
Document Version 1.2 ©Oracle Corporation 

This document may be reproduced whole and intact including the Copyright notice. 

 

FIPS 140-2 Non-Proprietary Security Policy 

 

 

Oracle Linux 8 GnuTLS Cryptographic Module 

FIPS 140-2 Level 1 Validation 

 

  Software Version: R8-8.4.0  

 

Date:  July 6th, 2022 

 
 



 

 

Oracle Linux 8 Gnu TLS Cryptographic Module Security Policy   

 i 

 
Title: Oracle Linux 8 Gnu TLS Cryptographic Module Security Policy 

Date:  July 6th, 2022 

Author: Oracle Security Evaluations – Global Product Security 

Contributing Authors:  

atsec informatioin security 

Oracle Linux Engineering 

 

 

 

Oracle Corporation 

World Headquarters 

2300 Oracle Way 

Austin, TX 78741 

U.S.A. 

Worldwide Inquiries:  

Phone: +1.650.506.7000 

Fax: +1.650.506.7200 

www.oracle.com  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Copyright © 2022, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only and the contents hereof are subject 
to change without notice. This document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or 
implied in law, including implied warranties and conditions of merchantability or fitness for a particular purpose. Oracle specifically disclaim any liability with 
respect to this document and no contractual obligations are formed either directly or indirectly by this document. This document may reproduced or 
distributed whole and intact including  this copyright notice. 

 

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. 

 

 

http://www.oracle.com/


 

 

Oracle Linux 8 Gnu TLS Cryptographic Module Security Policy 

 ii 

TABLE OF CONTENTS 
 
Section Title Page 

1. Introduction ................................................................................................................................................................... 1 

1.1 Overview ................................................................................................................................................................................. 1 
1.2 Document Organization ......................................................................................................................................................... 1 
2. Oracle Linux 8 GnuTLS Cryptographic Module.................................................................................................................. 2 

2.1 Functional Overview ............................................................................................................................................................... 2 
2.2 FIPS 140-2 Validation Scope ................................................................................................................................................... 2 

3. Cryptographic Module Specification................................................................................................................................ 3 

3.1 Definition of the Cryptographic Module ................................................................................................................................ 3 
3.2 Definition of the Physical Cryptographic Boundary ............................................................................................................... 4 
3.3 Description of the Approved Modes of Operation ................................................................................................................ 4 
3.4 Approved or Allowed Security Functions ............................................................................................................................... 5 
3.5 Non-Approved but Allowed Security Functions ..................................................................................................................... 8 
3.6 Non-Approved Security Functions.......................................................................................................................................... 8 

4. Module Ports and Interfaces ......................................................................................................................................... 10 

5. Physical Security .......................................................................................................................................................... 10 
6. Operational Environment ............................................................................................................................................. 11 

6.1 Tested Environments ............................................................................................................................................................ 11 
6.2 Vendor Affirmed Environments ........................................................................................................................................... 11 
6.3 Operational Environment Policy .......................................................................................................................................... 11 

7. Roles, Services and Authentication ............................................................................................................................... 12 
7.1 Roles ..................................................................................................................................................................................... 12 
7.2 FIPS Approved Operator Services and Descriptions............................................................................................................. 12 
7.3 Non-FIPS Approved Services and Descriptions .................................................................................................................... 14 
7.4 Operator Authentication ...................................................................................................................................................... 15 

8. Key and CSP Management ............................................................................................................................................ 16 

8.1 Random Number Generation ............................................................................................................................................... 17 
8.2 Key Generation ..................................................................................................................................................................... 18 
8.3 Key Establishment / Key Derivation ..................................................................................................................................... 18 
8.4 Key Entry and Output ........................................................................................................................................................... 20 
8.5 Key / CSP Storage.................................................................................................................................................................. 20 
8.6 Key / CSP Zeroization ............................................................................................................................................................ 20 

9. Self-Tests ..................................................................................................................................................................... 21 
9.1 Power-Up Self-Tests ............................................................................................................................................................. 21 
9.1.1 Integrity Tests ....................................................................................................................................................................... 21 
9.1.2 Cryptographic Algorithms Tests ........................................................................................................................................... 21 
9.2 On Demand Self-Tests .......................................................................................................................................................... 22 
9.3 Conditional Self-Tests ........................................................................................................................................................... 22 

10. Crypto-Officer and User Guidance ................................................................................................................................. 23 
10.1 Crypto-Officer Guidance ....................................................................................................................................................... 23 
10.2 User Guidance ...................................................................................................................................................................... 24 
10.2.1 TLS and Diffie-Hellman .................................................................................................................................................... 25 
10.2.2 AES GCM IV Guidance ...................................................................................................................................................... 25 
10.2.3 RSA and DSA Keys ............................................................................................................................................................ 25 



 

 

Oracle Linux 8 Gnu TLS Cryptographic Module Security Policy 

 ii 

10.2.4 Symmetric Key Generation .............................................................................................................................................. 26 
10.3 Handling Self-Test Errors ...................................................................................................................................................... 26 
11. Mitigation of Other Attacks .......................................................................................................................................... 28 

Acronyms, Terms and Abbreviations ................................................................................................................................... 29 

References ......................................................................................................................................................................... 30 



 

 

Oracle Linux 8 Gnu TLS Cryptographic Module Security Policy   

 iii 

List of Tables 
 
 
Table 1:  FIPS 140-2 Security Requirements ............................................................................................................................ 2 
Table 2:  Oracle Linux 8 Gnu TLS Cryptographic Components .................................................................................................. 3 
Table 3:  FIPS Approved or Allowed Security Functions ........................................................................................................... 8 
Table 4:  Non-Approved but Allowed Security Functions......................................................................................................... 8 
Table 5:  Non-Approved Functions ......................................................................................................................................... 9 
Table 6:  Mapping of FIPS 140 Logical Interfaces to Logical Ports ........................................................................................... 10 
Table 7:  Tested Operating Environment .............................................................................................................................. 11 
Table 8:  Vendor Affirmed Operational Environments .......................................................................................................... 11 
Table 9:  FIPS Approved Services ......................................................................................................................................... 14 
Table 10:  Non-FIPS Approved Services ................................................................................................................................ 15 
Table 11:  Keys/CSPs Table .................................................................................................................................................. 17 
Table 12:  Power-On Self-Tests ............................................................................................................................................ 22 
Table 13:  Conditional Self-Tests .......................................................................................................................................... 22 
Table 14:  Error Events and Error Messages .......................................................................................................................... 26 
Table 15:  Acronyms ............................................................................................................................................................ 29 
Table 16:  References .......................................................................................................................................................... 31 
 
 
List of Figures 
 
Figure 1:  Oracle Linux 8 GnuTLS Logical Cryptographic Boundary ........................................................................................... 4 
Figure 2:  Oracle Linux 8 GnuTLS Hardware Block Diagram ...................................................................................................... 4 
 
 



 

 

Oracle Linux 8 Gnu TLS Cryptographic Module Security Policy  

 Page 1 of 31 

1. Introduction 

1.1 Overview 

This document is the Security Policy for the Oracle Linux 8 GnuTLS Cryptographic Module by Oracle Corporation.  
Oracle Linux 8 GnuTLS Cryptographic Module is also referred to as “the Module or Module”. This Security Policy 
specifies the security rules under which the module shall operate to meet the requirements of FIPS 140-2 Level 1.  
It also describes how the Oracle Linux 8 GnuTLS Cryptographic Module functions in order to meet the FIPS 
requirements, and the actions that operators must take to maintain the security of the module.  
 
