

ESCRYPT’s CycurLIB

Version 3.5.3-FIPS-1.2

FIPS 140-2 Non-Proprietary

Security Policy Deployed by

Landis+Gyr

II

Table of Contents

List of Figures ... iv

List of Tables ... v

1. Introduction .. 6

 Purpose .. 6

 Module Description .. 6

 FIPS 140-2 Validation Scope ... 6

2. Cryptographic Module Specifications .. 8

 Logical and Physical Boundaries.. 8

 Modes of Operation ... 9

 Approved Security Functions ... 9

3. Cryptographic Module Ports and Interfaces .. 12

4. Roles, Services, and Authentication .. 14

 Roles ... 14

 Operator Services and Descriptions ... 14

 Authentication .. 16

5. Physical Security .. 16

6. Operational Environment ... 17

7. Cryptographic Key Management .. 18

 Random Number Generation ... 20

 Key Generation ... 20

 Key Entry ... 20

 Key Output .. 21

 Key Establishment.. 21

 Key Storage ... 21

 Key Zeroization .. 21

8. Electromagnetic Interference/ Electromagnetic Compatibility (EMI/ EMC) 22

9. Self-Tests .. 23

 Power-ON Self-Tests (POST) ... 23

 Conditional Self-Tests (CST)... 25

III

10. Design Assurance .. 25

 Configuration Management .. 25

 Delivery and Operation... 26

10.2.1 Delivery ... 26

10.2.2 Operation ... 26

 Development ... 26

 Guidance Documents .. 26

10.4.1 Cryptographic Officer Guidance .. 26

10.4.2 User Guidance ... 27

11. Mitigation of Other Attacks ... 27

IV

List of Figures

Figure 1. Module Block Diagram ... 8

V

List of Tables

Table 1. Module Validation Scope... 7

Table 2. Approved Algorithms .. 9

Table 3. Allowed Algorithms ... 12

Table 4. Logical interfaces ... 12

Table 5. Services and CSP access .. 14

Table 6. Critical security parameters .. 18

Table 7. Power-On Self-Tests (POST) .. 23

Table 8. Conditional Self-Tests (CST) ... 25

Albert Wasef, Nevine Ebeid | 2019-06-10 public File: ESCRYPT_FIPS_CycurLIB_Security_Policy.docx

 State : released Version : 03

If printed, this document is an uncontrolled copy. Ident : 00TE009 Page 6 of 27

1. Introduction
 Purpose

This document is the non-proprietary security policy of escrypt’s CycurLIB version 3.5.3-FIPS-

1.2 module, hereafter referred to as the “Module”. It describes the Module and the FIPS 140-2

cryptographic services it provides.

This document was prepared in fulfillment of the FIPS 140-2 requirements for cryptographic

modules and is intended for security officers and end-users.

 Module Description

The Module is a software library providing a C-language Application Program Interfaces

(APIs) for use by other processes that require cryptographic functionality. The Module is a

software module, a multiple-chip standalone module embodiment as classified by FIPS140-2.

The cryptographic services offered by the Module are:

 Data encryption/decryption.

 Generation of hash values.

 Message authentication.

 Signature generation/verification.

 Random number generation.

 Key generation.

 Key agreement and key derivation.

 Key wrapping.

 FIPS 140-2 Validation Scope

Table 1 shows the security level for each of the eleven required areas of the validation.

Albert Wasef, Nevine Ebeid | 2019-06-10 public File: ESCRYPT_FIPS_CycurLIB_Security_Policy.docx

 State : released Version : 03

If printed, this document is an uncontrolled copy. Ident : 00TE009 Page 7 of 27

Table 1. Module Validation Scope

FIPS 140-2 Security Requirement Area Level

Cryptographic Module Specification 1

Cryptographic Module Ports and Interfaces 1

Roles, Services and Authentication 1

Finite State Machine Model 1

Physical Security NA

Operational Environment 1

Cryptographic Key Management 1

EMI/EMC 3

Self-Tests 1

Design Assurance 3

Mitigation of Other Attacks NA

Albert Wasef, Nevine Ebeid | 2019-06-10 public File: ESCRYPT_FIPS_CycurLIB_Security_Policy.docx

 State : released Version : 03

If printed, this document is an uncontrolled copy. Ident : 00TE009 Page 8 of 27

2. Cryptographic Module Specifications

 Logical and Physical Boundaries

The logical cryptographic boundary of the Module consists of the shared library file named

“libfips.so”. The physical boundary of the Module is the solid enclosure of the host system

running the Module. Figure 1 shows the logical and physical boundaries of the Module

executing in the memory of a host system.

