to access the data. Maximum five (5) attempts is allowed for authenticating an OTR PIN. In the unlikely event that an attacker makes 25 attempts in one minute, the probability of successfully guessing any PIN before the drive disables the roles or is zeroized is 1: 51,200,000. Furthermore, identity-based authentication further decreases the rate of false acceptance and the probability of a successful random attempt.

The Standard User PIN strength can be enhanced via a policy set by the Administrative User. The policy mandates a specific minimum length (from 7 to 15 digits) to be set, as well as the option to require the input of one or more "Special Characters". The "Special Character" functions as "SHIFT + digit".

¹ After five incorrect attempts, and also after eight incorrect attempts, the Administrative User must enter "47867243" and press the "KEY" button to continue attempting to authenticate

Non-Proprietary Security Policy for iStorage datAshur PRO² Level 3 Secure Storage Drive Document Version 1.3 This document may be freely reproduced and distributed, but only in its entirety and without modification

3.2.3 ONE-TIME RECOVERY FEATURE

The datAshur PRO² has been designed with a one-time recovery feature that offers the user a way to access the data in case they forget the User PIN. The Administrative User creates an additional OTR PIN in Admin mode. When the OTR PIN is authenticated, the module will require users to set up a new User PIN. The creation of a new User PIN must comply with the 'User PIN Policy' if one has been configured. Upon successful creation of a new User PIN, the module will overwrite all CSPs related to the previous User PIN. The encryption key is not changed and all data stored in the drive remains intact.

To trigger the one-time recovery function, the user is required to press "KEY+4" buttons before entering the OTR PIN. The strength requirements for Admin/User PINs are also applicable to the OTR PIN. The administrator is entitled to set up or remove this feature.

3.2.4 Self-Destruct Feature

The datAshur PRO² has been designed with a self-destruct feature that zeroizes all plaintext secret keys and CSPs. The Administrative User creates an additional self-destruct PIN (SD PIN) in administrative mode. When the self-destruct PIN is authenticated, the module will delete the encryption key, all data, and Admin/User PINs, it will generate a new encryption key and unlock the drive. Activating this feature will cause the self-destruct PIN to become the new Standard User PIN and the datAshur PRO² will need to be partitioned and formatted before any new data can be added to the drive.

To trigger the self-destruct function, the user is required to press "Shift and Key" buttons before entering the self-destruct PIN, similar to the process for authenticating a user PIN. The strength requirements for Admin/User PINs are also applicable to self-destruct PIN. The administrator is entitled to set up or remove this feature.

3.3 SECURITY RULES

This section documents the security rules enforced by the cryptographic module to implement the security requirements of FIPS 140-2 Level 3:

- The cryptographic module provides three distinct roles: Standard User, Administrative User, and OTR User.
- The cryptographic module provides identity-based authentication.
- When the module has not been placed in a valid role or is in an error state, the operator shall not have access to any cryptographic service.
- The operator can command the module to perform the power-up self-test at any time.
- Data output is inhibited during self-tests, zeroization, key generation, authentication and error states.
- No CSPs are output from the module in any form.
- The module uses a solid red LED to indicate that it is in an approved mode of operation.

4. PHYSICAL SECURITY

The datAshur PRO² Module is a multi-chip standalone device whose cryptographic boundary is defined as the perimeter of the outer enclosure. The opaque outer enclosure provides tamper

evidence in the event the enclosure is opened. Regular inspections of the outer enclosure should be conducted for evidence of tampering.

To prevent the security integrity circuits from being physically attacked, all critical components are covered by an epoxy resin. Trying to access any component through the resin will cause critical damage. The epoxy also adds another layer of tamper-evidence to the products. Epoxy hardness was tested at ambient temperature and over the module's documented operating temperature range from 0 $^{\circ}$ C to 45 $^{\circ}$ C.

5. OPERATIONAL ENVIRONMENT

The FIPS 140-2 Area 6 (Operational Environment) requirements for the module are not applicable because the device does not contain a modifiable operational environment.