This Security Policy describes the features and design of the Oracle Linux 8 GnuTLS Cryptographic Module using 
the terminology contained in the FIPS 140-2 specification. FIPS 140-2, Security Requirements for Cryptographic 
Module specifies the security requirements that will be satisfied by a cryptographic module utilized within a 
security system protecting sensitive but unclassified information. The NIST/CSE Cryptographic Module Validation 
Program (CMVP) validates cryptographic module to FIPS 140-2. Validated products are accepted by the Federal 
agencies of both the USA and Canada for the protection of sensitive or designated information. 
 

1.2 Document Organization 

The FIPS 140-2 Submission Package contains:  
 

• Oracle Linux 8 GnuTLS Cryptographic Module Non-Proprietary Security Policy 

• Other supporting documentation as additional references 
 

With the exception of this Non-Proprietary Security Policy, the FIPS 140-2 Validation Documentation is 
proprietary to Oracle and is releasable only under appropriate non-disclosure agreements.  For access to these 
documents, please contact Oracle.  
 



 

 

Oracle Linux 8 Gnu TLS Cryptographic Module Security Policy  

 Page 2 of 31 

2. Oracle Linux 8 GnuTLS Cryptographic Module  

2.1 Functional Overview 

The Oracle Linux 8 Gnu TLS Cryptographic Module is a set of libraries implementing general purpose 
cryptographic algorithms and network protocols.  The module supports the Transport Layer Security (TLS) 
Protocol defined in [RFC 5246] and the Datagram Transport Layer Security (DTLS) Protocol defined in [RFC 4347].  
The module provides a C language Application Program Interface (API) for use by other calling applications that 
require cryptographic functionality or TLS/DTLS network protocols. 

 

2.2 FIPS 140-2 Validation Scope 

The following table shows the security level for each of the eleven sections of the validation.   
 

Security Requirements Section Level 
Cryptographic Module Specification 1 
Cryptographic Module Ports and Interfaces 1 

Roles and Services and Authentication 1 

Finite State Machine Model 1 

Physical Security N/A 

Operational Environment 1 

Cryptographic Key Management 1 
EMI/EMC 1 

Self-Tests 1 

Design Assurance 3 

Mitigation of Other Attacks 1 

Table 1:  FIPS 140-2 Security Requirements 
 
  



 

 

Oracle Linux 8 Gnu TLS Cryptographic Module Security Policy  

 Page 3 of 31 

3. Cryptographic Module Specification 

3.1 Definition of the Cryptographic Module 

The Oracle Linux 8 GnuTLS Cryptographic Module is defined as a software-only multi-chip standalone module as 
defined by the requirements within FIPS PUB 140-2.  The logical cryptographic boundary of the module consists of 
shared library files and their integrity check HMAC files, which are delivered through the Package Manager (RPM) 
as listed below: 
 

Component Description 
libgnutls This library provides the main interface which allows the calling applications to request 

cryptographic services. The Approved cryptographic algorithm implementations provided by 
this library include the TLS protocol, DRBG, RSA Key Generation, Diffie-Hellman and EC 
Diffie-Hellman. 

libnettle This library provides the cryptographic algorithm implementations, including AES, Triple-
DES, SHA, HMAC, RSA Digital Signature, DSA and ECDSA. 

libhogweed This library includes the primitives used by libgnutls and libnettle to support the asymmetric 
cryptographic operations. 

libgmp This library provides the big number arithmetic operations to support the asymmetric 
cryptographic operations. 

.hmac The .hmac files contain the HMAC-SHA-256 values of its associated library for integrity check 
during the power-up. 

Table 2:  Oracle Linux 8 Gnu TLS Cryptographic Components 

The module's logical boundary is the shared library files and their integrity check HMAC files, which are delivered 
through Oracle Linux Yum Public server listed in section 10.1.   
 
All components of the module will be in the RPM versions gnutls-3.6.14-8.0.1.el8.x86_64.rpm, gmp-6.1.2-
10.el8.x86_64.rpm, nettle-3.4.1-4.el8_3.x86_64.rpm or gnutls-3.6.14-8.0.1.el8.aarch64.rpm, gmp-6.1.2-
10.el8.aarch64.rpm, nettle-3.4.1-4.el8_3.aarch64.rpm. The binary files and the HMAC files within the module's 
logical boundary are listed below: 
 

• libgnutls library: 
o /usr/lib64/libgnutls.so.30.28 (64 bits) 
o /usr/lib64/.libgnutls.so.30.28.hmac (64 bits) 

 

• libnettle library: 
o /usr/lib64/libnettle.so.6.5 (64 bits) 
o /usr/lib64/.libnettle.so.6.5.hmac (64 bits) 

 

• libhogweed library: 
o /usr/lib64/libhogweed.so.4.5 (64 bits) 
o /usr/lib64/.libhogweed.so.4.5.hmac (64 bits) 

 

• libgmp library: 
o /usr/lib64/libgmp.so.10.3.2 (64 bits) 
o /usr/lib64/fipscheck/libgmp.so.10.3.2.hmac (64 bits) 

 
 

https://yum.oracle.com/repo/OracleLinux/OL8/4/security/validation/x86_64/getPackage/gnutls-3.6.14-8.0.1.el8.x86_64.rpm
https://yum.oracle.com/repo/OracleLinux/OL8/baseos/latest/x86_64/getPackage/gmp-6.1.2-10.el8.x86_64.rpm
https://yum.oracle.com/repo/OracleLinux/OL8/baseos/latest/x86_64/getPackage/gmp-6.1.2-10.el8.x86_64.rpm
https://yum.oracle.com/repo/OracleLinux/OL8/baseos/latest/x86_64/getPackage/nettle-3.4.1-4.el8_3.x86_64.rpm
https://yum.oracle.com/repo/OracleLinux/OL8/4/security/validation/aarch64/getPackage/gnutls-3.6.14-8.0.1.el8.aarch64.rpm
https://yum.oracle.com/repo/OracleLinux/OL8/4/security/validation/aarch64/getPackage/gmp-6.1.2-10.el8.aarch64.rpm
https://yum.oracle.com/repo/OracleLinux/OL8/4/security/validation/aarch64/getPackage/gmp-6.1.2-10.el8.aarch64.rpm
https://yum.oracle.com/repo/OracleLinux/OL8/4/security/validation/aarch64/getPackage/nettle-3.4.1-4.el8_3.aarch64.rpm


 

 

Oracle Linux 8 Gnu TLS Cryptographic Module Security Policy  

 Page 4 of 31 

Figure 1 shows the logical block diagram of the module executing in memory on the host system. 
 

 

Figure 1:  Oracle Linux 8 GnuTLS Logical Cryptographic Boundary 

3.2 Definition of the Physical Cryptographic Boundary 

The physical boundary of the module is the physical boundary of the test platform which is a General Purpose 
Computer (GPC).  No components are excluded from the requirements of FIPS PUB 140-2.  The following block 
diagram shows the hardware components of a GPC.   

 

 

Figure 2:  Oracle Linux 8 GnuTLS Hardware Block Diagram 
 

3.3 Description of the Approved Modes of Operation 

The module supports two modes of operation: 
 



 

 

Oracle Linux 8 Gnu TLS Cryptographic Module Security Policy  

 Page 5 of 31 

• In "FIPS mode" (the FIPS Approved mode of operation) only approved or allowed security functions with 
sufficient security strength can be used. 

• In "non-FIPS mode" (the non-Approved mode of operation) only non-approved security functions can be used. 
 
When the module is powered on, after the power-up self-tests are completed successfully, the module will be in 
FIPS Approved mode by default. Then the mode will be implicitly assumed depending on the services and security 
functions invoked. 
 

