

FIPS 140-2 Non-Proprietary Security Policy for:

KIOXIA TCG OPAL SSC Crypto Sub-Chip TC58NC1132GTC

KIOXIA CORPORATION Rev 1.1.0

ΚΙΟΧΙΑ

OVERVIEW	;
ACRONYMS	
SECTION 1 – MODULE SPECIFICATION	;
SECTION 1.1 – PRODUCT VERSION)
SECTION 2 – ROLES SERVICES AND AUTHENTICATION	•
SECTION 2.1 – SERVICES	;
SECTION 3 – PHYSICAL SECURITY)
SECTION 4 – OPERATIONAL ENVIRONMENT)
SECTION 5 – KEY MANAGEMENT)
SECTION 6 – SELF TESTS11	•
SECTION 7 – DESIGN ASSURANCE)
SECTION 8 – MITIGATION OF OTHER ATTACKS12)
APPENDIX A – EMI/EMC	2

ΚΙΟΧΙΑ

Overview

KIOXIA TCG OPAL SSC Crypto Sub-Chip TC58NC1132GTC (listed in Section1.1 Product Version) is used for solid state drive data security. The Cryptographic Module (CM) is a single chip module implemented as a sub-chip compliant with IG 1.20 in the TC58NC1132GTC 0003 SoC. The CM provides various cryptographic services using FIPS approved algorithms. The CM is multiple functions embedded, and the physical boundary of the CM is the TC58NC1132GTC 0003 SoC. The logical boundary of the CM is TC58NC1132GTC CRPT module.

The CM is intended to meet the requirements of FIPS 140-2 Security Level 2 Overall. The Table below shows the security level detail.

Section	Level
1. Cryptographic Module Specification	2
2. Cryptographic Module Ports and Interfaces	2
3. Roles, Services, and Authentication	2
4. Finite State Model	2
5. Physical Security	2
6. Operational Environment	N/A
7. Cryptographic Key Management	2
8. EMI/EMC	2
9. Self-Tests	2
10. Design Assurance	2
11. Mitigation of Other Attacks	N/A
Overall Level	2

Interface	Ports
Data Input	Mailbox
	Lock Checker
	AES circuit
	DMAC
Control Input	Mailbox
	Lock Checker
Data Output	Mailbox
	AES circuit
	DMAC
Status Output	Mailbox
	Lock Checker
Power Input	Power PIN

Table 2 - Physical/Logical Port Mapping

This document is non-proprietary and may be reproduced in its original entirety.

ΚΙΟΧΙΑ

Acronyms

- AES Advanced Encryption Standard CM Cryptographic Module
- CSP Critical Security Parameter
- DRBG Deterministic Random Bit Generator
- HMAC The Keyed-Hash Message Authentication code
- KAT Known Answer Test
- NDRNG Non-Deterministic Random Number Generator
- POST Power on Self-Test
- PSID Printed SID
- SED Self-Encrypting Drive
- SHA Secure Hash Algorithm
- SID Security ID
- SoC System on a Chip

Section 1 – Module Specification

The CM has one FIPS 140 approved mode of operation and CM is always in approved mode of operation after initial operations are performed. The CM provides services defined in Section 2.1 and other non-security related services.

Section 1.1 – Product Version

The CM are validated with the following versions:

- Physical single-chip: TC58NC1132GTC, Revision 0003
- The sub-chip cryptographic subsystem soft circuitry core: TC58NC1132GTC CRPT module, Revision 0001
- The associated firmware: SC01AN

Section 2 – Roles Services and Authentication

This section describes roles, authentication method, and strength of authentication.

