
Copyright © Code Corporation., 2021 Page 1 of 14
Code Corporation Public Material – May be reproduced only in its original entirety (without revision).

codeEncrypt
Version 4.5.2

FIPS 140-2 Non-Proprietary Security Policy
Document Version 1.0

July 23, 2021

 Prepared for: Prepared by:

 Code Corporation

434 West Ascension Way
Suite 300

Murray, UT 84123
www.codecorp.com

+1 801.495.2200

 wolfSSL Inc.
10016 Edmonds Way

Suite C-300
Edmonds, WA 98020

wolfSSL.com
+1 425.245.8247

 KeyPair Consulting
Inc.

846 Higuera Street
Suite 2

San Luis Obispo, CA
93401

keypair.us
+1 805.316.5024

http://www.codecorp.com/
https://www.wolfssl.com/
https://keypair.us/

Copyright © Code Corporation., 2021 Page 2 of 14
Code Corporation Public Material – May be reproduced only in its original entirety (without revision).

Table of Contents

1 Introduction .. 3
2 Operational Environment ... 3
3 Cryptographic Boundary and Logical Interfaces ... 4
4 Approved and Allowed Cryptographic Functionality ... 5
5 Modes of Operation, Security Rules and Guidance .. 7
6 Critical Security Parameters ... 8
7 Roles, Services, and Authentication ... 9
8 Self-tests ... 11
9 References, Definitions and Source Files ... 12

List of Tables

Table 1 - Security Level of Security Requirements.. 3
Table 2 – Tested Operating Environments ... 3
Table 3 – Ports and Interfaces .. 5
Table 4 – Approved Cryptographic Functions ... 5
Table 5 – Allowed Functions ... 7
Table 6 - Critical Security Parameters (CSPs) .. 8
Table 7 - Public Keys .. 8
Table 8 – Authorized Services available in FIPS mode .. 9
Table 9 – CSP and Public Key Access Rights within Services ... 10
Table 10 - Power-on Self-tests .. 11
Table 11 - Conditional Self-tests ... 11
Table 12 – References ... 12
Table 13 - Acronyms and Definitions .. 13
Table 14 - Source Files .. 14

Copyright © Code Corporation., 2021 Page 3 of 14
Code Corporation Public Material – May be reproduced only in its original entirety (without revision).

1 Introduction
This document defines the Security Policy for the Code Corporation codeEncrypt (Software Version 4.5.2)
module, hereafter denoted the Module. The Module is a cryptography software library, designated as a
multi-chip standalone embodiment in [140] terminology. The Module is intended for use by US and
Canadian Federal agencies and other markets that require FIPS 140-2 validated cryptographic
functionality.
The Module meets FIPS 140-2 overall Level 1 requirements, with security levels as follows:

Table 1 - Security Level of Security Requirements
Security Requirement Security Level
Cryptographic Module Specification 1
Cryptographic Module Ports and Interfaces 1
Roles, Services, and Authentication 1
Finite State Model 1
Physical Security N/A
Operational Environment 1
Cryptographic Key Management 1
EMI/EMC 1
Self-Tests 1
Design Assurance 1
Mitigation of Other Attacks N/A

The Module does not implement attack mitigations outside the scope of [140], hence [140] Section 4.11
Mitigation of Other Attacks is not applicable per [140IG] G.3 Partial Validations and Not Applicable Areas
of FIPS 140-2. [140] Section 4.5 Physical Security is not applicable, as permitted by [140IG] 1.16, Software
Module and [140IG] G.3.
The Module conforms to [140IG] D.11 References to the Support of Industry Protocols: while it provides
[56A] conformant schemes and API entry points oriented to TLS usage, the Module does not provide a full
implementation of TLS. The TLS protocol has not been reviewed or tested by the CAVP and CMVP.
The Module design corresponds to the Module security rules. Security rules enforced by the Module are
described in the appropriate context of this document.

2 Operational Environment
Operational testing was performed for the following Operating Environments:

Table 2 – Tested Operating Environments
 Operating System Processor Platform Version

Tested
1 CodeOS v1.4 CodeCorp CT8200 (ARM FA626TE) Series CR2700 Code

Reader(s)
4.5.2

The Module conforms to [140IG] 6.1 Single Operator Mode and Concurrent Operators. The tested
environments place user processes into segregated spaces. A process is logically removed from all other
processes by the hardware and Operating System. Since the Module exists inside the process space of the
application this environment implicitly satisfies requirement for a single user mode.