3.4 Approved or Allowed Security Functions 

The Oracle Linux 8 GnuTLS Cryptographic Module contains the following FIPS Approved Algorithms:  

 

Approved or Allowed Security Functions Certificate 

Symmetric Algorithms 

AES  AESNI: 
AES in CBC, CCM, CMAC, and GCM modes (Key sizes 128 and 256 for all modes except 
CBC where key sizes are 128, 192, 256) 

A 1704 

SSSE3 : 
AES in CBC, CMAC, and GCM modes (Key sizes 128 and 256 for all modes except CBC 
where key sizes are 128, 192, 256) 

A 1705 

SSSE3_CFB8_CMAC: 
AES in CFB8 mode (Key sizes 128, 192, 256) 

A 1707 

AESNI_CFB8_CMAC: 
AES in CFB8 mode (Key sizes 128, 192, 256) 

A 1708 

Generic C:   
AES in CBC, CMAC, GCM and GMAC modes (Key sizes 128 and 256 for all modes except 
CBC where key sizes are 128, 192, 256) 

A 1710 

Generic_C_XTS : 
AES in XTS mode (Key sizes 128 and 256) 

A 1711 

C_CFB8 : 
AES in CFB8 mode (Key sizes 128, 192, 256) 

A 1713 

CE 
AES in CBC, CCM, GCM modes (Key sizes 128 and 256 for all modes except CBC where 
key sizes are 128, 192, 256) 

A 2560 

Triple 
DES 

Generic_C: 
CBC ( KO 1, d/e ) 

A 1710 

Cryptographic Key Generation (CKG) 

CKG NIST SP 800-133rev2 
Asymmetric and Symmetric Cryptographic Key Generation 

(Vendor Affirmed) 

Secure Hash Standard (SHS) 

SHS SSSE3: 
SHA (1, 224, 256, 384, 512) 

A 1705 

Generic_C: 
SHA (1, 224, 256, 384, 512) 

A 1710 

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14208
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14209
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14211
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14212
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14214
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14215
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14217
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=35171
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14214
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14209
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14214


 

 

Oracle Linux 8 Gnu TLS Cryptographic Module Security Policy  

 Page 6 of 31 

Approved or Allowed Security Functions Certificate 

CE 
SHA (1, 224, 256, 384, 512) 

A 2560 

SHA-3 C_SHA-3: 
SHA3-224, SHA3-256, SHA3-384, SHA3-512 

A 1712 

SSSE3_SHA3: 
SHA3-224, SHA3-256, SHA3-384, SHA3-512 

A 1706 

Data Authentication Code 

HMAC SSSE3: 
HMAC-SHA (1, 224, 256, 384, 512) 

A 1705 

Generic_C: 
HMAC-SHA (1, 224, 256, 384, 512) 

A 1710 

CE 
HMAC-SHA (1, 224, 256, 384, 512) 

A 2560 

Asymmetric Algorithms 

RSA Generic_C: 
FIPS186-4: 
(Key Gen): Modulus Sizes: 2048, 3072, 4096 with hash size SHA2-384; 
PKCS 1.5 (Sig Gen): Modulus sizes 2048, 3072, 4096 with hash sizes SHA2-224, SHA2-256, 
SHA2-384, SHA2-512; 
PKCSPSS (Sig Gen): Modulus sizes 2048, 3072, 4096 with hash sizes SHA2-256, SHA2-384, 
SHA2-512; 
PKCS 1.5 (Sig Ver): Modulus sizes 2048, 3072, 4096 with hash sizes SHA2-224, SHA2-256, 
SHA2-384, SHA2-512; 
PKCSPSS (Sig Ver): Modulus sizes 2048, 3072, 4096 with hash sizes SHA2-256, SHA2-384, 
SHA2-512 

A 1710 

DSA Generic_C: 
FIPS186-4:  
(Key Gen): L=2048, N=224; L=2048, N=256; L=3072, N=256; 
(PQG Gen, PQG Ver): L=2048, N=224; L=2048, N=256; L=3072, N=256; (with SHA2-384); 
(SIG Gen): L=2048, N=224 (with SHA2-224, SHA2-256, SHA2-384, SHA2-512); L=2048, 
N=256; L=3072, N=256 (with SHA2-256, SHA2-384, SHA2-512); 
(SIG Ver): L=2048, N=224 (with SHA1, SHA2-224, SHA2-256, SHA2-384, SHA2-512); 
L=2048, N=256 (with SHA1, SHA2-256, SHA2-384, SHA2-512); L=3072, N=256 (with SHA1, 
SHA2-256, SHA2-384, SHA2-512) 

A 1710 

ECDSA Generic_C: 
FIPS186-4: 
(Key Gen, Key Ver): Curves P-256, P-384, P-521; 
(Sig Gen, Sig Ver): Curves P-256, P-384, P-521 with hash sizes SHA2-224, SHA2-256, 
SHA2-384, SHA2-512 

A 1710 

Random Number Generation NIST SP 900-90A 

DRBG Generic_C: 
AES ctr DRBG (Key size 256); without Derivation Function, without Prediction Resistance 
and Reseeding implementation 

A 1710 
 

Key Agreement Scheme Using HMAC Key Derivation Function (SP 800-56Cr1) 

KDA 
HKDF SP 

TLS_v1.3: 
Fixed Info Pattern: uPartyInfo || vPartyInfo 

A 1709 

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=35171
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14216
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14210
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14209
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14214
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=35171
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14214
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14214
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14214
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14214
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14214
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14213


 

 

Oracle Linux 8 Gnu TLS Cryptographic Module Security Policy  

 Page 7 of 31 

Approved or Allowed Security Functions Certificate 

800-
56Cr1 

Fixed Info Encoding: concatenation 
Derived Key Length: 2048 
Shared Secret Length: 224-65336 Increment 8 
HMAC Algorithm: SHA2-224, SHA2-256, SHA2-384, SHA2-512 

Key Establishment (NIST SP 800-56Ar3) 

KAS-
FFC-SSC 
SP 800-
56Ar3 

Generic_C: 
Domain Parameter Generation and Mod P Methods (ffdhe2048, ffdhe3072, ffdhe4096, 
ffdhe6144, ffdhe8192, MODP-2048, MODP-3072, MODP-4096, MODP-6144, MODP-
8192) 
Scheme:  dhEphem  
KAS role: initiator, responder 

A 1710 

KAS-
ECC-SSC 
SP 800-
56Ar3 

Generic_C: 
Domain Parameter Generation Methods (Curves P-256, P-384, P-521).  
Scheme:  EphemeralUnified 
KAS role: initiator, responder 

A 1710 

Safe 
Primes 
Key 
Generat
ion 

Generic_C: 
Safe Prime Groups: ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144, ffdhe8192, MODP-
2048, MODP-3072, MODP-4096, MODP-6144, MODP-8192 

A 1710 

KAS  KAS-FFC-SSC SP 800-56Ar3 with ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144, ffdhe8192; 
KAS-ECC-SSC SP 800-56Ar3 with curves P-256, P-384, P-521; 
KDF-TLS 1.0/1.1, 1.2 with SHA-256, SHA-384 

A 1710 

Key Derivation (NIST SP 800-135 Section 4.2 in TLS 1.0, 1.1, and 1.2) 

KDF-TLS 
(CVL) 

TLS1.0/1.1, TLS 1.2 (SHA 256, 384) A 1710 

Password Based Key Derivation Function 

PBKDF2 Generic_C: 
HMAC Algorithm: SHA-1, SHA2-224, SHA2-256, SHA2-384, SHA2-512 

Password Length: 8-128 Increment 1 
Salt Length: 128-4096 Increment 8 
Key Data Length: 128-4096 Increment 8 

A 1710 

Key Transport Scheme (KTS) 

KTS AESNI: 
AES-GCM Key Wrapping with 128 and 256 bit keys; 
AES-CCM Key Wrapping with 128 and 256 bit keys; 

A 1704 

AES-CBC with 128 and 256 bit keys and HMAC-SHA1, HMAC-SHA2-224, HMAC-SHA2-256, 
HMAC-SHA2-384, HMAC-SHA2-512; 