Role Name	Role Type	Type of Authentication	Authenticatio n	Authentication Strength	Multi Attempt strength
		Authentication			
AdminSP.SID	Crypto Officer	Role	PIN	1 / 2 ⁴⁸ < 1 / 1,000,000	30 / 2 ⁴⁸ < 1 / 100,000
AdminSP.Admin1	Crypto Officer	Role	PIN	1 / 2 ⁴⁸ < 1 / 1,000,000	30 / 2 ⁴⁸ < 1 / 100,000
LockingSP.Admin1-4	Crypto Officer	Role	PIN	1 / 2 ⁴⁸ < 1 / 1,000,000	30 / 2 ⁴⁸ < 1 / 100,000
LockingSP.User1	User	Role	PIN	1 / 2 ⁴⁸ < 1 / 1,000,000	30 / 2 ⁴⁸ < 1 / 100,000
LockingSP.User2	User	Role	PIN	1 / 2 ⁴⁸ < 1 / 1,000,000	30 / 2 ⁴⁸ < 1 / 100,000
LockingSP.User192	User	Role	PIN	1 / 2 ⁴⁸ < 1 / 1,000,000	30 / 2 ⁴⁸ < 1 / 100,000

Table 3 - Identification and Authentication Policy

Per the security policy rules, the minimum PIN length is 6 bytes. Therefore the probability that a random attempt will succeed is $1/2^{48} < 1/1,000,000$ (the CM accepts any value (0x00-0xFF) as each byte of PIN). The CM waits 2sec when authentication attempt fails, so the maximum number of authentication attempts is 30 times in 1 min. Therefore the probability that random attempts in 1min will succeed is $30/2^{48} < 1/100,000$. Even if TryLimit¹ is infinite, the probability that random attempts is same.

¹ TryLimit is the upper limit of failure of authentication of each role.

Section 2.1 – Services

This section describes services which the CM provides.

Service	Description	Role(s)	Keys & CSPs	RWX (<u>R</u> ea d, <u>W</u> ri te,e <u>X</u> ecute)	Algorithm	Method
Band Lock/Unlock	Lock or unlock read / write of user data in a band.	LockingSP.Admins	KDK MEKs System MAC Key	R, X R R, X	KBKDF N/A HMAC-SHA256	setSingleRange method
Band Lock/Unlock for Band of Single User Mode	Lock or unlock read / write of user data in band"X" of single user mode.	LockingSP.User"X+1"				setSingleRange method
Check Lock State	Check a lock state of band that read / write user data.	None	N/A	N/A	N/A	HW auto
Data Read/Write	Encryption / decryption of user data to/from unlocked band of SSD.	None ²	MEKs	X	AES256-XTS	HW auto
Cryptographic Erase	Erase user data (in cryptographic means) by changing the key that derives the data encryption key.	LockingSP.Admin1-4	KDK MEKs System MAC Key System Enc Key	W R, X R, W R, X R, X	Hash_DRBG KBKDF HMAC-SHA256 AES256-CBC	genKey method
Cryptographic Erase for Band of Single User Mode	Erase user data in band"X" of single user mode (in cryptographic means) by changing the key that derives the data encryption key.	LockingSP.user"X+1"				genKey method
Cryptographic Erase and Initialize Band State	Erase user data in band"X" of single user mode (in cryptographic means) by changing the key that derives the data encryption key, and initialize the band state.	LockingSP.Admin1-4 LockingSP.user"X+1"	KDK MEKs System MAC Key System Enc Key	W R, X R, W R, X R, X	Hash_DRBG KBKDF HMAC-SHA256 AES256-CBC	tcgErase method

 $^{^{\}rm 2}\,$ The band has to be unlocked by corresponding role beforehand.