Copyright © Code Corporation., 2021 Page 4 of 14
Code Corporation Public Material – May be reproduced only in its original entirety (without revision).

The Module conforms to [140IG] 1.21 Processor Algorithm Accelerators (PAA) and Processor Algorithm
Implementation (PAI). The Intel Processor AES-NI functions are identified by [140IG] 1.21 as a known
PAA.

3 Cryptographic Boundary and Logical Interfaces
Figure 1 depicts the Module operational environment, with the logical boundary highlighted in red
inclusive of all Module entry points (API calls), conformant with [140IG] 14.3 Logical Diagram for Software,
Firmware and Hybrid Modules.

Figure 1 – Module Block Diagram

The Module conforms to [140IG] 1.16 Software Module:
● The physical cryptographic boundary is the general-purpose computer which wholly contains the

Module and operating system.
● The logical cryptographic boundary is the set of object files corresponding to the source code files

listed in Table 14.
● All components are defined per AS01.08; no components are excluded from [140] requirements.
● The Module does not map any interfaces to physical ports. Table 3 defines the Module’s [140] logical

interfaces.
● The power-up approved integrity test is performed over all components of the logical boundary.
● Updates to the Module are provided as a complete replacement in accordance with [140IG] 9.7

Software/Firmware Load Test.

Copyright © Code Corporation., 2021 Page 5 of 14
Code Corporation Public Material – May be reproduced only in its original entirety (without revision).

Table 3 – Ports and Interfaces
Description Logical Interface Type
API entry point Control in
API function parameters Data in
API return value Status out
API function parameters Data out

4 Approved and Allowed Cryptographic Functionality
The Module implements the FIPS Approved and allowed cryptographic functions listed in the table below.
VA in the Cert column indicates Vendor Affirmed. Strength citations use [57P1] notation.

Table 4 – Approved Cryptographic Functions

Cert

Algorithm

Mode

Key Lengths, Curves or
Moduli (in bits)

Use

A902 AES [197]

CBC [38A] Key sizes: 128, 192, 256 Encryption, Decryption

CTR [38A] Key sizes: 128, 192, 256 Encryption, Decryption

CCM [38C]
Key sizes: 128, 192, 256
Tag len: 32*, 48*, 64,
80*, 96*, 112*, 128

Authenticated Encryption,
Authenticated Decryption,
Message Authentication

CMAC [38C] Key sizes: 128, 192, 256 Generation, Verification

ECB [38A] Key sizes: 128, 192, 256 Encryption, Decryption

GMAC Key sizes: 128, 192, 256 Message Authentication

GCM [38D]
Key sizes: 128, 192, 256
Tag len: 96, 104, 112,
120, 128

Authenticated Encryption,
Authenticated Decryption,
Message Authentication

A902 DRBG [90A] Hash_DRBG SHA-256 Random Bit Generation,
no prediction resistance

A902 DSA [186] L = 2048 N = 256 FFC Key Generation for
KAS

A902 ECDSA [186]

P-192 (Signature and Key
Verification only), P-224,
P-256, P-384, P-521 SHA-
1**, SHA-224, SHA-256,
SHA-384, and SHA-512
SHA3-224†, SHA3-256†,
SHA3-384†, and SHA3-
512†

ECC Key Generation,
Public Key Validation,
Signature Generation,
Signature Verification

A902
 HMAC [198]

SHA-1, SHA-224, SHA-
256,
SHA-384, and SHA-512
SHA3-224, SHA3-256,
SHA3-384, and SHA3-512

Generation, Verification,
Message Authentication

A902 CVL (KAS) [56A] FFC FC L = 2048 N = 256 Key Agreement primitives

Copyright © Code Corporation., 2021 Page 6 of 14
Code Corporation Public Material – May be reproduced only in its original entirety (without revision).