6. CRYPTOGRAPHIC KEY MANAGEMENT

6.1 **CSPs** AND KEYS

No secret keys or CSPs are established or output by the module. PINs are entered into the module in plaintext via the keypad, but no secret keys or other CSPs are entered into the module. KEKs are derived from a PBKDF and may only be used in storage applications.

CSP/Key	Use	Generation or Establishment	Storage	Zeroization	
				All CSPs	Additional Zeroization
Standard User PIN (7-15 digits)	Input to PBKDF to allow generation of Standard User KEK	Created by Standard User	RAM (plaintext during input and processing, deleted immediately after use)		Lock, unlock, timeout, power-off
Administrative User PIN (7-15 digits)	Input to PBKDF to allow generation of Administrativ e User KEK	Created by Administrative User	RAM (plaintext during input and processing, deleted immediately after use)	Factory Reset, or sufficient failed authentication attempts	Lock, unlock, timeout, power-off
SD PIN (7-15 digits)	Input to PBKDF to allow generation of SD KEK	Created by Administrative User	RAM (plaintext during input and processing, deleted immediately after use)		Lock, unlock, timeout, power-off

Table 7 - Secret Keys and Critical Security Parameters

CSP/Key	Use	Generation or Establishment	Storage	Zero	ization
				All CSPs	Additional Zeroization
OTR PIN (7-15 digits)	Input to PBKDF to allow generation of OTR KEK	Created by Administrative User	RAM (plaintext during input and processing, deleted immediately after use)		Lock, unlock, timeout, power-off
Standard User KEK (AES 256 KW)	AES key used to wrap the XTS-AES data encryption key (DEK)	Derived by the PBKDFv2 algorithm which uses the Standard User PIN along with Standard User Salt data	RAM (plaintext, temporarily available during execution)		Lock, unlock, timeout, power-off
Standard User PBKDF SALT (256 bits)	Input to PBKDF to allow generation of Standard User KEK	Generated by internal SP 800-90A CTR-DRBG	Plaintext in NVM		PIN changed/ deleted, SD PIN verified, User PIN policy changed
Administrative User KEK (AES 256 KW)	AES key used to wrap the XTS-AES data encryption key (DEK)	Derived by the PBKDFv2 algorithm which uses the Administrative User PIN along with Administrative User Salt data	RAM (plaintext, temporarily available during execution)		Lock, unlock, timeout, power-off
Administrative User PBKDF SALT (256 bits)	Input to PBKDF to allow generation of Administrativ e User KEK	Generated by internal SP800-90A CTR-DRBG	Plaintext in NVM		PIN changed/ deleted, SD PIN verified, User PIN policy changed
SD KEK (AES 256 KW)	AES key used to wrap the XTS-AES data encryption key (DEK)	Derived by the PBKDFv2 algorithm which uses PIN created by an Administrative User in addition to SD PBKDF Salt	RAM (plaintext, temporarily available during execution)		Lock, unlock, timeout, power-off
SD PBKDF SALT (256 bits)	Input to PBKDF to allow generation of SD KEK	Generated by internal SP800-90A CTR-DRBG	Plaintext in NVM		PIN changed/ deleted, SD PIN verified, User PIN policy changed

CSP/Key	Use	Generation or Establishment	Storage	Zeroization	
				All CSPs	Additional Zeroization
OTR KEK (AES 256 KW)	AES key used to wrap the XTS-AES data encryption key (DEK)	Derived by the PBKDFv2 algorithm which uses PIN created by an Administrative User in addition to OTR PBKDF Salt	RAM (plaintext, temporarily available during execution)		Lock, unlock, timeout, power-off
OTR PBKDF SALT (256 bits)	Input to PBKDF to allow generation of OTR KEK	Generated by internal SP800-90A CTR-DRBG	Plaintext in NVM		PIN changed/ deleted, OTR PIN verified, User PIN policy changed
DEK (XTS-AES 256)	XTS-AES Data Encryption Key (DEK) used to encrypt/ decrypt data to be stored/ retrieved from storage device	Generated by internal SP800-90A CTR-DRBG	RAM (plaintext, temporarily available during execution), wrapped with each authorized user's KEK	•	Lock, unlock, timeout, power-off
SP 800-90A CTR-DRBG state variables (seed, V, and key)	State variables for SP 800- 90A CTR - DRBG	Generated internally by the module's NDRNG	RAM (plaintext, temporarily available during execution)	1	Lock, unlock, timeout, power-off