A 1704 (AES) 
A 1710 

SSSE3 : 
AES-GCM Key Wrapping with 128 and 256 bit keys; 
AES-CBC with 128 and 256 bit keys and HMAC-SHA1, HMAC-SHA2-224, HMAC-SHA2-256, 
HMAC-SHA2-384, HMAC-SHA2-512; 

A 1705 
 

Generic C 
AES-GCM Key Wrapping with 128 and 256 bit keys; 
AES-CBC with 128 and 256 bit keys and HMAC-SHA1, HMAC-SHA2-224, HMAC-SHA2-256, 

A 1710 

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14214
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14214
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14214
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14214
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14214
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14214
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14208
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14208
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14214
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14209
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14214


 

 

Oracle Linux 8 Gnu TLS Cryptographic Module Security Policy  

 Page 8 of 31 

Approved or Allowed Security Functions Certificate 

HMAC-SHA2-384, HMAC-SHA2-512; 

Triple-DES CBC with HMAC-SHA1, HMAC-SHA2-224, HMAC-SHA2-256, HMAC-SHA2-384, 
HMAC-SHA2-512; 

A 1705 (HMAC) 
A 1710 

A 2560 (HMAC) 

CE: 

AES-GCM modes Key Wrapping with 128 and 256 bit keys; 

AES-CCM modes Key Wrapping with 128 and 256 bit keys; 

AES-CBC with 128 and 256 bit keys and HMAC-SHA1, HMAC-SHA2-224, HMAC-SHA2-256, 
HMAC-SHA2-384, HMAC-SHA2-512; 

 A 2560 

Entropy (NIST SP 800-90B) 

ENT(NP) NIST SP 800-90B N/A 

Table 3:  FIPS Approved or Allowed Security Functions 

The module supports different AES and SHA implementations based on the underlying platform's capability.  The 
module supports the use of AES-NI and SSSE3 when it is operated in an x86-64 architecture environment.  When 
the AES-NI is enabled in the operating environment, the module performs the AES operations using the supports 
from the AES-NI instructions; when the AES-NI is disabled in the operating environment, the module performs the 
AES operations using the supports from the Supplemental Streaming SIMD Extensions 3 (SSSE3).  The module also 
performs SHA operations using the supports from the SSSE3.   

Additionally, the module supports ARM Cryptographic Extensions (CE) for AES and SHA operations when operated 
in an ARM architecture environment. The AES and SHA implementations that uses the AES-NI, SSSE3 and CE  
supports and their related algorithms have been CAVP tested and functional tested.  Although the module 
implements different implementations for AES and SHA, only one implementation for one algorithm will ever be 
available for AES, SHA and HMAC cryptographic services at run-time.  

3.5 Non-Approved but Allowed Security Functions 

The following are considered non-Approved but allowed security functions: 

 

Algorithm Usage 

RSA Key Wrapping  Key wrapping, size between 2048 and 16384 bits or more  

MD5 (no security claimed per IG 1.23) Used in TLS PRF only. 

Table 4:  Non-Approved but Allowed Security Functions 

3.6 Non-Approved Security Functions 

The following services are non-Approved and use of these algorithms will put the module in the non-approved 
mode of operation implicitly. The services associated with these algorithms are specified in section 7.3: 

 

Algorithm Usage 

AES-SIV Encrypt/Decrypt 

Camellia Encrypt/Decrypt 

DES Encrypt/Decrypt 

Diffie-Hellman Key Agreement using keys less than 2048 bits 

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14209
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14214
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=35171
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=35171


 

 

Oracle Linux 8 Gnu TLS Cryptographic Module Security Policy  

 Page 9 of 31 

Algorithm Usage 

Keys generated with domain parameters other than safe primes 

RSA FIPS 186-2 Key Generation 

FIPS 186-4 Signature Generation/Verification, Key Generation with keys smaller than 2048 bits 
and larger than 4096 bits 

Key Wrapping with keys less than 2048 bits 

DSA Parameter/Key generation, Signature Generation/Verification with keys not listed in Table 3 

FIPS 186-4 Signature Verification with non-approved message digests 

FIPS 186-4 Signature Generation with non-approved message digests or SHA-1 

ECDSA Key Generation/Verification, Signature Generation/Verification with curves not listed in Table 3 

Key Generation with curves not listed in Table 3 

RSA and ECDSA FIPS 186-4 Signature Generation/Verification with non-approved message digests or SHA-1 

GOST GOST Hash R 34.11-94 (RFC4357) 

MD2 Hashing 

MD4 Hashing 

MD5 Hashing 

RC2 Encrypt/Decrypt 

RC4 Encrypt/Decrypt 

RIPEMD-160 Hashing 

Salsa-20 Encrypt/Decrypt 

SHA-1 Signature Generation 

UMAC Authenticated Data Integrity of a message 

Streebog-256 and 
Streebog-512  

Hashing 

ChaCha20  Encrypt/Decrypt 

Poly 1305 Authenticated Encryption/Decryption 

Ed25519 curve Digital Signature 

EdDSA Digital Signature 

Table 5:  Non-Approved Functions 
 

 



 

 

Oracle Linux 8 Gnu TLS Cryptographic Module Security Policy  

 Page 10 of 31 

4. Module Ports and Interfaces 

As a software-only module, the module does not have physical ports. For the purpose of FIPS 140-2 validation, 
the physical ports of the module are interpreted to be the physical ports of the hardware platform on which it 
runs. The logical interface is a C-language Application Program Interface (API) through libgnutls library. 
 
The Data Input interface consists of the input parameters of the API functions. The Data Output interface consists 
of the output parameters of the API functions. The Control Input interface consists of the actual API functions. 
The Status Output interface includes the return values of the API functions.  The module can be accessed by 
utilizing the API it exposes.  The table below, shows the mapping of ports and interfaces as per FIPS 140-2 
Standard. 

 

FIPS 140 Interface Physical Port Module Interfaces 

Data Input Ethernet Ports API input parameters, kernel I/O – network or 
files on file system, TLS protocol 

Data Output Ethernet Ports API output parameters, kernel I/O – network 
or files on file system, TLS protocol 

Control Input Management Ethernet Port, USB 
for Keyboard/Mouse, Serial Port 

API function calls, TLS protocol 

Status Output Management Ethernet Port, Serial 
Port 

API return codes, error message, TLS protocol 

Table 6:  Mapping of FIPS 140 Logical Interfaces to Logical Ports 
 

Note:  The module is an implementation to support the TLS protocol defined in [RFC5246] and TLS is a port 
networking interface to provide secure channel between entities.  When the calling application sends the data to 
the module, the module packages the data according to the TLS standard and send to other entity confidentially 
and integrity.  The module is considered as a user interface to use the TLS protocol to communicate with other 
remote entities securely through the network. 

 

5. Physical Security 

The Module is comprised of software only and thus does not claim any physical security. 
 



 

 

Oracle Linux 8 Gnu TLS Cryptographic Module Security Policy  

 Page 11 of 31 

6. Operational Environment 

6.1 Tested Environments 

The Module was tested on the following environments with and without PAA (i.e. AES-NI): 
 

Operating Environment Processor Hardware 
Oracle Linux 8.4 64-bit Intel® Xeon® Platinum 8167M Oracle Server X7-2C 

Oracle Linux 8.4 64-bit AMD EPYC™ 7551 Oracle Server E1-2C 

Oracle Linux 8.4 64-bit Ampere®Altra® Neoverse-N1 Oracle Server A1-2C 

Table 7:  Tested Operating Environment 

6.2 Vendor Affirmed Environments 

The following platforms have not been tested as part of the FIPS 140-2 level 1 certification however Oracle 
“vendor affirms” that these platforms are equivalent to the tested and validated platforms.  Additionally, Oracle 
affirms that the module will function the same way and provide the same security services on any of the systems 
listed below.  