Cert

Algorithm

Mode

Key Lengths, Curves or
Moduli (in bits)

Use

ECC P-256, P-384, P-521

ECC CDH P-224, P-256, P-384, P-
521

A902
CVL (RSADP)
 [56B] ***

 k = 2048
Key transport primitive
RSADP

A902 RSA [186] PKCS v1.5 and
PSS

1024 (verification only),
2048, 3072, 4096
SHA-1 (verification only)
SHA-224, SHA-256,
SHA-384, and SHA-512
SHA3-224†, SHA3-256†,
SHA3-384†, and SHA3-
512†

Key Generation, Signature
Generation, Signature
Verification

A902 SHA-3 [202] SHA3-224, SHA3-256,
SHA3-384, SHA3-512

Message Digest
Generation

A902
SHS [180]

 SHA-1, SHA-224, SHA-
256, SHA-384, SHA-512

Message Digest
Generation

A902 Triple-DES [67] TCBC [38A] Key size: 192 Encryption, Decryption

* Was only tested on CAVP certificate A902.

** CAVP testing permits testing with SHA-1; see Section 5, item 3.c below for conditions.

† Vendor-affirmed when used with SHA-3 (CAVP testing does not offer testing with SHA-3 variants).

‡ Vendor affirmed when used with k=4096 for key generation and signature verification; the module
supports k=4096 for all operations, but CAVP testing of k = 4096 is only available for signature generation.

*** RSADP with k=2048 is the only CAVP testable aspect of [56B] key transport and is listed in the
Component Validation List (CVL). The vendor affirms conformance to [56B] for RSAEP and RSADP with
other key sizes, since no CAVP test is available.
The module is capable of performing Key Derivation through Extraction-then-Expansion using HMAC-SHA-
256 and HMAC-SHA-384. The vendor affirms conformance of this function to [56C], since no testing is
available independent of a full key establishment scheme. This KDF is approved for use within an approved
key establishment scheme but the CMVP does not currently provide CAVP component testing or vendor
affirmation of this component.

As defined in [90A] Table 2, the SHA-256 Hash_DRBG requires 256 bits of entropy. If ported to an Intel
operational environment, the Module provides the [140IG] 7.14 1(b) option to use a hardware NDRNG to
supply all entropy necessary to instantiate Hash_DRBG. In this case, the Module collects 2048 bits of
entropy input with 0.5 bits of entropy per one-bit sample, yielding 1024 bits of effective entropy. If the
Intel NDRNG feature is not present or disabled during the build process, the caller is required to define a
callback function to provide the required entropy. For this case, a caveat is required per [140IG] 7.14

Copyright © Code Corporation., 2021 Page 7 of 14
Code Corporation Public Material – May be reproduced only in its original entirety (without revision).

Entropy Caveats; following the example of [140IG] G.13 Instructions for Validation Information
Formatting:

When entropy is externally loaded, no assurance of the minimum strength of generated keys.

The caller may optionally supply a nonce; if no nonce is supplied by the caller, a 1024-bit value obtained
from the NDRNG is used for the nonce. The nonce and entropy input are provided to the [90A] hash
derivation function as part of DRBG instantiation.

Seeds used for asymmetric key generation are the unmodified output of from the approved DRBG.

Table 5 – Allowed Functions
 Description / Usage
HW NDRNG Hardware RNG (the Intel RDSEED function) when available.

5 Modes of Operation, Security Rules and Guidance
The Module supports a FIPS Approved mode of operation and a non-FIPS Approved mode of operation
and conforms to [140IG] 1.2 and 1.19 non-Approved Mode of Operation. FIPS Approved algorithms are
listed in Table 4.

The conditions for using the Module in the [140] Approved mode of operation are:
1. The Module is a cryptographic library and it is intended to be used with a calling application. The

calling application is responsible for the usage of the primitives in the correct sequence.
2. The keys used by the Module for cryptographic purposes are determined by the calling application.

The calling application is required to provide keys in accordance with [140D].
3. With the Module installed and configured in accordance with [UG] instructions, only the algorithms

listed in Table 4 are available. The module is in the Approved mode if the following conditions for
algorithm use are met.
a. Adherence to [140IG] A.13 SP 800-67rev1 Transition. The calling process shall limit encryption

with a Triple-DES key used in a recognized IETF protocol to 220 64-bit blocks of data. The calling
application shall limit encryption with a Triple-DES key used in any other scenario to 216 blocks of
data.

b. Adherence to [140IG] A.5 Key/IV Pair Uniqueness Requirements from SP 800-38D. The Module
supports both internal IV generation (for use with the [56A] compliant KAS API entry points) and
external IV generation (for TLS KAS usage). For internal IV generation, A.5 requires the calling
application to use the internal hardware NDRNG to seed the Hash_DRBG. For external IV
generation, the Module complies with A.5 1 (a), tested per option (ii) under A.5 TLS protocol IV
generation.

c. ECDSA and RSA signature generation must be used with a SHA-2 or SHA-3 hash function. In
accordance with [131], use of SHA-1 for signature generation is disallowed, except where
specifically allowed by NIST protocol-specific guidance. Otherwise, signature generation using
SHA-1 for digital signature generation places the Module in the non-Approved mode.

d. RSA signature generation and encryption primitives must use RSA keys with k = 2048, 3072 or
4096 bits or greater.

e. The calling process shall adhere to all current [131A] algorithm usage restrictions.

