

Unisys Linux strongSwan Cryptographic Module
Version 5.6.3-6.4

FIPS 140-2 Level 1 Validation
Non-Proprietary Security Policy

April 21, 2021

Unisys Linux strongSwan Cryptographic Module Security Policy
Version 5.6.3-6.4 April 21, 2021

© Copyright 2021 Unisys Corporation
This document may be freely reproduced and distributed whole and intact including this Copyright Notice. i

Table of Contents

1. Introduction ... 1

1.1. Document History ... 1
1.2. Purpose .. 1

2. Cryptographic Module Description .. 2
2.1. Cryptographic Boundary ... 2
2.2. Cryptographic Algorithms ... 3

3. Module Ports and Interfaces ... 4
4. Roles, Services, and Authentication ... 4

4.1. Identification and Authentication .. 4
4.2. Roles and Services ... 4

5. Physical Security ... 5
6. Operational Environment .. 5
7. Cryptographic Key Management .. 6

7.1. Cryptographic Keys and Critical Security Parameters ... 6
7.2. Key Destruction/Zeroization ... 7
7.3. Key Entry and Output ... 7
7.4. Key Generation ... 7
7.5. Key Derivation .. 7

8. Self-tests ... 8
8.1. Power-up Self-tests .. 8
8.2. Handling Self-test Errors .. 8

9. Crypto-Officer and User Guidance .. 9
9.1. Secure Setup and Initialization ... 9
9.2. Module Security Policy Rules ... 9

10. Mitigation of Other Attacks .. 9

Unisys Linux strongSwan Cryptographic Module Security Policy
Version 5.6.3-6.4 April 21, 2021

© Copyright 2021 Unisys Corporation
This document may be freely reproduced and distributed whole and intact including this Copyright Notice. 1

1. Introduction

1.1. Document History

Authors Date Version Comment
Unisys Stealth Team June 24, 2019 0.1 Initial draft.
Unisys Stealth Team October 30, 2019 0.2 Revised to address comments

from Leidos.
Unisys Stealth Team May 12, 2020 0.3 Revised to address additional

input from Leidos.
Unisys Stealth Team April 21, 2021 0.4 Final document.

1.2. Purpose

This is the non-proprietary FIPS 140-2 Security Policy for the Unisys Linux strongSwan
Cryptographic Module, which is referred to as the Module. The Module uses the Unisys Linux
OpenSSL FIPS Object Module as a bound module, which is referred to as the bound Module, for
cryptographic primitives and the power-on Integrity Test. The bound Module is a FIPS 140-2
validated module with certificate #3959.

This document describes how this module meets the security requirements of Federal Information
Processing Standards (FIPS) Publication 140-2. This document also describes how to run the Module in a
secure, FIPS-approved mode of operation. This Policy forms a part of the submission package to the
validating lab.

FIPS 140-2 specifies the security requirements for a Cryptographic Module protecting sensitive
information. Based on four security levels for Cryptographic Modules, this standard identifies
requirements in eleven sections. For more information about the standard, visit www.nist.gov/cmvp.

The product meets the overall requirements applicable to Level 1 security for FIPS 140-2. The module
does not support authentication mechanisms.

Table 1 provides a list of the security requirement sections and their associated levels.

Table 1 – Module Compliance Table

Security Component Security Level

Cryptographic Module Specification 1

Cryptographic Module Ports and Interfaces 1

Roles and Services and Authentication 1

Finite State Machine Model 1

Physical Security N/A

Operational Environment 1

Cryptographic Key Management 1

EMI/EMC 1

Self-Tests 1

Design Assurance 1

Unisys Linux strongSwan Cryptographic Module Security Policy
Version 5.6.3-6.4 April 21, 2021

© Copyright 2021 Unisys Corporation
This document may be freely reproduced and distributed whole and intact including this Copyright Notice. 2

Security Component Security Level

Mitigation of Other Attacks N/A

Overall Level of Certification 1

2. Cryptographic Module Description

The module is a software-shared cryptographic library that provides key derivation functions for the
Internet Key Exchange (IKE) protocol in the Ubuntu operating system user space. The module is defined
as a multi-chip standalone module, as defined by FIPS PUB 140-2. This module implements a KDF for
IKEv1 and IKEv2 that complies with the requirements of SP 800-135rev1.