6.1.1 ZEROIZATION

Zeroization is the erasure of CSPs from volatile and non-volatile storage. The security controller firmware will erase any temporary variables as soon as they are not required. For example, the PIN buffer is immediately cleared when the authentication is done.

All values stored in the security controller NVM provide no clues to the PIN, the DEK, or the KEK values. When resetting the device or deleting a user, the related NVM values will be sanitized to guarantee there is no possibility of restoring the accounts. More specifically, the zeroization involves two rounds of complete overwrites of the memory content.

There is no non-volatile memory available in the encryption controller, thus any sensitive data passed to the encryption controller will not be stored. The temporary variables are erased as soon as no longer required.

Factory reset (zeroization) is initiated by the following procedure:

• In Standby state, press and hold "0" button until all LEDs blink alternatively on and off

• Press and hold down "2 + 7" buttons until all LEDs become solid for a second and then to a solid RED LED

In addition, if an incorrect Admin PIN is entered ten (10) consecutive times, the module's Brute Force Defense Mechanism (zeroization) is activated, and then all data including, Admin/User/SD/OTR PINs, the encryption key and all CSPs will be deleted and lost forever.

6.2 Algorithms

6.2.1 FIPS APPROVED ALGORITHMS

Table 8 lists all the approved algorithms used in the module.

Certificate	Algorithm	Standard(s)	Modes/Methods	Key Lengths, Curves, or Moduli	Use
<u>4756</u>	AES	FIPS 197, NIST SP 800-38A SP 800-38E	CBC, ECB, XTS	256 bits ²	Encryption Controller: User data encryption and decryption
<u>5179</u>	AES	FIPS 197, NIST SP 800-38A NIST SP 800-38F	CTR, ECB, KW	256 bits	Security Controller: ECB and CTR modes are used as the basis of the CTR-DRBG and the KW mode. KW mode is implemented to wrap and recover the data key and for user authorization.
Vendor affirmed	СКС	SP 800-133			The unmodified output of the DRBG is used for symmetric key generation
<u>1954</u>	DRBG	NIST SP 800-90A	AES-256 based CTR-DRBG	256 bits	Security Controller: Random number generator for encryption keys and salts.
<u>3435</u>	НМАС	FIPS 198-1	HMAC-SHA-256	256 bits	Security Controller: Algorithmic basis of PBKDF.
Vendor Affirmed	PBKDF	RFC 2898, NIST SP 800-132 (supports option 2a of section 5.4)	HMAC-SHA-256 (Cert. 3435)	256 bits	Security Controller: This algorithm accepts the user's PIN as input and generates the KEK (only used in storage applications).
<u>4183</u>	SHS	FIPS 180-4	SHA-256	256 bits	Security Controller: Algorithmic basis of PBKDF.

Table 8 - FIPS Approved Algorithms

6.2.2 FIPS ALLOWED ALGORITHMS

Table 9 lists all the non-approved algorithms used in the module.

² 128-bit AES is included in the CAVS certificate, but is not used by any of the module's services

Non-Proprietary Security Policy for iStorage datAshur PRO² Level 3 Secure Storage Drive Document Version 1.3 This document may be freely reproduced and distributed, but only in its entirety and without modification

Table 9 - FIPS Allowed Algorithms

Algorithm	Use	Strength
NDRNG	Security Controller: Entropy source for seed to CTR-DRBG	The NDRNG generates a minimum of 283 bits of entropy as entropy input for the module's 256-bit CTR-DRBG.