Figure 1. Module Block Diagram

Application

CPU

System calls

Operating System

CycurLIB

Memory
Mass

Storage
Network

System calls,

Data

API Calls

Logical Boundary

Physical Boundary of the Host System

API Entry Point

Local memory

Caller CSPs
 Calling

function

Key

Input Buffer

Output Buffer

Albert Wasef, Nevine Ebeid | 2019-06-10 public File: ESCRYPT_FIPS_CycurLIB_Security_Policy.docx

 State : released Version : 03

If printed, this document is an uncontrolled copy. Ident : 00TE009 Page 9 of 27

 Modes of Operation

The Module supports a FIPS 140-2 approved mode of operation and operates in this mode

by default. If the Module is successfully loaded in memory, i.e., without any errors, this means

that all self-tests have been executed successfully and the Module is in the FIPS140-2

approved mode. If the module encounters an error, the module enters an error state and is

no longer in the approved mode. In the error state, no output from the Module is allowed as

every cryptographic function in the Module checks the status of the Module before its

execution. In the error state, no cryptographic function in the Module will be executed. In

addition, the operator of the module must adhere to all rules in 10.4.1 and 10.4.2 and if not,

the module is also considered to be in a non-approved mode of operation.

 Approved Security Functions

The Module supports only a FIPS140-2 approved mode. Table 2 lists all the approved

functions included in the Module.

Table 2. Approved Algorithms

Function Algorithm Options Cert. No.

Symmetric

Encryption/Decryption

AES

[FIPS 197] 128/192/256 ECB,

CBC,

[SP 800-38C] CCM,

CTR,

[SP 800-38D] GCM, GMAC.

[SP 800-38E] 128/256 XTS

C971

[SP 800-67 Rev1]

Triple-DES
3-key CBC

C971

Key Wrap [SP800-38F] AES

128/192/256

Key establishment

methodology provides between

128 and 256 bits of encryption

strength

C971

Message AES 128/192/256 C971

Albert Wasef, Nevine Ebeid | 2019-06-10 public File: ESCRYPT_FIPS_CycurLIB_Security_Policy.docx

 State : released Version : 03

If printed, this document is an uncontrolled copy. Ident : 00TE009 Page 10 of 27

Authentication Code

(CMAC) [SP 800-38B]
Triple-DES 3-key

C971

Message Digest

[FIPS180]
SHA-1, SHA-224, SHA-256,

SHA-384, SHA-512

C971

[FIPS202]
SHA3-224, SHA3-256, SHA3-

384, SHA3-512

C971

Keyed Hash

[FIPS 198-1]
HMAC SHA-1, SHA2-224, SHA2-256

C971

Digital Signature and

key generation

[FIPS186-4] ECDSA

 Supported curves (P-224/P-

256/ P-384/ P-521)

 Public key validation

 Key pair generation

 Signature generation

 Signature verification

C971

[FIPS186-4] RSA

 RSASSA-PKCS1-v1_5

signature generation

2048/3072/40961 with SHA-

224/SHA-256/SHA-384/SHA-

512 and 2048/3072 with

SHA-1

 RSASSA-PSS signature

generation 2048/3072/40961

with SHA-224/SHA-256/SHA-

384/SHA-512 and 2048/3072

with SHA-1

 RSASSA-PKCS1-v1_5

signature verification

1024/2048/3072/40961 with

SHA-1/SHA-224/SHA-

256/SHA-384/SHA-512

 RSASSA-PSS signature

verification

1024/2048/3072/40961 with

SHA-1/SHA-224/SHA-

256/SHA-384/SHA-512

C971

[FIPS 186-4] DSA
 DSA key generation for key

length 2048 bits

 Used in Ephemeral Diffie-

C971

1 Although RSA 4096 bit modulus size is not tested under C971, it is approved for use under IG A.14.

Albert Wasef, Nevine Ebeid | 2019-06-10 public File: ESCRYPT_FIPS_CycurLIB_Security_Policy.docx