Copyright © Code Corporation., 2021 Page 8 of 14
Code Corporation Public Material – May be reproduced only in its original entirety (without revision).

6 Critical Security Parameters
All CSPs and public keys used by the Module are described in this section. The list of CSPs and public keys
are arranged for consistency with Table 8 – CSP and Public Key Access Rights within Services, which is
organized for reviewer convenience.

Table 6 - Critical Security Parameters (CSPs)
CSP Description / Usage
DS_SGK Private component of an RSA key pair (k = 2048, 3072 or 4096) * or ECC key pair (P-224, P-256,

P-384, P-521)† for signature generation
GKP_Private Private component of a general-purpose key pair generated by the Module, with use

determined by the caller. May be RSA (k =2048, 3072 or 4096) * or ECC key pair (P-224, P-256,
P-384, P-521)‡.

KAS_Private Private component of an FFC (L = 2048 N = 256) † or ECC (P-256, P-384, P-521) key pair
provided by the local participant, used for Diffie-Hellman shared secret generation.

KAS_SS The Diffie-Hellman ([56A] Section 5.7.1.1 FFC DH or [56A] Section 5.7.1.2 ECC CDH) shared
secret. FFC: 112-bit security strength†. ECC: (security strength between 128-bits and 256-bits)‡.

KD_DKM Key Derivation derived keying material. The separation into specific keys is done outside the
scope of the module but must be conformant to [56C].

KH_Key Keyed Hash key. May be 128-bit, 192-bit or 256-bit for use with CMAC or GMAC; or 160-bit,
256-bit or 512-bit for use with HMAC.

KTS_KDK Private component of an RSA key pair (k = 2048 or greater) used for RSA key transport*.
KTS_SS The RSA key transport shared secret (112-bit and 128-bit security strength).
RBG_Seed Entropy input (see the [140IG] 7.14 statement above) and nonce.
RBG_State Hash_DRBG (SHA-256) state V (440-bit) and C (440-bit).
SC_EDK AES (128-bit, 192-bit or 256-bit) or Triple-DES (192-bit 3-Key, 112-bit equivalent strength) key

used for symmetric encryption (including AES authenticated encryption).

Table 7 - Public Keys

Public Key Description / Usage

DS_SVK Public component of an RSA key pair (k = 1024, 2048, 3072, or 4096)* or ECC key pair (P-224,
P-256, P-384, or P-521)‡ for signature verification.

GKP_Public Public component of a general-purpose key pair generated by the Module, with use determined
by the caller. May be RSA (k =2048, 3072 or 4096)* or ECC key pair (P-224, P-256, P-384, P-521)‡.

KAS_Public Public component of an FFC (L = 2048 N = 256) † or ECC (P-256, P-384, P-521) key pair received
from the remote participant, used for Diffie-Hellman shared secret generation.

KTS_KEK Public component of an RSA key pair (k = 2048 or greater) used for RSA key transport*.

* For RSA key pairs, equivalent strength is taken from [57P1] Table 2: k = 1024-bits (80-bits; signature
verification only); k = 2048 (112-bits); k = 3072 (128-bits). [57P1] defines k as the size of modulus n.
† For DH key pairs, L = 2048 N = 256 is equivalent to 112-bits of security strength.
‡ For ECC key pairs, P-224, P-256, P-384, P-521 curves correspond to 112-bits, 128-bits, 192-bits and 256-bits
of security strength, respectively.

Copyright © Code Corporation., 2021 Page 9 of 14
Code Corporation Public Material – May be reproduced only in its original entirety (without revision).

7 Roles, Services, and Authentication
The Module supports two distinct operator roles, User and Cryptographic Officer (CO), and does not
support multiple concurrent operators, a maintenance role or bypass capability. The cryptographic
module does not provide an authentication or identification method of its own. The CO and the User roles
are implicitly identified by the service requested.