 

Operating Environment Hardware 
Oracle Linux 8 64-bit Oracle X Series Servers 

Oracle Linux 8 64-bit Oracle E Series Servers 

Oracle Linux 8 64-bit Oracle A Series Servers 

Table 8:  Vendor Affirmed Operational Environments 
 
Note: CMVP makes no statement as to the correct operation of the module or the security strengths of the 
generated keys when so ported if the specific operational environment is not listed on the validation certificate. 

 

6.3 Operational Environment Policy 

The operating system is restricted to a single operator mode of operation (i.e., concurrent operators are explicitly 
excluded). 
 
The application that makes calls to the module is the single user of the module, even when the application is 
serving multiple clients. 
 
In operational mode, the ptrace(2) system call, the debugger (gdb(1)), and strace(1) shall not be used. In addition, 
other tracing mechanisms offered by the Linux environment, such as ftrace or systemtap, shall not be used. 

 



 

 

Oracle Linux 8 Gnu TLS Cryptographic Module Security Policy 

 Page 12 of 31 

7. Roles, Services and Authentication  

7.1 Roles 

The module supports the following roles: 
 

• User Role:  performs all services (in both FIPS mode and non-FIPS mode of operation), except module installation. 

• Crypto Officer Role: performs module installation. 
 
The User and Crypto Officer roles are implicitly assumed by the entity accessing services implemented by the module. 

7.2 FIPS Approved Operator Services and Descriptions 

The below table provides a full description of FIPS Approved services provided by the module and lists the roles allowed to invoke each service.  In 
the table below, the “U” represents a User Role, and “CO” denotes a Crypto Officer role.   
 

U CO Service Name Service Description Keys and CSP(s) Access 
Type(s) 

X  Symmetric Encryption/Decryption Encrypts or decrypts a block of data using 3-Key 
Triple-DES or AES  

AES or 3-Key Triple-DES Key R, X 

X  Symmetric Key Generation Generate AES, Triple-DES, HMAC keys AES, Triple-DES, HMAC R, W, X 

X  Key Wrapping Key wrapping with AES-GCM KTS, AES-CBC + HMAC 
KTS, Triple-DES-CBC + HMAC KTS 

AES, Triple-DES, HMAC R, X 

X  Asymmetric Key Generation Generate RSA, DSA, ECDSA keys RSA, DSA, ECDSA R, W, X 

X  Digital Signature Generation and 
Verification 

Sign and verify operations with X509 certificates RSA, DSA, and ECDSA keys R, X 

X  DSA Domain Parameter 
Generation/Verification 

Generate and verify DSA domain parameters DSA private and public keys R, W, X 

X  Public Key Verification Verifies a public key is valid ECDSA public key R, X 

X  Diffie-Hellman Parameters 
Generation using Safe Primes, 
Import and Export 

Generate, import, and export Diffie-Hellman 
parameters 

Diffie-Hellman domain 
parameters 

R, W, X 

X  Import and Export Public Key Import and export public key components RSA, DSA, ECDSA public key R, X 

X  Import and Export Private Key Import and export private key components RSA, DSA, ECDSA private key R, X 

X  Keyed Hash (HMAC) HMAC-SHA services HMAC keys > 112 bits R, X 

X  Hash SHA hashing services None N/A 

X  Key Derivation TLS KDF TLS Derived Key R, W, X 



 

 

Oracle Linux 8 Gnu TLS Cryptographic Module Security Policy 

 Page 13 of 31 

U CO Service Name Service Description Keys and CSP(s) Access 
Type(s) 

PBKDF PBKDF password and PBKDF 
derived key 

HKDF Shared secret, HKDF derived 
key 

X  Shared Secret Computation Shared secret computation  Shared secret R, W, X 

X  Random Number Generation  Generate random numbers using SP 800-90A DRBG Entropy input string and seed, 
DRBG Internal V and Key 

R, W, X 

X  TLS/DTLS Network Protocol Provide data encryption and authentication over TLS 
network protocol 

TLS Derived Key X 

X  TLS/DTLS Key Agreement Negotiate a TLS key agreement secure channel TLS Derived Key, RSA, DSA or 
ECDSA keys, shared secret 
(pre-master secret), master 
secret, Diffie-Hellman and EC 
Diffie-Hellman Private keys 

R, W, X 

X  TLS Handshaking Using X509 
Certificates 

TLS Handshaking using X509 Certificates 
Authentication method with:  
• Diffie-Hellman KAS 
• EC Diffie-Hellman KAS  
• RSA-based PKCSv1.5 Key Wrapping 

TLS Derived Key, RSA, DSA or 
ECDSA keys, shared secret 
(pre-master secret), master 
secret, Diffie-Hellman and EC 
Diffie-Hellman Private keys 

R, W, X 

X  TLS Handshaking Using Anonymous 
Authentication method 

TLS Handshaking using Anonymous Authentication 
method with: 
• Diffie-Hellman KAS 
• EC Diffie-Hellman KAS 

TLS Derived Key, RSA, DSA or 
ECDSA keys, shared secret 
(pre-master secret), master 
secret, Diffie-Hellman and EC 
Diffie-Hellman Private keys 

R, W, X 

X  TLS Handshaking using Pre-Shared 
Key (PSK) Authentication 

TLS Handshaking using Pre-Shared Key (PSK) 
Authentication method with: 
• Diffie-Hellman KAS 
• EC Diffie-Hellman KAS  
• RSA-based PKCSv1.5 Key Wrapping   

TLS Derived Key, RSA, DSA or 
ECDSA keys, shared secret 
(pre-master secret), master 
secret, Diffie-Hellman and EC 
Diffie-Hellman Private keys 

R, W, X 

X  TLS X.509 Certificate Handling, 
including digital signature, 
key/certificate import and export 

TLS X.509 Certificate Handling, including digital 
signature, key/certificate import and export, and 
support the following format: 
• PKCS#7 
• PKCS#12 

RSA, DSA or ECDSA keys R, W 



 

 

Oracle Linux 8 Gnu TLS Cryptographic Module Security Policy 

 Page 14 of 31 

U CO Service Name Service Description Keys and CSP(s) Access 
Type(s) 

• Binary (DER) encoding 
• ASCII (PEM) encoding 

X  Show Status Show status of the module state None N/A 

X  Self-Test Initiate power-on self-tests None N/A 

X  Zeroization Zeroize all critical security parameters All keys and CSP’s Z 
 X Module Installation Installation of the module  None N/A 

R – Read, W – Write, X – Execute, Z - Zeroize 

Table 9:  FIPS Approved Services  
 

7.3 Non-FIPS Approved Services and Descriptions  

The following table lists the non-Approved services available in non-FIPS mode. Security services listed in the table below, make use of non-
approved cryptographic algorithms. Use of any of these services in Table 10 will put the module in the non-Approved mode implicitly. The 
algorithms associated with these services are specified in section 3.6. 