7. EMI/EMC

The module conforms to the EMI/EMC requirements specified by 47 Code of Federal Regulations, Part 15, Subpart B, Unintentional Radiators, Digital Devices, Class B (i.e., for home use).

8. SELF-TESTS

When the module is powered on, it performs initialization and runs a sequence of self-tests. If any of these tests fails, the module transitions to an error state. In this state, the module cannot perform any cryptographic services and is not usable. Table 10 summarizes the power-up self-tests.

Table 10 - Power-Up Self-Tests

Tested Function	Self-Test	Error State	Error Indicator	Access	Resolving Error	
	Firmware Integrity Tests					
SC Firmware Integrity Test	Cyclic Redundancy Check - CRC-32	Power- Up Self- Test Failed	A faded illumination of Red and Blue LEDs	All SC cryptographic operations and data output are inhibited	Power cycle the device to reinitiate the power-up self- tests. Module can be used if tests are successful.	
EC Firmware Integrity Test	Cyclic Redundancy Check - CRC-16	Power- Up Self- Test Failed	Green LED blinks constantly when a valid PIN is entered and the device is connected to a powered USB port	All EC cryptographic operations and data output are inhibited	Power cycle the device to reinitiate the power-up self- tests. Module can be used if tests are successful.	
Entropy Source Power-Up Self-Tests						

Tested Function	Self-Test	Error State	Error Indicator	Access	Resolving Error
NDRNG	 NDRNG power-up tests include: Repetition Count Test (RCT) per SP 800-90B Adaptive Proportion Test (APT) per SP 800-90B 	Power- Up Self- Test Failed	The LEDs illuminate alternately from Red to Green to Blue, then the flashing Green LED, same pattern repeats, and the device is securely reset	All SC cryptographic operations and data output are inhibited	Power cycle the device to reinitiate the power-up self- tests. Module can be used if tests are successful.
	1	Known A	nswer Tests (KA	Гs)	
CTR-DRBG ³	DRBG KATs include the following: Instantiate Generate Reseed	Power- Up Self- Test Failed		All SC cryptographic operations and data output are inhibited	Power cycle the device to reinitiate the power-up self- tests. Module can be used if tests are successful.
PBKDF	 PB KDF KAT includes: SHA-256 KAT HMAC-SHA-256 KAT 	Power- Up Self- Test Failed	The LEDs illuminate alternately from Red to Green and then	All SC cryptographic operations and data output are inhibited	Power cycle the device to reinitiate the power-up self- tests. Module can be used if tests are successful.
AF AES (Cert #5179)	AES ECB SC Encrypt KAT	Power- Up Self- Test	to Blue, followed by Red LED blinking two seconds, same	All SC cryptographic operations and	Power cycle the device to reinitiate the power-up self- tests. Module can be
	AES ECB SC Decrypt KAT	Failed	pattern repeats	inhibited	used if tests are successful.
AES Key Wrap (Cert. #5179)	KW-AE KAT KW-AD KAT	Power- Up Self- Test Failed		All SC cryptographic operations and data output are inhibited	Power cycle the device to reinitiate the power-up self- tests. Module can be used if tests are successful.
AES (Cert. #4756)	XTS-AES EC Encrypt KAT XTS-AES EC Decrypt KAT	Power- Up Self- Test Failed	GREEN LED Blinks constantly	All EC cryptographic operations and data output are inhibited	Power cycle the device to reinitiate the power-up self- tests. Module can be used if tests are successful.