All services implemented by the Module are listed in the tables below with a description of service CSP
access. The calling application may use the wolfCrypt_GetStatus_fips() API to determine the current status
of the Module. A return code of 0 means the Module is in a state without errors. Any other return code is
the specific error state of the Module. See [UG] for additional information on the cryptographic services
listed in this section. Keys are provided to the Module by the calling application; manual key entry is not
supported. Data output is inhibited during self-tests, zeroization, and error states.

Table 8 – Authorized Services available in FIPS mode
Service Description Role

Digital signature Generate or verify ECDSA or RSA digital signatures. User
Generate key pair Generate asymmetric (ECDSA or RSA) key pairs. User
Key agreement Primitives used for DH key agreement on behalf of the application. The

DH or EC DH keys are passed in by the calling application.
User

Key derivation Derive keying material from a shared secret. User
Keyed hash Generate or verify data integrity with CMAC, GMAC or HMAC. User
Key transport Key transport primitives (RSAEP, RSADP) used to encrypt or decrypt

keying material on behalf of the caller.
User

Message digest Generate a message digest. User
Random Generate random bits using the DRBG. User
Self-test Run power-on self-test. User
Show status Provide Module status. User
Symmetric cipher Encrypt and decrypt data (including authenticated encrypt and decrypt). User

Zeroize Functions that destroy CSPs. FreeRng_fips destroys RNG CSPs. All other
services automatically overwrite memory bound CSPs. Cleanup of the
stack is the duty of the application. Restarting the general-purpose
computer clears all CSPs in RAM.

CO

Copyright © Code Corporation., 2021 Page 10 of 14
Code Corporation Public Material – May be reproduced only in its original entirety (without revision).

Table 9 – CSP and Public Key Access Rights within Services describes Module service access to
CSPs/cryptographic keys. In each cell below, the following annotations indicate the type of access by the
Module service:

• E (Execute): The service uses a CSP or public key provided by the calling application as positional
parameter on the stack; the calling application owns the stack; the Module zeroizes all local copies
of a CSP before returning.

• G (Generate): The Module generates or derives the cryptographic keys/CSPs internally. The
Module does not retain copies of the key after call completion.

• I (Input): The Module receives the CSP on the stack.
• O (Output): The Module outputs a CSP/cryptographic key to the calling application through the

logical interface. The Module does not output CSPs through a physical port.
• Z (Zeroize): The Module zeroizes the CSP.

Table 9 – CSP and Public Key Access Rights within Services

 Services

DS
_S

GK

DS
_S

VK

GK
P_

Pr
iv

at
e

GK
P_

Pu
bl

ic

KA
S_

Pr
iv

at
e

KA
S_

Pu
bl

ic

KA
S_

 S
S

KD
_D

KM

KH
_K

ey

KT
S_

KD
K

KT
S_

KE
K

KT
S_

SS

RB
G_

Se
ed

RB
G

St
at

e

SC
_E

DK

Digital signature EI EI -- -- -- -- -- -- -- -- -- -- -- -- --
Generate key pair -- -- GO GO -- -- -- -- -- -- -- -- -- -- --
Key agreement -- -- -- -- EI EI GO -- -- -- -- -- -- -- --
Key derivation -- -- -- -- -- -- EI GO -- -- -- EI -- -- --
Keyed hash -- -- -- -- -- -- -- -- EI -- -- -- -- -- --
Key transport -- -- -- -- -- -- -- -- -- EI EI IO -- -- --
Message digest -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
Random -- -- -- -- -- -- -- -- -- -- -- -- EI EG --
Self-test -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
Show status -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
Symmetric cipher -- -- -- -- -- -- -- -- -- -- -- -- -- -- EI
Zeroize Z -- Z -- Z -- Z -- Z Z -- Z Z Z Z

Note that the caller provides the KAS_Private and KAS_Public keys for shared secret computation; the
caller’s exchange and assurance of public keys with the remote participant is outside the scope of the
Module.

Copyright © Code Corporation., 2021 Page 11 of 14
Code Corporation Public Material – May be reproduced only in its original entirety (without revision).

8 Self-tests
Each time the Module is powered up it tests that the cryptographic algorithms still operate correctly and
that sensitive data has not been damaged. The Module provides a default entry point to automatically
run the power on self-tests compliant with [140IG] 9.10 Power-Up Tests for Software Module Libraries.
Power on self–tests are available on demand by reloading the Module.