 State : released Version : 03

If printed, this document is an uncontrolled copy. Ident : 00TE009 Page 11 of 27

Hellman key agreement

scheme

Key agreement

[SP800-56A Rev2]

ECC Diffie-Hellman

Ephemeral ECC Diffie-Hellman

P-224 (SHA-256, HMAC)

P-256 (SHA-256, HMAC)

P-384 (SHA-256, HMAC)

P-521 (SHA-256, HMAC)

Key establishment

methodology provides between

112 and 256 bits of encryption

strength

Vendor

Affirmed

[SP800-56A Rev2]

Diffie-Hellman

Ephemeral Diffie-Hellman:

FB: Len P – 2048, Len q – 224

SHA-256, HMAC

Key establishment

methodology provides 112 bits

of encryption strength

Vendor

Affirmed

[SP 800-56A Rev2]

ECC Diffie-Hellman

CVL

KAS-ECC CDH Primitive

P-224

P-256

P-384

P-521

C971

Key derivation

ECC Diffie-Hellman

KDA [SP800-56C

Rev1]

Hash-KDF with SHA-256

Vendor

Affirmed

Diffie-Hellman KDA

[SP800-56C Rev1]
Hash-KDF with SHA-256

Vendor

Affirmed

Asymmetric

decryption

RSADP CVL [SP800-

56B]

RSADP primitive with 2048-bit

modulus

C971

Random number

generator
[SP800-90A] DRBG Hash DRBG with SHA-256

C971

Key generation CKG [SP 800-133] N/A Vendor

Albert Wasef, Nevine Ebeid | 2019-06-10 public File: ESCRYPT_FIPS_CycurLIB_Security_Policy.docx

 State : released Version : 03

If printed, this document is an uncontrolled copy. Ident : 00TE009 Page 12 of 27

Affirmed

Table 3. Allowed Algorithms

Function Algorithm Options Cert.

No.

Random number

generator (for seeding

the DRBG)

NDRNG Entropy of at least 256 bits

3. Cryptographic Module Ports and Interfaces

The physical ports of the Module are the ports of the underlying embedded system hosting

the Module execution. The Module logical interfaces are C-language APIs which can be

categorized into the following:

 Data input interface.

 Data output interface.

 Control input interface.

 Status output interface.

The description of these logical interfaces is given in the following table.

Table 4. Logical interfaces

Logical interface type Description

Data input The input variables passed as arguments to the APIs of the

Module.

Data output The variables passed as output arguments by the APIs of the

Module to the calling application.

Control input The configuration variables of the Module which control its

cryptographic functions mode of operation.

Albert Wasef, Nevine Ebeid | 2019-06-10 public File: ESCRYPT_FIPS_CycurLIB_Security_Policy.docx

 State : released Version : 03

If printed, this document is an uncontrolled copy. Ident : 00TE009 Page 13 of 27

Status output The return codes and messages.

The data input is logically separated from the control input because the data input is

passed by the input variables to the Module while the control input is passed in a

configuration file. Also, the data output is logically separated from the status output

because the data output is passed out by the Module’s API arguments while the status

output is passed by return codes and messages.

Since the Module is a software module, the control of the physical ports is outside the

scope of the Module. When the Module is performing self-tests, or is in error-state, all

outputs on the logical data output interface are inhibited. The Module is single-

threaded and, in error scenarios, returns only an error value.

Since the Module is single-threaded, there is no data output passed by the Module

during key generation and zeroization of cryptographic keys.

Albert Wasef, Nevine Ebeid | 2019-06-10 public File: ESCRYPT_FIPS_CycurLIB_Security_Policy.docx

 State : released Version : 03

If printed, this document is an uncontrolled copy. Ident : 00TE009 Page 14 of 27

4. Roles, Services, and Authentication

 Roles

The Module supports a Crypto Officer (CO) role and a User (U) role as required by FIPS 140-2.

The Module does not support authentication mechanism for these roles but rather relies on

the access control mechanisms of the underlying operation system. Hence, these roles are

implicitly assumed by the entity accessing the Module. Moreover, the Module does not

support concurrent users.