Download Port Lock/Unlock	Lock / unlock firmware download.	AdminSP.SID	N/A	N/A	N/A	setDownloadPort method
Firmware Verification	Digital signature verification for firmware outside the CM.	None	PubKey2	R, X	RSASSA-PKCS# 1-v1_5	checkPKCSExternal method
Firmware Download	Download a firmware image ³ .	AdminSP.SID	PubKey1	R, X	RSASSA-PKCS# 1-v1_5	reloadCrypto method
Random Number Generation	Provide a random number generated by the CM.	None	DRBG Internal Value	R	Hash_DRBG	getRandomData method
Set Band Position and Size	Set the location and size of the band.	LockingSP.Admin1-4	KDK MEKs System MAC Key	W R, X R, W R, X	Hash_DRBG KBKDF HMAC-SHA256	setSingleRange method
Set Band Position and Size for Band of Single User Mode	Set the location and size of the band " of single user mode	LockingSP.Admin1-4 LockingSP.User"X+1"	System Enc Key	к, х R, X	AES256-CBC	setSingleRange method
Set PIN	Set PIN (authentication data).	AdminSP.SID, AdminSP.Admin1, LockingSP.Admin1-4, LockingSP.User1-192	N/A System MAC Key System ENC Key	N/A R, X R, X	SHA256 HMAC-SHA256 AES256-CBC	setPIN method
Set PIN for Band of Single User Mode	Set PIN (authentication data) of authority for band " of single use mode	LockingSP.User1-192				setPIN method
Authority Enable/Disable	Enable/Disable the authority.	AdminSP.SID LockingSP.Admins	System MAC Key System ENC Key	R, X R, X	HMAC-SHA256 AES256-CBC	setAuthority method
Revert	Initialize the band State and disable band lock setting.	AdminSP.SID, AdminSP.Admin1	N/A KDK MEKs System MAC Key System Enc Key	N/A W R, X R, W R, X R, X	SHA256 Hash_DRBG KBKDF HMAC-SHA256 AES256-CBC	revert method
Data Locking Protection Enable	Enable Data protection with band lock setting.	AdminSP.SID LockingSP.Admins	N/A System MAC Key System ENC Key	N/A R, X R, X	SHA256 HMAC-SHA256 AES256-CBC	activate method reactivate method
Sanitize	Erase all user data (in cryptographic means) by changing the key that derives the data encryption key.	AdminSP.SID, AdminSP.Admin1, LockingSP.Admin1-4	KDK MEKs System MAC Key System ENC Key	W R, X R, W R, X R, X	Hash_DRBG KBKDF HMAC-SHA256 AES256-CBC	sanitize method

³ Only the CMVP validated version is to be used

	Europe waar data (in		KDK	w		
Format	Erase user data (in	AdminSP.SID,	KDK		Hash_DRBG	FormatNS method
Namespace	cryptographic	AdminSP.Admin1,		R, X	KBKDF	
Namespace	means) on	LockingSP.Admin1-4,	MEKs	R, W		
	Namespace by	LockingSP.User1-192	System MAC Key	R, X	HMAC-SHA256	
	changing the key		System ENC Key	R, X	AES256-CBC	
	that derives the					
	data encryption					
	key.					
Namesapace	Create and delete	AdminSP.SID,	KDK	W	Hash_DRBG	notifyNSInformation
	Namespace.	AdminSP.Admin1,		R, X	KBKDF	method
Create/Delete		LockingSP.Admin1-4,	MEKs	R, W		
		LockingSP.User1	System MAC Key	R, X	HMAC-SHA256	
			System ENC Key	R, X	AES256-CBC	
Band Set Enable	Set the location,	LockinSP.Admins	KDK	W	Hash_DRBG	AssignNSGlobal
	size and lock state			R, X	KBKDF	method
	of the band.		MEKs	R, W		AssignNSNonGlobal
			System MAC Key	R, X	HMAC-SHA256	method
			System Enc Key	R, X	AES256-CBC	
Band Set Disable	Initialize the	LockingSP.Admins	KDK	R, X	KBKDF	DeassignNSGlobal
	location, size and		MEKs	R, W		method
	lock state of the		System MAC Key	R, X	HMAC-SHA256	DeassignNSNonGlobal
	band.		System Enc Key	R, X	AES256-CBC	method
Show Status	Report status of the	None	N/A	N/A	N/A	Method status
	CM.					
Zeroization	Erase CSPs.	None ⁴	RKey	W	N/A	zeroization method
			KDK	w		
			MEKs	w		
			System MAC Key	w		
			System Enc Key	w		
			DRBG Internal	w		
			Value	w		
			DRBG Seed	W		
Reset	Runs POSTs,	None	DRBG Internal	W	Hash_DRBG	Power on reset
			Value			
	generate DRBG		DRBG Seed	W,X	NDRNG	
	CSPsanddelete					
	CSPs in RAM.					