 

U CO Service Name Service Description Keys Access 
Type(s) 

X  Asymmetric 
Encryption/Decryption 

Encrypts or decrypts using non-Approved RSA 
key size 

RSA key wrapping with keys less 2048 bits R, X 

X  AEAD Encryption/Decryption 
using Chacha20 and Poly1305 

Authenticated encryption or decryption using  
ChaCha20 and Poly1305 

Chacha20 key R, X 

X  Symmetric 
Encryption/Decryption 

Encrypts or decrypts using non-Approved 
algorithms 

AES-SIV, Camellia, ChaCha20, DES, RC2, RC4, 
Salsa-20 keys 

R, W, X 

X  Digital Signature Generation Sign operations with non-Approved keys or 
non-approved message digest or SHA-1 

RSA key lengths of < 2048 and key lengths of 
> 4096, 
DSA key lengths of < 2048 and key lengths of 
> 3072,  
ECDSA curve P-192 and P-224  

R, X 

X  Digital Signature Verification Verify operations with non-Approved keys or 
non-approved message digest 

RSA keys < 2048 and RSA keys > 4096,  
DSA keys < 2048 bits and DSA keys > 3072,  
ECDSA curve P-192 and P-224  

R, X 

X  Asymmetric signature  
generation/verification 

Asymmetric signature  
using Ed25519 curve, EdDSA 

EC private key R, W, X 

X  TLS/DTLS Key Agreement Negotiate a TLS key agreement with non- Diffie-Hellman key lengths < 2048, R, W, X 



 

 

Oracle Linux 8 Gnu TLS Cryptographic Module Security Policy 

 Page 15 of 31 

U CO Service Name Service Description Keys Access 
Type(s) 

Approved keys Diffie-Hellman with keys generated with 
domain parameters other than safe primes 

X  Asymmetric Key Generation FIPS 186-4 key generation of non-Approved 
RSA, DSA and ECDSA keys  

RSA keys < 2048 and keys > 4092, 
DSA keys < 2048 and keys > 3072, 
ECDSA curve P-192 and P-224 

R, W, X 

FIPS 186-2 key generation RSA, DSA keys R, W, X 

X  Hash Hashing using non-Approved hash functions 
that include MD2, MD4, MD5, GOST, RIPEMD-
160, Streebog-256 and Streebog-512 

None N/A 

X  UMAC MAC generation using UMAC MAC Key R, X 

X  Support to use DANE 
Certificate 

DNS-based Authentication of Named Entities 
(DANE) is a protocol to allow X.509 certificates, 
commonly used for TLS. 

RSA, DSA and ECDSA public/private 
keys 

R, X 

X  Support to use OpenPGP 
Certificate 

Use of OpenPGP certificates for a TLS session RSA, DSA and ECDSA public/private 
keys 

R, X 

X  Support to use PKCS#11 
Certificate 

Use of PKCS#11 certificates in GnuTLS RSA, DSA and ECDSA public/private 
keys 

R, X 

X  Support to use the Secure 
RTP (SRTP) 
defined in RFC5764 

a SRTP extension for DTLS AES and HMAC keys R X 

X  Support to use Trusted 
Platform Module (TPM) 

TPM operations supported and used by GnuTLS 
limited to TPM 1.2. 

RSA, DSA and ECDSA public/private keys R, X 

Table 10:  Non-FIPS Approved Services  
 

Note: The module does not share CSPs between FIPS mode of operation and a non‐FIPS mode of operation. All cryptographic keys used in the 
FIPS mode of operation must be generated in the FIPS mode or imported while running in the FIPS mode. The DRBG shall not be used for key 
generation for non-Approved services in non-FIPS mode. 

 

7.4 Operator Authentication  

The module does not support operator authentication mechanisms. 



 

 

Oracle Linux 8 Gnu TLS Cryptographic Module Security Policy 

 Page 16 of 31 

8. Key and CSP Management 

The following keys, cryptographic key components and other critical security parameters are contained in the module.   

CSP Name Generation Entry/Output Storage Zeroization 
AES Keys (128, 192, 
256 bits) 

Keys can be generated by SP 800-90A 
DRBG as mentioned in section 8.2.  

The key is passed into the module via API input 
parameters.  No output mechanism provided. 
 

RAM in 
plaintext 

gnutls_cipher_deinit() 

AES 
CCM/CMAC/GCM/ 
GMAC/XTS key 
(128, 256 bits) 

Triple-DES Keys 

(192 bits) 

RAM in 
plaintext 

gnutls_cipher_deinit() 
 

HMAC Key ( ≥ 112 
bits) 

RAM in 
plaintext 

 gnutls_hmac_deinit() 
 

DSA Private Key 

(2048 and 3072 

bits) 

Keys are generated using FIPS 186-4 
and the random value used in the key 
generation is generated using SP800- 
90A DRBG 
 

The key is passed into the module to and from 
calling application via API parameters.   

RAM in 
plaintext 

gnutls_privkey_deinit() or 
gnutls_x509_privkey_dei
nit()  

ECDSA Private Key 

(P-256, P-384, P-

521) 

The key is passed into the module to and from 
calling application via API parameters.   

RAM in 
plaintext 

gnutls_privkey_deinit() 
Or gnutls_x509_ 
privkey_deinit()  

RSA Private Key 

(2048, 3072, 4096 

bits) 

The key is passed into the module to and from 
calling application via API parameters.   

RAM in 
plaintext 

gnutls_rsa_params_deinit
(, gnutls_privkey_deinit() 
or gnutls_x509 _ 
privkey_deinit()  

Entropy Input 
String for DRBG 
Seed 

Obtained from the CPU Jitter source  The module does not import or export the key or 
CSP. 
 

RAM in 
plaintext 

gnutls_global_deinit() 

DRBG seed, 
internal state (V 
and Key) 

Generated internally in the DRBG RAM in 
plaintext 

gnutls_global_deinit() 

TLS Pre-Master 
Secret 

Generated using in the Diffie-Hellman 
or EC Diffie-Hellman key agreement 
or RSA key transport during 
handshake. 

Entry: if received by the module as TLS server, 
wrapped with server’s public RSA key, otherwise no 
entry. 
Output: encrypted with RSA only when TLS with RSA 
key wrapping is used if sent by the module as TLS 

RAM in 
plaintext 

gnutls_deinit() 



 

 

Oracle Linux 8 Gnu TLS Cryptographic Module Security Policy 

 Page 17 of 31 

CSP Name Generation Entry/Output Storage Zeroization 
client. 

Shared Secret Generated by the module in the 
Diffie-Hellman or EC Diffie-Hellman 
shared secret computation. 

The key is passed into the module to and from 
calling application via API parameters. 

RAM in 
plaintext 

gnutls_deinit() 

Master secret Derived from pre-master secret. Generated inside the module. No output 
mechanism provided. 

RAM in 
plaintext 

gnutls_deinit() 

TLS Derived Key Generation during TLS KDF Generated inside the module. No output 
mechanism provided. 

RAM in 
plaintext 

Internal state is zeroized 
automatically when 
function returns. 

Diffie-Hellman keys 
2048, 3072, 4096, 
6144 and 8192 bits 

Keys are generated using SP 800-
56Arev3 and the random value used 
in the key generation is generated 
using SP 800-90A DRBG. 

The key is passed into the module to and from 
calling application via API parameters.   

RAM in 
plaintext 

gnutls_deinit() or 
gnutls_dh_params_deinit
()  

EC Diffie-Hellman 
private keys P-256, 
P-384 and P-521 
curves 

Keys are generated using FIPS 186-4 
and the random value used in the key 
generation is generated using SP 800- 
90A DRBG. 

The key is passed into the module to and from 
calling application via API parameters.   

RAM in 
plaintext 

gnutls_deinit() or 
gnutls_ecdh_params_dei
nit()  

PBKDF derived key Generated during PBKDF The resulting key is output through output 
parameters. 

RAM in 
plaintext 

Internal PBKDF state is 
zeroized automatically 
when function returns. 

PBKDF password N/A The password is passed into the module via API 
input parameters. 

RAM in 
plaintext 

Internal PBKDF state is 
zeroized automatically 
when function returns. 

HKDF derived key Generated during HKDF The resulting key is output through output 
parameters. 

RAM in 
plaintext 

Internal HKDF state is 
zeroized automatically 
when function returns. 

Table 11:  Keys/CSPs Table 
 

8.1 Random Number Generation 
 

The module provides an SP 800-90A-compliant Deterministic Random Bit Generator (DRBG) for creation of key components of asymmetric keys, 
and random number generation.  
 
The seeding (and automatic reseeding) of the DRBG is done with getrandom().  
 