 Operator Services and Descriptions

The services available to the User (U) and Crypto Officer (CO) are indicated in Table 5 below,

along with the type of CSP access per service:

R = Read, W = Write, X = Execute, Z = Zeroize

Table 5. Services and CSP access

Service Description Key and CSP(s) Roles Type

of

access

Installation Module Installation None U, CO X

Self-Test Initiate power-on self-

tests

None U, CO R, X

Show Status Provides Module status

information

None U, CO R, X

Symmetric

Encryption/Decryption

Encrypt/Decrypt blocks

of data using AES or

Triple- DES

AES key or Triple-DES

3 keys.

U, CO R, W, X

Asymmetric Key Generate Diffie-Hellman Diffie-Hellman and U, CO R, W, X

Albert Wasef, Nevine Ebeid | 2019-06-10 public File: ESCRYPT_FIPS_CycurLIB_Security_Policy.docx

 State : released Version : 03

If printed, this document is an uncontrolled copy. Ident : 00TE009 Page 15 of 27

Generation and ECC Diffie-Hellman

keys

ECC Diffie-Hellman

keys

Digital Signature

Generation/Verification

Sign/Verify a message

digest

RSA and ECDSA keys. U, CO R, W, X

Message Digest Hash a block of data None U, CO R, W, X

Keyed Message digest

(HMAC)

Generate/Verify a

signature on a block of

data

HMAC key U, CO R, W, X

Keyed Message digest

(CMAC)

Generate/Verify a

signature on a block of

data

AES key or Triple-DES

3 keys.

U, CO R, W, X

Random Number

Generator

Generate random

numbers and keys

Random numbers

and keys

U, CO R, X, Z

Key Agreement Calculate a shared key

between two parties

Diffie-Hellman and

ECC Diffie-Hellman

private keys and

shared keys

U, CO R, W, X

Key Transport Encrypt/decrypt a key. AES key encryption

key and key to be

encrypted/

decrypted.

U, CO R, W, X

Zeroization All functions

automatically overwrites

CSPs stored in the

functions stack frame.

Each module provides a

function for the user to

zeroize the module

context (created in the

calling application’s own

All keys and CSPs U, CO X, Z

Albert Wasef, Nevine Ebeid | 2019-06-10 public File: ESCRYPT_FIPS_CycurLIB_Security_Policy.docx

 State : released Version : 03

If printed, this document is an uncontrolled copy. Ident : 00TE009 Page 16 of 27

stack).

Other CSPs provided as

arguments to the

functions are the

responsibility of the

calling application.

 Authentication

The Module does not support operator authentication mechanisms. The Module relies on the

operating system for any operator authentication.

5. Physical Security

The Module is a software library and is intended to operate on a host system that has a

production grade components and enclosure. The Module does not claim any physical

security.

Albert Wasef, Nevine Ebeid | 2019-06-10 public File: ESCRYPT_FIPS_CycurLIB_Security_Policy.docx

 State : released Version : 03

If printed, this document is an uncontrolled copy. Ident : 00TE009 Page 17 of 27

6. Operational Environment

The module operates in a modifiable operational environment per FIPS140-2 level 1

specifications. The Module was tested in a Linux 4.9 operating environment running on a

Landis+Gyr Network Bridge N2250 with an ARM Cortex-A5. When the Module is loaded into

memory by the operating system, FIPS Power-On Self-Test (POST) functionality along with

any other mandatory FIPS tests are invoked.

The Module relies on the underlying operating system built-in kernel functionality to ensure

that user access rights are in place for accessing the module and that one user accesses the

library at any given time.

The underlying operating system also ensures process isolation in terms of execution and

memory space. Moreover, the Module, being a software-only module, consists of an

executable binary that does not store process context or state. Each process manages its own

stack and data space.

Albert Wasef, Nevine Ebeid | 2019-06-10 public File: ESCRYPT_FIPS_CycurLIB_Security_Policy.docx

 State : released Version : 03

If printed, this document is an uncontrolled copy. Ident : 00TE009 Page 18 of 27

7. Cryptographic Key Management

All the keys and Critical Security Parameters (CSPs) used by the Module are indicated in Table

6 below. The CSP names are generic and they correspond to API parameter data structures.

Table 6. Critical security parameters

CSP Name Generation/Input Use

AES (ECB, CBC, CCM,

CTR, GCM) key (128,

192, 256 bits)

The key is passed to the

Module via API input

- Encrypt/Decrypt operations.