2.1. Cryptographic Boundary

The module is a collection of software-shared cryptographic library that provides key derivation functions
for the Internet Key Exchange (IKE) protocol in the Ubuntu operating system user space; this set defines
the Module’s cryptographic boundary. More specifically, these shared libraries are libstrongswan-fips-
kdfv1.so and libstrongswan-fips-kdfv2.so, represented by the “Crypto Module” block under “Libraries and
Plugins” in the graphic below. The officially tested platform is Ubuntu Linux 18.04 LTS Server Edition
running on a Dell PowerEdge R640 Server with an Intel Xeon Gold 5115.

The bound Module is represented by the “Bound OpenSSL Module” block and is used for cryptographic
primitives and the power-on integrity test on the Module.

Figure 1 is the software block diagram of the Module, and it illustrates the Module boundary. Bidirectional
arrows in the diagram indicate data input/output.

Unisys Linux strongSwan Cryptographic Module Security Policy
Version 5.6.3-6.4 April 21, 2021

© Copyright 2021 Unisys Corporation
This document may be freely reproduced and distributed whole and intact including this Copyright Notice. 3

Figure 1 – Software Block Diagram

2.2. Cryptographic Algorithms

Table 2 provides a list of the CAVS certificates and information about their cryptographic implementation
in FIPS mode.

Table 2 – Approved Algorithms Implemented by the Module

Algorithm CAVS Certificate Standard

SP 800-135rev1 IKEv1 KDF using HMAC with SHA-1,
SHA-256, SHA-384 and SHA-512 (CVL)

C1012 [SP 800-135rev1]

SP 800-135rev1 IKEv2 KDF using HMAC with SHA-1,
SHA-256, SHA-384 and SHA-512 (CVL)

C1012 [SP 800-135rev1]

Table 3 provides a list of the CAVS certificates for algorithms provided from the bound Module. These
algorithms are used for primitives in support of the SP 800-135rev1 KDFs and for supporting the power-
on integrity tests. Note that the bound Module supports additional algorithms not listed in Table 3. The
Module only utilizes the algorithms which are listed in this document.

Table 3 – Approved Algorithms Implemented by the bound Module

Algorithm CAVS Certificate Standard

SHA-1, SHA-256, SHA-384 and SHA-512 C1011 [FIPS 180-4]

RSA Sig Ver PKCS1.5 Mod Size 4096 with SHA-256 C1011 [FIPS 186-4]

Unisys Linux strongSwan Cryptographic Module Security Policy
Version 5.6.3-6.4 April 21, 2021

© Copyright 2021 Unisys Corporation
This document may be freely reproduced and distributed whole and intact including this Copyright Notice. 4

Algorithm CAVS Certificate Standard

HMAC - using SHA-1 and SHA-2 algorithms C1011 [FIPS 198-1]

3. Module Ports and Interfaces

As a software-only module, the Module does not have physical ports.

Table 4 describes the relationship between the logical and physical interfaces.

Table 4 – Mapping Logical Interfaces

FIPS 140-2 Interface Logical Interface Physical Interface

Data input interface

KDF Library API Not Applicable

Data output interface

KDF Library API Not Applicable

Control input interface KDF Library API Not Applicable

Status output interface System Logs and API return
codes

Not Applicable

Power interface

Not Applicable Not Applicable

4. Roles, Services, and Authentication

There are two roles in the Module (as required by FIPS 140-2) that operators may assume: a Crypto-Officer role
and a User role. The Crypto-Officer and User roles are implicitly assumed by the entity accessing the services
implemented by the Module. No further authentication is required for a Level 1 validation. The module
does not support a maintenance role.

4.1. Identification and Authentication

The module does not support authentication mechanisms.

4.2. Roles and Services

The module supports the services listed in the following table. The table groups the authorized services
by the operator roles and identifies the Cryptographic Keys and CSPs associated with the services. The
modes of access are also identified per the explanation, as follows:

 R – Read: The item is read or referenced by the service.

 W – Write: The item is written or updated by the service.

 E – Execute: The item is executed by the service. (The item is used as part of a cryptographic

function.)