Table 4 -	FIPS Approve	d services
-----------	---------------------	------------

Algorithm	Description	CAVP Certification Number
AES256-CBC	Encryption, Decryption	#C1925
AES256-XTS ⁵	Encryption, Decryption	#C1925
SHA256	Hashing	#C1925
HMAC-SHA256	Message Authentication Code	#C1925

⁴ Need to input PSID, which is public drive-unique value used for the zeroization service.

⁵ ECB mode is used as a prerequisite of XTS mode which is used only for hardware storage application. ECB is not directly used in services of the cryptographic module. The CM performs a check that the XTS Key1 and XTS Key2 are different at the time of key generation according to IG A.9.

RSASSA-PKCS#1-v1_5	Function: Signature Verification Key Size: 2048 bits	#C2009
Hash_DRBG	Hash based: SHA256	#C2002
KBKDF	Counter Mode MACs: HMAC-SHA256	#C2001
СКБ	Cryptographic Key Generation referred by SP800-133 Revision 2 sections 6.1 and 6.2.2	Vendor Affirmation
KTS	Key Transport Scheme referred by IG D.9; AES and HMAC Cert. #C1925	#C1925
NDRNG ⁶	Hardware RNG used to seed the approved Hash_DRBG. Minimum entropy of 8 bits is 6.74.	ENT

Table 5 - FIPS Approved Algorithms

Section 3 – Physical Security

The CM is a sub-chip enclosed in a single chip that is an opaque package.

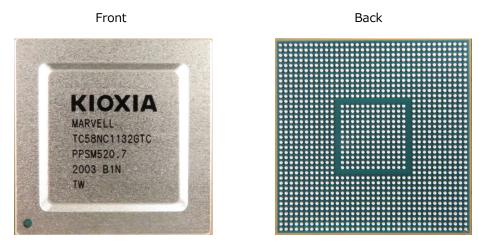


Figure 1 - TC58NC1132GTC 0003 SoC

Section 4 – Operational Environment

Operational Environment requirements are not applicable because the CM operates in a non-modifiable environment, that is the CM cannot be modified and no code can be added or deleted.

⁶ The NDRNG is a hardware module used as an entropy source inside the CM boundary. The NDRNG supplies the Hash_DRBG with 512 bits entropy input. From Table 5, this input contains about 431 bits of entropy, which is sufficient entropy to obtain 256 bits of security strength.

Section 5 – Key Management

The CM uses keys and CSPs in the following table.

Key/CSP	Length (bit)	Type/ Algorit hm	Zeroize Method	Establishment	Output	Persistence/ Storage
RKey	256	KBKDF	Zeroization service	Hash_DRBG	No	Plain / OTP
System Enc Key	256	AES-CBC	Zeroization service	KDF in Counter Mode	No	Plain / RAM
System MAC Key	256	НМАС	Zeroization service	KDF in Counter Mode	No	Plain / RAM
КДК	256	KBKDF	Zeroization service Key update services ⁷	Hash_DRBG	Output (encrypted)	Plain / RAM
MEKs	512	AES-XTS	Zeroization service	KDF in Counter Mode	No	Plain / AES register
PubKey1	256	RSA	N/A	Manufacturing	No	SHA digest / OTP
PubKey2	2048	RSA	N/A	Manufacturing	No	Plain / ROM
PINs	256	PIN	N/A	Electronic input	Output (SHA digest/ encrypted)	SHA digest / RAM
DRBG Internal Value	V: 440 bits C: 440 bits	DRBG	Zeroization service	SP800-90A Instantiation of Hash_DRBG	No	Plain / RAM
DRBG Seed	Entropy Input String	DRBG	Zeroization service	Entropy collected from NDRNG at	No	Plain / RAM