- Authenticated

encryption/decryption in CCM,

GCM

AES Key Wrap key (128,

192, 256 bits)

The keys are passed to the

Module via API input

- Key Encrypt/Decrypt

operations.

AES XTS keys (128, 256

bits)

The keys are passed to the

Module via API input

- Encrypt/Decrypt operations.

Triple-DES (CBC) 3-key The keys are passed to the

Module via API input

- Encrypt/Decrypt operations.

CMAC (AES, Triple-DES)

key

The keys are passed to the

Module via API input

- Used to generate and verify

MAC’s with AES or Triple-DES as

part of the CMAC algorithm.

HMAC (SHA-1, SHA-224,

SHA-256) key

The key is passed to the

Module via API input

- Used to generate and verify

MAC as part of the HMAC

algorithm.

ECDSA/ECC Diffie-

Hellman key pair (P-224,

P-256, P-384, P-521)

Keys are generated as per FIPS

186-4 and the random value

used in the key generation is

generated using Hash-DRBG as

per SP800-90A

- ECDSA public/private keys

used to sign and verify data.

- ECC Diffie-Hellman key pair

used as part of the key

agreement protocol.

Albert Wasef, Nevine Ebeid | 2019-06-10 public File: ESCRYPT_FIPS_CycurLIB_Security_Policy.docx

 State : released Version : 03

If printed, this document is an uncontrolled copy. Ident : 00TE009 Page 19 of 27

Diffie-Hellman key pair

(2048 bits)

Keys are generated as per FIPS

186-4 and the random value

used in the key generation is

generated using Hash-DRBG as

per SP800- 90A

- Diffie-Hellman key pair used

as part of the key agreement

protocol.

RSASSA (PKCS1-

v1_5/PSS) key pair

(2048, 3072, 4096 bits)

The keys are passed to the

Module via API input

- RSA public/private keys used

to sign and verify data.

DRBG seed Seed is obtained internally

from NDRNG

- Used as inputs to the DRBG

internal functions.

DRBG input string Input string is obtained

internally form NDRNG

- Used as inputs to the DRBG

internal functions.

DRBG V DRBG V is generated and

updated internally.

- Used to maintain the secret

internal state of the DRBG.

DRBG C DRBG C is generated and

updated internally.

- Used to maintain the secret

internal state of the DRBG.

Software Integrity key HMAC SHA-256 key stored

within the module, protected

by the operating system access

control mechanism.

- Used first by the make build

system to create an HMAC tag

on the module binary file and

store it in a separate file.

- When the module is loaded, its

integrity is checked by

calculating the HMAC tag on

the module binary file and

comparing it with the one

stored at build time.

The following discussion in this section applies to all the CSPs listed in Table 6.

Albert Wasef, Nevine Ebeid | 2019-06-10 public File: ESCRYPT_FIPS_CycurLIB_Security_Policy.docx

 State : released Version : 03

If printed, this document is an uncontrolled copy. Ident : 00TE009 Page 20 of 27

 Random Number Generation

Entropy source:

 The Module implements NDRNG using “/dev/random” as the source of entropy.

 The Module relies on the underlying Linux kernel which is within the physical

boundary of the Module but outside its logical boundary.

 The NDRNG provides at least 256 bits of entropy to the DRBG.

 As part of the conditional Self-Test, the Module performs Continuous Random

Number Generator (CRNG) test to ensure that consecutive random numbers in

the NDRNG are not repeated.

DRBG:

 The Module has an SP800-90A-compliant Hash-DRBG which is seeded from the

NDRNG to generate keys and random numbers.

 Continuous health tests are performed on the DRBG whenever it is invoked by

any function in the Module.

 Key Generation

 The Module offers a DRBG seeded with 256-bit entropy and is SP-800-90A

compliant of security strength 256 bits. Hence, it can be used to generate

symmetric keys.

 The Module generates Diffie-Hellman, ECC Diffie-Hellman and ECDSA key pairs

in compliance with FIPS 186-4 where the private keys are generated by an

SP800-90A-compliant DRBG.

 The resulting symmetric key or a generated seed is an unmodified output from

a DRBG.

 Keys residing in internally allocated data structures (during the lifetime of an API

call) can only be accessed using the Module defined API.

 The DRBG is seeded from the NDRNG.