On instantiation, the Module performs the self-tests described in Table 8. All KATs must complete
successfully prior to any other use of cryptography by the Module. If one of the KATs fails, the Module
enters the self-test failure error state. The error state is persistent and no services are available. All
attempts to use the Module’s services result in the return of a non-zero error code,
FIPS_NOT_ALLOWED_E (-197). To recover from an error state, reload the Module into memory.

Table 10 - Power-on Self-tests
Test Target Description

Software Integrity HMAC-SHA-256 with a 256-bit key.

AES Separate encryption and decryption KATs, CBC mode, 128-bit key.

AES GCM Separate authenticated encryption and decryption KATs, GCM mode, 128-bit key.

DRBG KAT for the HASH_DRBG using SHA-256.

ECDSA Performs an ECDSA PCT using the P-256 curve.

HMAC

HMAC-SHA-1 (160-bit key), HMAC-SHA-512 (512-bit key), and HMAC-SHA3-256
(256-bit key) KATs.

KAS ECC [56A] Section 5.7.1.2 primitive “Z” computation KAT (per [140IG] 9.6), using P-256.

KAS FFC [56A] Section 5.7.1.1 primitive “Z” computation KAT (per [140IG] 9.6), using L =
2048 N = 256.

RSA

Separate signature generation and signature verification KATs (k = 2048), inclusive
of the embedded SHA-256, RSADP and RSAEP (KTS) self-tests.

Triple-DES Separate encryption and decryption KATs, TCBC mode, 3-Key.

HMAC and RSA KATs include the embedded SHA self-tests per [140IG] 9.1, 9.2, and A.11.

Table 11 - Conditional Self-tests

Test Target Description
DRBG [90A] Section 11.3 Instantiate, Generate, Reseed health tests for SHA-256 Hash_DRBG.
NDRNG CRNGT of 64 bit blocks on the output of the NDRNG when available.
ECC PCT ECC Key Generation Pairwise Consistency Test, performed on ECC key pair generation.
FFC PCT FFC Key Generation Pairwise Consistency Test, performed on FFC key pair generation.
RSA PCT RSA Key Generation Pairwise Consistency Test, performed on RSA key pair generation.

PCTs are performed in accordance with [140IG] 9.9 Pair-Wise Consistency Self-Test When Generating a
Key Pair. Per IG 9.8, the continuous RNG test is not required for [90A] compliant DRBG output.

Copyright © Code Corporation., 2021 Page 12 of 14
Code Corporation Public Material – May be reproduced only in its original entirety (without revision).

9 References, Definitions and Source Files
Table 12 – References

Ref Filename / Title / Description Date
[140] FIPS 140-2, Security Requirements for Cryptographic Modules 12/3/2002
[140IG] FIPS 140-2 Implementation Guidance 3/27/2018
[180] FIPS 180-4, Secure Hash Standard (SHS) 8/4/2015
[186] FIPS 186-4, Digital Signature Standard (DSS) 7/19/2013
[197] FIPS 197, Advanced Encryption Standard (AES) 7/19/2013
[198] FIPS 198-1, The Keyed Hash Message Authentication Code (HMAC) 7/16/2008
[202] FIPS 202, SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions 8/4/2015

[38A] SP 800-38A, Recommendation for Block Cipher Modes of Operation: Methods and
Techniques 12/1/2001

[38C] SP 800-38C, Recommendation for Block Cipher Modes of Operation: the CCM Mode for
Authentication and Confidentiality 7/20/2007

[38D] SP 800-38D, Recommendation for Block Cipher Modes of Operation: Galois/Counter
Mode (GCM) and GMAC 11/28/2007

[56A] SP 800-56A, Rev. 3, Recommendation for Pair-Wise Key-Establishment Schemes Using
Discrete Logarithm Cryptography 4/16/2018

[56B] SP 800-56B, Recommendation for Pair-Wise Key-Establishment Schemes Using Integer
Factorization Cryptography 10/1/2014

[56C] SP 800-56C, Recommendation for Key-Derivation through Extraction-then-Expansion 11/2011
[57P1] SP 800-57 Part 1 Revision 4, Recommendation for Key Management Part 1: General 1/2016

[67] SP 800-67 Rev. 2, Recommendation for the Triple Data Encryption Algorithm (TDEA)
Block Cipher 7/18/2017