 

 

Oracle Linux 8 Gnu TLS Cryptographic Module Security Policy 

 Page 18 of 31 

The module employs the Deterministic Random Bit Generator (DRBG) based on [SP 800-90A] for the random number generation.  The DRBG 
supports the CTR_DRBG mechanisms.  The module performs the DRBG health tests as defined in section 11.3 of [SP 800-90A]. The module uses 
CPU jitter as a noise source provided by the operational environment which is within the module’s physical boundary but outside of the module’s 
logical boundary.  The source is compliant with [SP 800-90B] and marked as ENT on the certificate.  The entropy provided from the entropy source 
provides 230 bits of entropy and the module requires up to 256 bits of entropy.  The caveat, “The module generates cryptographic keys whose 
strengths are modified by available entropy” applies. 

 

8.2 Key Generation 

The Key Generation methods implemented in the module for Approved services in FIPS mode is compliant with [SP 800-133].  

 

For generating RSA, DSA and ECDSA keys the module implements asymmetric key generation services compliant with [FIPS 186-4] and [SP 800-
90A]. A seed (i.e. the random value) used in asymmetric key generation is directly obtained from the [SP 800-90A] DRBG. 
 
The public and private key pairs used in the Diffie-Hellman and EC Diffie-Hellman KAS are generated internally by the module using key generation 
compliant with [SP 800-56Arev3].  
 
The module supports the generation of symmetric keys. gnutls_rnd() can be used to generate symmetric keys. Each will call the DRBG compliant 
to [SP 800-90A] to generate the key materials for symmetric keys or HMAC keys. Therefore, CKG (vendor affirmed) is mentioned on the draft 
certificate.  
 

The module generates cryptographic keys whose strengths are modified by available entropy. 
 

8.3 Key Establishment / Key Derivation 

The module provides Diffie-Hellman and EC Diffie-Hellman shared secret computation compliant with SP 800-56Arev3, in accordance with 
scenario X1 (1) of IG D.8 with Diffie-Hellman with at least 2048 bits key size and EC Diffie-Hellman with P-256, P-384 or P-521 curve in FIPS mode. 
The Diffie-Hellman with less than 2048 bits key size is only available in non-FIPS mode.  

The module provides Diffie-Hellman and EC Diffie-Hellman key agreement schemes compliant with SP 800-56rev3 and used as part of the TLS 
protocol key exchange in accordance with scenario X1 (2) of IG D.8; that is, the shared secret computation (KAS-FFC-SSC and KAS-ECC-SSC) 
followed by the derivation of the keying material using SP 800-135 KDF. 

For Diffie-Hellman, the module supports the use of safe primes from RFC 7919 for domain parameters and key generation, which are used in the 
TLS key agreement implemented by the module. 



 

 

Oracle Linux 8 Gnu TLS Cryptographic Module Security Policy 

 Page 19 of 31 

TLS (RFC 7919)  

• ffdhe2048 (ID = 256)  

• ffdhe3072 (ID = 257)  

• ffdhe4096 (ID = 258)  

• ffdhe6144 (ID = 259)  

• ffdhe8192 (ID = 260) 
 

The module also supports RSA key wrapping using encryption and decryption primitives with the modulus size of at least 2048 bits in FIPS mode. 
The modulus size of 1024 bits is only available in non-FIPS mode.  According to Table 2: Comparable strengths in NIST SP 800-57 Part1 Rev5 (dated 
on May, 2020), the key sizes of RSA, Diffie-Hellman and EC Diffie Hellman provides the following security strength for the corresponding key 
establishment method shown below: 

 

• RSA key wrapping provides between 112 and 256 bits of encryption strength; 

• Diffie-Hellman key agreement provides between 112 and 200 bits of encryption strength; 

• Diffie-Hellman shared secret computation provides between 112 and 200 bits of encryption strength; 

• EC Diffie-Hellman key agreement provides between 128 and 256 bits of encryption strength; 

• EC Diffie-Hellman shared secret computation provides between 128 and 256 bits of encryption strength. 
 

The module provides approved key transport methods compliant to SP 800-38F according to IG D.9. The key transport method is provided by: 

• AES-GCM and AES-CCM 

• AES-CBC with HMAC used within the TLS protocol. 

• Triple-DES-CBC with HMAC used within the TLS protocol. 

• Therefore, the following caveats apply: 
o KTS (AES Certs. #A1704, #A1705, #A1710 and #A2560; key establishment methodology provides 128 or 256 bits of encryption 

strength) 
o KTS (AES Certs. #A1704, #A1705, #A1710 and #A2560 and HMAC Certs. #A1705, #A1710 and #A2560; key establishment 

methodology provides 128 or 256 bits of encryption strength) 
o KTS (Triple-DES Cert. #A1710 and HMAC Certs. #A1705, #A1710 and #A2560; key establishment methodology provides 112 bits of 

encryption strength) 
Note: As the module supports the RSA key pair with 16384 bits or more modulus size, the encryption strength 256 bits is claimed for RSA key 
wrapping. 

 



 

 

Oracle Linux 8 Gnu TLS Cryptographic Module Security Policy 

 Page 20 of 31 

The module supports the following key derivation methods according to [SP 800-135]: 

• KDF for the TLS protocol, used as pseudo-random functions (PRF) for TLSv1.0/1.1 and TLSv1.2. 
 
The module supports the following derivation methods according to [SP 800-56C1]: 

• HKDF for the protocol TLSv1.3. 
 

The module also supports password-based key derivation (PBKDF). The implementation is compliant with option 1a of [SP 800-132].  Keys derived 
from passwords or passphrases using this method can only be used in storage applications. 

8.4 Key Entry and Output 

The module does not support manual key entry or intermediate key generation key output.  For symmetric algorithms or for HMAC, the keys are 
provided to the module via API input parameters for the cryptographic operations. For asymmetric algorithms, the keys are also provided to the 
module via API input parameters. The module also provides the services to import and export public and private keys to and from calling 
application only. 

 

8.5 Key / CSP Storage 

The module does not support persistent key storage. The key and CSPs are stored as plaintext in the RAM. The keys are provided to the module 
via API input parameters, and are destroyed by the module using appropriate API function calls before they are released in the memory. 
The HMAC key used for integrity test is stored in the .hmac file and relies on the operating system for protection. 
 

8.6 Key / CSP Zeroization 

The memory occupied by keys is allocated by regular libc malloc/calloc() calls. The application that uses the module is responsible for calling the 
appropriate destruction functions from the GnuTLS API to zeroize the keys or keying material. The destruction functions then overwrite the 
memory occupied by keys with pre-defined values and deallocates the memory with the free() call. In case of abnormal termination, or swap 
in/out of a physical memory page of a process, the keys in physical memory are overwritten by the Linux kernel before the physical memory is 
allocated to another process. 

 



 

 

Oracle Linux 8 Gnu TLS Cryptographic Module Security Policy 

 Page 21 of 31 

9. Self-Tests 

FIPS 140-2 requires that the module perform power-up tests to ensure the integrity of the module and the 
correctness of the cryptographic functionality at start up. In addition, some functions require continuous testing 
of the cryptographic functionality, such as the asymmetric key generation.  If any self-test fails, the module 
returns an error code and enters the error state. No data output or cryptographic operations are allowed in error 
state.  See section 10.3 for descriptions of possible self-test errors and recovery procedures. 

9.1 Power-Up Self-Tests 

The module performs power-up self-tests automatically when the module is loaded into memory; power-up tests 
ensure that the module is not corrupted and that the cryptographic algorithms work as expected.  Input, output, 
and cryptographic functions cannot be performed while the module is in a self-test state because the module is 
single-threaded and will not return to the calling application until the power-up self-tests are completed.  If any 
power-up self-test fails, the module returns the error code listed in section 10.3 and displays “Error in GnuTLS 
initialization” and then enters error state.  The subsequent calls to the module will also fail - thus no further 
cryptographic operations are possible.  If the power-up self-tests complete successfully, the module will return 0 
and accepts cryptographic operation services request. 
 