 The user can choose to use a single or multiple DRBGs to generate the different

keys

 The calling application is responsible for storing the generated keys.

 No intermediate key generation values are output from the Module.

 Intermediate values computed by the module are zeroized before an API

function returns its output.

 For GCM, the module generates the IV randomly from the DRBG and the IV

length is 96 bits.

 Key Entry

The Module takes CSPs as API input parameters designated by memory location:

 For symmetric-key algorithms or for HMAC, the keys are provided to the

module via API plaintext input parameters for the cryptographic operations.

Albert Wasef, Nevine Ebeid | 2019-06-10 public File: ESCRYPT_FIPS_CycurLIB_Security_Policy.docx

 State : released Version : 03

If printed, this document is an uncontrolled copy. Ident : 00TE009 Page 21 of 27

 Public-key key pairs are provided in pertinent data structures that are

generated, formatted by other API functions.

 Keys residing in internally allocated data structures (during the lifetime of an API

call) can only be accessed using the Module defined API.

 None of the entered CSPs cross the physical boundary of the Module.

 Key Output

The Module does not output CSPs, other than the explicit results of the key generation

services. Those CSPs are considered ephemeral. None of the generated CSPs cross the

physical boundary of the Module.

 Key Establishment

The Module supports the [SP800-56A Rev2] Diffie-Hellman with at least 2048 bits key size

and ECC Diffie-Hellman with P-224, P-256, P-384, or P-521 curve. The Module performs key

derivation directly on the shared secret established by Diffie-Hellman or ECC Diffie-Hellman

and only outputs the derived key. The Module provides key establishment service using the

AES Key Wrapping algorithm.

 Key Storage

The module does not support persistent key storage. The keys and CSPs are stored as

plaintext in the RAM. The keys are provided to the module via API input parameters, and are

destroyed by the module using appropriate API function calls before they are released in the

memory.

The HMAC key used for the Module’s integrity test is stored in the Module and relies on the

operating system for protection.

 Key Zeroization

 Key zeroization is performed by filling the corresponding memory location by

zeros.

 Zeroization of sensitive data is performed automatically by API function calls for

temporarily stored CSPs before the function returns.

 In addition, the Module provides functions to explicitly destroy CSPs related to

random number generation services and API-specific data structures (function

contexts).

Albert Wasef, Nevine Ebeid | 2019-06-10 public File: ESCRYPT_FIPS_CycurLIB_Security_Policy.docx

 State : released Version : 03

If printed, this document is an uncontrolled copy. Ident : 00TE009 Page 22 of 27

 The calling application is responsible for parameters passed in and out of the

Module.

8. Electromagnetic Interference/ Electromagnetic

Compatibility (EMI/ EMC)

The EMI/EMC properties of the Module is not pertinent to this policy as the Module is a

software library.

Albert Wasef, Nevine Ebeid | 2019-06-10 public File: ESCRYPT_FIPS_CycurLIB_Security_Policy.docx

 State : released Version : 03

If printed, this document is an uncontrolled copy. Ident : 00TE009 Page 23 of 27

9. Self-Tests

As required by FIPS 140-2, upon loading the Module in memory, the Module performs

power-on self-tests to ensure its integrity and the correctness of its supported cryptographic

functions. Moreover, conditional self-tests are performed upon calling some cryptographic

functions as specified in FIPS140-2 to ensure their correctness. The power-on self-tests and

the conditional self-tests are indicated below.

 Power-ON Self-Tests (POST)

 The Module performs power-on self-tests automatically upon loading the

Module in memory by making use of the default entry point and requires no

operator intervention.

 The Module does not provide any output and it is not available during POST.

 The integrity of the Module is checked using HMAC SHA-256. The HMAC key is

stored within the Module. The HMAC value is calculated at the build time and

stored in a binary file. The run-time HMAC calculated value is compared to that

stored in the HMAC file during the integrity test. If a match exists, then the rest

of POST is performed.

 If POST is successful, the module returns a status of

“Esc_FIPS_MODE_AVAILABLE” and it becomes operational and the cryptographic

services become available.

 If the Module integrity check test or any of the tests in POST fail, the module

returns an error code of “Esc_FIPS_MODE_DISABLED” and it goes into an error

state where none of the cryptographic functions will be available.