[90A] SP 800-90Ar1, Recommendation for Random Number Generation Using Deterministic
Random Bit Generators, Revision 1 6/24/2015

[131A] SP 800-131A Rev. 1, Transitions: Recommendation for Transitioning the Use of
Cryptographic Algorithms and Key Lengths 11/6/2015

[UG] wolfCrypt FIPS User’s Guide

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Module-Validation-Program/documents/fips140-2/FIPS1402IG.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.198-1.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br1.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-56c.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
https://csrc.nist.gov/CSRC/media/Publications/sp/800-67/rev-2/draft/documents/sp800-67r2-draft.pdf
https://csrc.nist.gov/CSRC/media/Publications/sp/800-67/rev-2/draft/documents/sp800-67r2-draft.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar1.pdf

Copyright © Code Corporation., 2021 Page 13 of 14
Code Corporation Public Material – May be reproduced only in its original entirety (without revision).

Table 13 - Acronyms and Definitions

Acronym Definition Acronym Definition
AES Advanced Encryption Standard GCM Galois/Counter Mode
AES-NI Advanced Encryption Standard New

Instructions
 GMAC Galois Message Authentication Code

API Application Programming Interface HMAC Keyed-Hash Message Authentication
Code

CAVP Cryptographic Algorithm Validation
Program

 IG Implementation Guidance

CBC Cipher-Block Chaining IV Initialization Vector
CCM Counter with CBC-MAC KAS Key Agreement Scheme
CMAC Cipher-based Message

Authentication Code
 KAT Known Answer Test

CMVP Cryptographic Module Validation
Program

 KDF Key Derivation Function

CO Cryptographic Officer KTS Key Transport Scheme
CPU Central Processing Unit LTS Long Term Support
CSP Critical Security Parameter NDRNG Non-deterministic Random Number

Generator
CTR Counter-mode NIST National Institute of Standards and

Technology
CVL Component Validation List PAA Processor Algorithm Accelerators
DES Data Encryption Standard PCT Pair-wise Consistency Test
DH Diffie-Hellman RAM Random Access Memory
DRBG Deterministic Random Bit Generator RNG Random Number Generator
DSA Digital Signature Algorithm RSA Rivest, Shamir, and Adleman Algorithm
ECB Electronic Code Book RSADP RSA Decryption Primitive
ECC Elliptic Curve Cryptography RSAEP RSA Encryption Primitive
ECC-CDH Elliptic Curve Cryptography Cofactor

Diffie-Hellman
 TCBC TDEA Cipher-Block Chaining

ECDH Elliptic Curve Diffie-Hellman TDEA Triple Data Encryption Algorithm
ECDSA Elliptic Curve Digital Signature

Algorithm
 TDES Triple Data Encryption Standard

EMC Electromagnetic Compatibility TLS Transport Layer Security
EMI Electromagnetic Interference SHA Secure Hash Algorithm
FFC Finite Field Cryptography SHS Secure Hash Standard
FIPS Federal Information Processing

Standard

Copyright © Code Corporation., 2021 Page 14 of 14
Code Corporation Public Material – May be reproduced only in its original entirety (without revision).

The source code files listed in Table 14 create the corresponding object files that comprise the
codeEncrypt module boundary on each supported operating environment; the extensions of the object
file can differ across the environments.

Table 14 - Source Files
Source File Name Description
aes.c AES algorithm
aes_asm.s AES assembler optimizations (Linux, AT&T style)
aes_asm.asm AES assembler optimizations (Windows 10, Intel style)
cmac.c CMAC algorithm
des3.c TDES algorithm
dh.c Diffie-Hellman
ecc.c Elliptic curve cryptography
fips.c FIPS entry point and API wrappers
fips_test.c Power on Self Tests
hmac.c HMAC algorithm
random.c DRBG algorithm
rsa.c RSA algorithm
sha.c SHA algorithm
sha256.c SHA-256 algorithm
sha3.c SHA-3 algorithm
sha512.c SHA-512 algorithm
wolfcrypt_first.c First FIPS function and Read Only address
wolfcrypt_last.c Last FIPS function and Read Only address

	1 Introduction
	2 Operational Environment
	3 Cryptographic Boundary and Logical Interfaces
	4 Approved and Allowed Cryptographic Functionality
	5 Modes of Operation, Security Rules and Guidance
	6 Critical Security Parameters
	7 Roles, Services, and Authentication
	8 Self-tests
	9 References, Definitions and Source Files