⁷ The following service are applicable, Cryptographic Erase, Cryptographic Erase for Band of Single User Mode, Cryptographic Erase and Initialize Band State, Set Band Position and Size, Set Band Position and Size for Band of Single User Mode, Revert, Sanitize, Format Namespace, Namesapace Create/Delete and Band Set Enable.

and Nonce:		instantiation	
512 bits		(Minimum	
		entropy of 8 bits:	
		6.74)	

Table 7 - Key/CSP

Note that there is no security-relevant audit feature and audit data.

Section 6 – Self Tests

The CM runs self-tests in the following table.

Function	Self-Test Type	Abstract	Failure Behavior
AES256-CBC Power-On		Encrypt and Decrypt KAT	Enters Boot Error State.
AES256-XTS	Power-On	Encrypt KAT	Enters Boot Error State.
AES256-XTS	Power-On	Decrypt KAT	Enters Boot Error State.
SHA256	Power-On	Digest KAT	Enters Boot Error State.
HMAC-SHA256	Power-On	Digest KAT	Enters Boot Error State.
Hash_DRBG	Power-On	DRBG KAT	Enters Boot Error State.
RSASSA-PKCS#1-v1_5	Power-On	Signature verification KAT	Enters Boot Error State.
KDF in Counter Mode	Power-On	KDF KAT	Enters Boot Error State
NDRNG (Health tests of	Power-On	Verify not deviating from the	Enters Boot Error State
noise source at startup.)		intended behavior of the noise	
		source by Repetition Count	
		Test and Adaptive Proportion	
		Test specified in SP800-90B.	
Hash_DRBG	Conditional	Verify newly generated	Enters Error State.
		random number not equal to	
		previous one	
NDRNG	Conditional	Verify newly generated	Enters Error State.
		random number not equal to	
		previous one	
NDRNG (Continuous noise Conditional		Verify not deviating from the	Enters Error State.
source health tests during		intended behavior of the noise	
operation.)		source by Repetition Count	
		Test and Adaptive Proportion	
		Test specified in SP800-90B.	

Firmware load test	Conditional ⁸	Verify	signature	of	Incoming firmware image is
		downloaded firmware image by		not loaded and is not saved.	
		RSASSA-Pk	CS#1-v1_5		

Table 8 - Self Tests

When the CM continuously enters in error state in spite of several trials of reboot, the CM may be sent back to factory to recover from error state.

Section 7 – Design Assurance

Initial operations to setup this CM are following:

- 1. Load Firmware into the CM.
- 2. Load System area including CSPs into the CM.
- 3. Execute setAllRangeForBoot method.
- 4. Execute setDownloadPort method.
- 5. Execute setCCPUServiceACL method.
- 6. Execute notifyNamespaceInformation method.

The CM switches to a FIPS Approved mode after the initial operation success. When the initial operation succeeds, the CM indicates success on the Status Output interface.

Section 8 – Mitigation of Other Attacks

The CM does not mitigate other attacks beyond the scope of FIPS 140-2 requirements.

Appendix A – EMI/EMC

FIPS 140-2 requires the Federal Communications Commission (FCC) ID, but this CM does not have FCC ID. This CM is a single chip module implemented in a device described in Subpart B, Class A of FCC 47 Code of Federal Regulations Part 15. However, all systems using this CM and sold in the United States must meet these applicable FCC requirements

⁸ Firmware load test is also run at the time of Power-up, and the integrity of the Firmware loaded into the CM can be confirmed.