Table 7 shows a list of the performed POST:

Table 7. Power-On Self-Tests (POST)

KAT = Known Answer Test, PCT = Pairwise Consistency Test.

Algorithm Type Description

Software integrity check KAT HMAC-SHA256

AES ECB KAT Separate encrypt and decrypt, 128 bits key length

AES CCM KAT Separate encrypt and decrypt, 256 bits key length

AES GCM KAT Separate encrypt and decrypt, 128 bits key length

Albert Wasef, Nevine Ebeid | 2019-06-10 public File: ESCRYPT_FIPS_CycurLIB_Security_Policy.docx

 State : released Version : 03

If printed, this document is an uncontrolled copy. Ident : 00TE009 Page 24 of 27

AES XTS KAT Separate encrypt and decrypt, 128 bits key length

AES Key Wrap KAT Separate encrypt and decrypt, 128 bits key length

AES CMAC KAT Separate sign and verify, ECB mode, 256 bits key length

Triple-DES CMAC KAT Separate sign and verify, 256 bits key length

Triple DES KAT Separate encrypt and decrypt, CBC mode, 3-key

SHA-1 KAT SHA-1

SHA-2 KAT SHA-224/256/384/512

SHA-3 KAT SHA-3: 224/256/384/512

HMAC KAT SHA1, SHA224, SHA256

Diffie-Hellman KAT Primitive “Z”, 2048 bits key length

ECC Diffie-Hellman KAT Primitive “Z”, 256 bits key length

ECDSA PCT Sign and verify, P-256

DRBG KAT HashDrbg: SHA256

RSA PKCS1 KAT Separate sign and verify, 2048 bits key length

RSA PSS KAT Separate sign and verify, 4096 bits key length

 POST can be executed on demand at any time or to exit from

“Esc_FIPS_MODE_DISABLED” status by calling EscFipsPost_Run(), which returns

“Esc_NO_ERROR” (defined as 0) in case of success, and a numeric error code

otherwise.

 In all the Known-Answer Tests (KAT) listed in Table 7, the calculated answer is

compared byte-by-byte with the expected answer. If there is a match, then test

passes, otherwise, the test fails. If the test fails, the Module will enter in the error

state “Esc_FIPS_MODE_DISABLED” which will render the Module unusable.

Albert Wasef, Nevine Ebeid | 2019-06-10 public File: ESCRYPT_FIPS_CycurLIB_Security_Policy.docx

 State : released Version : 03

If printed, this document is an uncontrolled copy. Ident : 00TE009 Page 25 of 27

 Conditional Self-Tests (CST)

Conditional Self-Tests are performed by the Module when some cryptographic functions are

called as per FIPS 140-2 requirements. If any CST fails, the corresponding function returns an

error and it does not produce the required output. Table 8 shows a list of the implemented

CST.

Table 8. Conditional Self-Tests (CST)

Algorithm Test

DRBG SP800-90A Health Tests

ECC (ECDSA and ECC

Diffie-Hellman)

Pairwise Consistency Test (sign/verify)

RSA Pairwise Consistency Test (sign/verify)

Diffie-Hellman and ECC SP800-56A Rev2 Assurance Test

NDRNG Continuous Random Number Generator Test

AES-XTS Key Test (IG A.9)

10. Design Assurance

 Configuration Management

Escrypt hosts its own subversion (SVN) as a Version Control System (VCS) to manage and

record the source code and associated documentation files. SVN provides a unique

identification for each submitted version of any component of the Module and its

documentation.

Document management utilities provide access control, versioning, and logging. Access to

the SVN repository is granted or denied to Escrypt team members by the server administrator

based on the vendor policy.

Albert Wasef, Nevine Ebeid | 2019-06-10 public File: ESCRYPT_FIPS_CycurLIB_Security_Policy.docx

 State : released Version : 03

If printed, this document is an uncontrolled copy. Ident : 00TE009 Page 26 of 27

 Delivery and Operation

10.2.1 Delivery

The Module will be delivered to the customer as a Software shared library binary file where

the integrity of the Module is checked using HMAC SHA-256. The HMAC key is stored within

the Module. The calculated HMAC value at the build time is stored in the Module. During

run-time, an HMAC value is calculated and compared to that stored in the Module during the

integrity test performed whenever the Module is loaded in memory. If a match exists, then

the Module will be usable, otherwise the Module will not be usable.