Unisys Linux strongSwan Cryptographic Module Security Policy
Version 5.6.3-6.4 April 21, 2021

© Copyright 2021 Unisys Corporation
This document may be freely reproduced and distributed whole and intact including this Copyright Notice. 5

Table 5 shows the services available to each role and the keys and CSPs associated with each role.

Table 5 – Mapping of Cryptographic Keys and CSPs to Services

Service Role Cryptographic Key/CSP Type of Access (R, W, E)

Key Derivation
(IKEv1)

User Diffie-Hellman or EC Diffie-
Hellman shared secret

R

 SKEYID
 SKEYID_e
 SKEYID_a
 SKEYID_d

W

Key Derivation
(IKEv2)

User

 Diffie-Hellman or EC Diffie-
Hellman shared secret

R

 SKEYSEED
 SK_d
 SK_ei, SK_er
 SK_ai, SK_ar
 SK_pi, SK_pr

W

Run Self-Tests

Crypto-
Officer

N/A N/A

Show Status Crypto-
Officer

N/A N/A

5. Physical Security

This is a software module and provides no physical security.

6. Operational Environment

This module will operate in a modifiable operational environment, per the FIPS 140-2 definition.

The operating system shall be restricted to a single operator mode of operation (that is, concurrent
operators are explicitly excluded).

The external application that makes calls to the Cryptographic Module is the single user of the
Cryptographic Module, even when the application is serving multiple clients.

Unisys Linux strongSwan Cryptographic Module Security Policy
Version 5.6.3-6.4 April 21, 2021

© Copyright 2021 Unisys Corporation
This document may be freely reproduced and distributed whole and intact including this Copyright Notice. 6

7. Cryptographic Key Management

7.1. Cryptographic Keys and Critical Security Parameters

The module supports the Critical Security Parameters (CSP) listed in Table 6, Table 7, and Table 8. The
supported key sizes for each CSP are dependent on the bound Module’s supported hash functions.
These supported algorithms will produce keys of one of the given sizes in bits: 160, 224, 256, 384, and
512.

Table 6 – IKEv1 Cryptographic Module Keys and CSPs

Key Generation STORAGE Use

Diffie-Hellman or EC Diffie-
Hellman shared secret

N/A (generated by the bound
Module and entered into Module
in plaintext)

Stored in
RAM

Used as part of
calculation of SKEYID

Key Derivation Key

(SKEYID)

Key derivation from shared secret
using SP 800-135rev1 IKEv1 KDF

Stored in
RAM

Used for deriving below
keying material

Encryption Key
(SKEYID_e)

Key derivation from shared secret
using SP 800-135rev1 IKEv1 KDF

Stored in
RAM

Keying material used by
ISAKMP SA to encrypt
messages

Authentication Key
(SKEYID_a)

Key derivation from shared secret
using SP 800-135rev1 IKEv1 KDF

Stored in
RAM

Keying material used by
ISAKMP SA to
authenticate messages

Key for Further Derivation

(SKEYID_d)

Key derivation from shared secret
using SP 800-135rev1 IKEv1 KDF

Stored in
RAM

Keying material used to
derive keys for non-
ISAKMPSAs

Unisys Linux strongSwan Cryptographic Module Security Policy
Version 5.6.3-6.4 April 21, 2021

© Copyright 2021 Unisys Corporation
This document may be freely reproduced and distributed whole and intact including this Copyright Notice. 7

Table 7 – IKEv2 Cryptographic Module Keys and CSPs

Table 8 – Power On Integrity Test Key

7.2. Key Destruction/Zeroization

Keys are allocated space in RAM using operating system calls. This memory is zeroized when the
module is unloaded from memory.

7.3. Key Entry and Output

The module does not support manual key entry. Keys are entered into the module electronically via the
module API, and are output electronically via the module API. The shared secret is input electronically via
the module API.

7.4. Key Generation

The module does not implement any key generation.

7.5. Key Derivation

The module implements SP 800-135rev1 KDF for the IKEv1 and IKEv2 protocol. No parts of these
protocols, other than the KDFs, have been tested by the CAVP or CMVP.