³ Per IG 9.8, the SP 800-90A-compliant DRBG does not perform the test described in AS.09.42-AS.09.43

Non-Proprietary Security Policy for iStorage datAshur PRO² Level 3 Secure Storage Drive Document Version 1.3 This document may be freely reproduced and distributed, but only in its entirety and without modification

Tested Function	Self-Test	Initiation	Error State	Error Indicator	Access	Resolving Error
			Conditional Te	sts		
NDRNG	 NDRNG power- up tests include: Repetition Count Test (RCT) per SP 800-90B Adaptive Proportion Test (APT) per SP 800- 90B 	Initiated on every call to instantiate/ reseed [SP 800-90A] CTR-DRBG	Conditional Self-test failed	The LEDs illuminate alternately from Red to Green to Blue, then the flashing Green LED, same pattern repeats, and the device is securely reset	All cryptographic operations and data output are inhibited	Power cycle the device to reinitiate it. Module can be used if power-up and conditional self-tests are successful.
AES-XTS-256	FIPS 140-2 implementation guidance A.9 XTS-AES Key Generation test	Initiated on every call to generate a DEK	Conditional Self-test failed	Green LED blinks constantly when a valid PIN is entered and the device is connected to a powered USB port	All EC cryptographic operations and data output are inhibited	Power cycle the device to reinitiate it and initiate another call to re- generate an XTS-AES Key

Table 11 - Conditional Self-Tests

9. APPENDIX A: REFERENCES

Reference Number	Reference Title	Publishing Entity	Publication Date
[1]	Implementation Guidance for FIPS 140-2 and the Cryptographic Module Validation Program.	NIST	December 2019
[2]	SP 800-90B: Recommendation for the Entropy Sources Used for Random Bit Generation.	NIST	January 2018
[3]	Annex C: Approved Random Number Generators for FIPS PUB 140-2, Security Requirements for Cryptographic Modules.	NIST	June 2019
[4]	FIPS 197: Specification for the ADVANCED ENCRYPTION STANDARD (AES).	NIST	November 2001
[5]	SP 800-38A: Recommendation for Block Cipher Modes of Operation.	NIST	December 2001
[6]	SP 800-38E: Recommendation for Block Cipher Modes of Operation: The XTS-AES Mode for Confidentiality on Storage Devices.	NIST	January 2010
[7]	SP 800-38F: Recommendation for Block Cipher Modes of Operation: Methods for Key Wrapping.	NIST	December 2012
[8]	SP 800-90A Revision 1: Recommendation for Random Number Generation Using Deterministic Random Bit Generators.	NIST	June 2015
[9]	FIPS 180-4: Secure Hash Standard (SHS).	NIST	August 2015
[10]	FIPS PUB 198-1: The Keyed-Hash Message Authentication Code (HMAC).	NIST	July 2008
[11]	SP 800-132: Recommendation for Password-Based Key Derivation Part 1: Storage Applications.	NIST	December 2010

Table 12 - References

10. APPENDIX B: ABBREVIATIONS AND DEFINITIONS

Term	Definition
ADMIN	Administrative User
AES	Advanced Encryption Standard
CRC	Cyclic Redundancy Check
CSP	Critical Security Parameter
DEK	Data Encryption Key
DRBG	Deterministic Random Bit Generator
EC	Encryption Controller
ECB	Electronic Code Book
EMC	Electromagnetic Compatibility
EMI	Electromagnetic Interference
FIPS	Federal Information Processing Standard
FSM	Finite State Model
HDD	Hard Disk Drive
НМАС	Hash-Based Message Authentication Code
КАТ	Known Answer Test
КС	Keypad Controller
KEK	Key Encryption Key
KW	Key Wrap
LED	Light Emitting Diode
NDRNG	Non-Deterministic Random Number Generator
NVM	Non-Volatile Memory
OTR	One-Time Recovery
PBKDF	Password Based Key Derivation Function
PIN	Personal Identification Number
SALT	Random value used to improve security of cryptographic algorithms
SC	Security Controller
SD	Self-Destruct
SHA	Secure Hash Algorithm
SSD	Solid State Drive
USB	Universal Serial Bus

Table 13 - Abbreviations and Definitions