10.2.2 Operation

The Module is a Software shared library:

 It does not require installation. It only needs to reside in a path accessible to the

loader together with its signature file. See Sec.10.4.2 User Guidance.

 A user application would use the library by invoking any of the FIPS API

functions as documented in the Modules section of the Doxygen

documentation.

 The invocation of any of the Module’s functions for the first time results in the

kernel loading it into memory.

 Once loaded, the Power-On Self-Tests (POST) begin execution. See Sec.9.1

Power-ON Self-Tests (POST).

 Upon successful return of POST, the Module is available from then on for any

subsequent invocation of a FIPS API function.

 Development

The Module went through frequent builds. Extensive testing is done on each build including

parameter testing, compliance testing, KAT consistency testing, POST, conditional self-testing

and Cryptographic Algorithm Validation Program (CAVP) testing.

 Guidance Documents

 The following guidance items are to be used for assistance to maintain the FIPS-approved

mode while in use.

10.4.1 Cryptographic Officer Guidance

The FIPS-approved mode is configured by default in Module. If the Module loads without any

errors, this means that all the self-tests have been executed successfully and the Module is in

the FIPS140-2 approved mode. Otherwise, the Module will be in error state and no FIPS API

cryptographic function can be executed. If in error state, the host system should be restarted

or POST re-executed by calling EscFipsPost_Run().

Albert Wasef, Nevine Ebeid | 2019-06-10 public File: ESCRYPT_FIPS_CycurLIB_Security_Policy.docx

 State : released Version : 03

If printed, this document is an uncontrolled copy. Ident : 00TE009 Page 27 of 27

10.4.2 User Guidance

The FIPS-approved mode is configured by default in Module. If the Module loads without any

errors, this means that all the self-tests have been executed successfully and the Module is in

the FIPS140-2 approved mode. Otherwise, the Module will be in error state and no FIPS API

cryptographic function can be executed. If in error state, the host system should be restarted

or POST re-executed by calling EscFipsPost_Run().

Users of the Module should adhere to the following:

- Keeping the HMAC signature file libfips_hmac.bin with the shared library file

libfips.so in the same directory.

- Setting the load path to the directory where both files reside, for example by

running:
$ export

LD_LIBRARY_PATH=<path/to/shared_lib>:$LD_LIBRARY_PATH

- Always checking that the return status of a function from the FIPS API is

Esc_NO_ERROR before collecting its output and using it.

- The user of the Module should use the Module and its FIPS APIs without any

modifications, otherwise; the Module is not considered a validated FIPS140-2

module.

- The utilized HMAC keys must be at least 112 bits.

- AES-XTS must only be used in storage applications.

- When using Triple-DES, the number of encryptions with the same key must be less

than 2^16 (IG A.13).

If the above rules are not followed, the module is not considered to be operating in an

approved state.

11. Mitigation of Other Attacks

The Module is not designed to mitigate against attacks which are outside the scope of FIPS

140-2.

	List of Figures
	List of Tables
	1. Introduction
	1.1 Purpose
	1.2 Module Description
	1.3 FIPS 140-2 Validation Scope

	2. Cryptographic Module Specifications
	2.1 Logical and Physical Boundaries
	2.2 Modes of Operation
	2.3 Approved Security Functions

	3. Cryptographic Module Ports and Interfaces
	4. Roles, Services, and Authentication
	4.1 Roles
	4.2 Operator Services and Descriptions
	4.3 Authentication

	5. Physical Security
	6. Operational Environment
	7. Cryptographic Key Management
	7.1 Random Number Generation
	7.2 Key Generation
	7.3 Key Entry
	7.4 Key Output
	7.5 Key Establishment
	7.6 Key Storage
	7.7 Key Zeroization

	8. Electromagnetic Interference/ Electromagnetic Compatibility (EMI/ EMC)
	9. Self-Tests
	9.1 Power-ON Self-Tests (POST)
	9.2 Conditional Self-Tests (CST)

	10. Design Assurance
	10.1 Configuration Management
	10.2 Delivery and Operation
	10.2.1 Delivery
	10.2.2 Operation

	10.3 Development
	10.4 Guidance Documents
	10.4.1 Cryptographic Officer Guidance
	10.4.2 User Guidance

	11. Mitigation of Other Attacks