Key Generation STORAGE Use

Diffie-Hellman or EC Diffie-
Hellman shared secret

N/A (generated by the bound
Module and entered into Module
in plaintext)

Stored in
RAM

Used as part of
calculation of SKEYSEED

Key Derivation Key

(SKEYSEED)

Key derivation from shared secret
using SP 800-135rev1 IKEv2 KDF

Stored in
RAM

Used for deriving below
keying material

Key for Further Derivation
(SK_d)

Key derivation from shared secret
using SP 800-135rev1 IKEv2 KDF

Stored in
RAM

Used for deriving new
keys for the CHILD_SAs
established from an
IKE_SA

Encryption Keys
(SK_ei, SK_er)

Key derivation from shared secret
using SP 800-135rev1 IKEv2 KDF

Stored in
RAM

Used for
encrypting/decrypting
exchanges of an IKE_SA

Authentication Keys

(SK_ai, SK_ar)

Key derivation from shared secret
using SP 800-135rev1 IKEv2 KDF

Stored in
RAM

Used as keys to the
integrity protection
algorithm

Authentication Payload
Keys
(SK_pi, SK_pr)

Key derivation from shared secret
using SP 800-135rev1 IKEv2 KDF

Stored in
RAM

Used when generating an
AUTH payload

Key Generation STORAGE Use

RSA 4096-bit Public Key Hardcoded Stored on file system
outside cryptographic
boundary

Used to verify the signature files
that are used to verify module
integrity

Unisys Linux strongSwan Cryptographic Module Security Policy
Version 5.6.3-6.4 April 21, 2021

© Copyright 2021 Unisys Corporation
This document may be freely reproduced and distributed whole and intact including this Copyright Notice. 8

8. Self-tests

The module performs power-up self-tests.

8.1. Power-up Self-tests

The module automatically performs power-up self-tests when loaded into memory. These tests examine
the Module for corruption.

While the Module performs the power-up tests, input and output are inhibited and the services provided
by the Module are not available. If any of these tests fail, the Module will return the error message listed
in Section 8.2, “Handling Self-test Errors,” enter the error state, and then terminate.

8.1.1. Cryptographic Algorithm KATs

Known Answer Tests (KATs) are not mandatory, and are not implemented for the module. All
algorithms from the bound Module have KATs that are run when the bound Module is loaded.

8.1.2. Software Integrity Tests

The module verifies the integrity of its components using digital signatures. A signature is produced at
build time for each shared library using a 4096-bit RSA private key and SHA-256 for the hash function.
Each signature is compared with a signature computed at load-time, by the bound Module, for each
shared library with the 4096-bit RSA public key provided by the Debian package, and SHA-256 as the
hash function. The name of the two signature files are libstrongswan-fips-kdfv1.sig and libstrongswan-
fips-kdfv2.sig.

8.2. Handling Self-test Errors

On self-test failure, an error message will be reported to indicate the error and then enter the error state.
Table 9 lists the possible self-test errors:

Table 9 – Self-test Errors
Error Description

Public Key File Failure The public key file could not be opened, or it could not be read.

Signature File Failure The signature file could not be opened, or it could not be read.

Signature Validation Failure The signature read from the signature file does not match the
signature computed at run time.

Test Vector Failure The calculated result of a KAT does not match the known answer.

Unisys Linux strongSwan Cryptographic Module Security Policy
Version 5.6.3-6.4 April 21, 2021

© Copyright 2021 Unisys Corporation
This document may be freely reproduced and distributed whole and intact including this Copyright Notice. 9

9. Crypto-Officer and User Guidance

9.1. Secure Setup and Initialization

To be used in a FIPS-compliant manner, the proper installation of the Unisys Linux OpenSSL FIPS
Object Module software must be performed. After the previously listed module is installed and configured
properly, the Crypto-Officer should check the existence of /proc/sys/crypto/fips_enabled. If this file does
not contain the character “1”, the operating environment is not correctly configured to support FIPS, and
the Module will not operate properly as a FIPS-validated module. The Module can be installed by using
the Debian packaging tool, dpkg, or by using a Unisys Stealth installation script.

9.2. Module Security Policy Rules

When operating in a FIPS Approved Mode, the user or administrator shall not use any debugging or
tracing software to inspect the Module.

10. Mitigation of Other Attacks

The module does not mitigate against any specific attacks.