9.1.1 Integrity Tests 

The integrity of the module is verified by comparing an HMAC-SHA-256 value calculated at run time with the 
HMAC value stored in the .hmac file that was computed at build time for each component of the module.  If the 
HMAC values do not match, the test fails and the module enters the error state. 

 
9.1.2 Cryptographic Algorithms Tests 

The module performs self-tests on all FIPS-Approved cryptographic algorithms supported in the approved mode 
of operation, using the known answer tests (KAT) and pair-wise consistency test (PCT), shown in the following 
table: 

 

Algorithm Test 

AES KAT AES-CBC/GCM/CCM/CMAC encryption and decryption are tested separately. 

Triple-DES KAT Triple-DES-CBC encryption and decryption are tested separately. 

HMAC (SHA-1, SHA-224, SHA-256, SHA-384, SHA-512) KAT 

SHA Tested as part of HMAC KAT according to IG 9.1 
SHA3-224, SHA3-256, SHA3-384, SHA3-512 KATs 

DSA sign and verify KAT with 2048 bit keys and SHA-256. 

RSA sign and verify KAT with 2048 bit keys and SHA-256. 

ECDSA sign and verify KAT with curves P-256 and SHA-256 

Diffie-Hellman Primitive "Z" Computation KAT with 3072-bit key 

EC Diffie-Hellman Primitive "Z" Computation KAT with P-256 curve 

DRBG CTR_DRBG KAT with AES-256 

DRBG DRBG health tests as specified in section 11.3 of NIST SP 800-90Ar1 

Module Integrity HMAC-SHA-256 

TLS KDF KAT with SHA-256 

PBKDF KAT with SHA-256 



 

 

Oracle Linux 8 Gnu TLS Cryptographic Module Security Policy 

 Page 22 of 31 

HKDF KAT with SHA-256 

Table 12:  Power-On Self-Tests 

For the KAT, the module calculates the result and compares it with the known value.  If the answer does not 
match the known answer, the KAT is failed and the module returns the error code and enters the error state.  As 
described in section 3.3, only one AES or SHA implementation from libnettle library written in C language or using 
the support from AES-NI or SSSE3 instructions is available at run-time.  The KATs cover different implementations 
depending on the implementations availability in the operating environment. 

9.2 On Demand Self-Tests 

The on-demand self-tests is invoked by powering-off and reloading the module which cause the module to run 
the power-up tests again.  During the execution of the on-demand self-tests, services are not available and no 
data output or input is possible. 

9.3 Conditional Self-Tests 

The module performs conditional tests on the cryptographic algorithms, using the pair-wise consistency test (PCT) 
shown in the following table: 

 

Algorithm Test 
DSA Pairwise Consistency Test:  signature generation and verification 

ECDSA Pairwise Consistency Test:  signature generation and verification 

RSA Pairwise Consistency Test: signature generation and verification, encryption 
and decryption 

Table 13:  Conditional Self-Tests 
 



 

 

Oracle Linux 8 Gnu TLS Cryptographic Module Security Policy 

 Page 23 of 31 

10. Crypto-Officer and User Guidance 

This section provides guidance for the Cryptographic Officer and the User to maintain proper use of the module 
per FIPS 140-2 requirements. 

10.1 Crypto-Officer Guidance 

The version of the RPM containing the validated module is stated in section 3.1 above.  The RPM package of the 
Module can be installed by standard tools recommended for the installation of Oracle packages on an Oracle 
Linux system (for example, yum, RPM, and the RHN remote management tool).  The integrity of the RPM is 
automatically verified during the installation of the Module and the Crypto Officer shall not install the RPM file if 
the Oracle Linux Yum Server indicates an integrity error.  The RPM files listed in section 3 are signed by Oracle and 
during installation; Yum performs signature verification which ensures as secure delivery of the cryptographic 
module.  If the RPM packages are downloaded manually, then the CO should run ‘rpm –K <rpm-file-name>’ 
command after importing the builder’s GPG key to verify the package signature.  In addition, the CO can also 
verify the hash of the RPM package to confirm a proper download. 

Recommended method 
The system-wide cryptographic policies package (crypto-policies) contains a tool that completes the installation of 
cryptographic modules and enables self-checks in accordance with the requirements of Federal Information 
Processing Standard (FIPS) Publication 140-2.  We call this step “FIPS enablement”.  The tool named fips-mode-
setup installs and enables or disables all the validated FIPS modules and it is the recommended method to install 
and configure an Oracle Linux 8 system. 
 
1. Ensure that the OL8 x86_64 or aarch64 system is configured with "Latest" and "Security Validation (Update 4)" 

yum repositories enabled, for example: 
# yum-config-manager --enable ol8_latest ol8_u4_security_validation 
Note: If system is configured with the Unbreakable Linux Network (ULN) depending on the architecture make 
sure enabled channels [ol8_x86_64_latest, ol8_x86_64_u4_security_validation] for x86_64 or 
[ol8_aarch64_latest, ol8_aarch64_u4_security_validation] for aarch64. 
 

2. Install GnuTLS RPM file from the yum/ULN: 
# yum install  gnutls-3.6.14-8.0.1.el8.x86_64.rpm or gnutls-3.6.14-8.0.1.el8.aarch64.rpm 

 
FIPS enablement using fips-mode-setup tool 
1. Switch the system to FIPS enablement in Oracle Linux 8: 

# fips-mode-setup --enable 
Setting system policy to FIPS 
FIPS mode will be enabled. 
Reboot the system for the setting to take effect. 

2. Restart your system: 
# reboot 

3. After the restart, you can check the current state: 
# fips-mode-setup --check 
FIPS mode is enabled. 

 
Note: As a side effect of the enablement procedure the fips-mode-enable tool also changes the system wide 
cryptographic policy level to a level named “FIPS”, this level helps applications by changing configuration defaults 
to approved algorithms. 

 

https://yum.oracle.com/repo/OracleLinux/OL8/4/security/validation/x86_64/getPackage/gnutls-3.6.14-8.0.1.el8.x86_64.rpm
https://yum.oracle.com/repo/OracleLinux/OL8/4/security/validation/aarch64/getPackage/gnutls-3.6.14-8.0.1.el8.aarch64.rpm


 

 

Oracle Linux 8 Gnu TLS Cryptographic Module Security Policy 

 Page 24 of 31 

FIPS enablement via environment variable 
1. Open:  

/etc/bashrc 
2. Set:  

export GNUTLS_FORCE_FIPS_MODE=1 
3. Save and close. 
4. Run: 

# source /etc/bashrc 
 

10.1.1   AES Hardware Acceleration Support and Manual Method 
According to the OpenSSL FIPS 140-2 Security Policy, the OpenSSL module supports the AES-NI Intel processor 
instruction and ARM AES optimizations set as an approved cipher. Both architecture optimizations are used by the 
Module. 
 
In case you configured a full disk encryption using AES, you may use the aforementioned optimizations for a 
higher performance compared to the software-only implementation. 
 
Verify that your processor offers AES hardware acceleration by calling the following command: 
cat /proc/cpuinfo | grep aes 
 
If the command returns a list of properties, including the “aes” string, your CPU provides the AES hardware 
acceleration. If the command returns nothing, AES hardware acceleration is not supported. 
 
The recommended method automatically performs all the necessary steps.  The following steps can be done 
manually but are not recommended and are not required if the systems has been installed with the fips-mode-
setup tool: 

• Create a file named /etc/system-fips, the contents of this file are never checked 

• Ensure to invoke the command ‘fips-finish-install --complete’ on the installed system 

• Ensure that the kernel boot line is configured with the fips=1 parameter set 

• Reboot the system 
 

NOTE: If /boot or /boot/efi resides on a separate partition, the kernel parameter boot=<boot partition> must be 
supplied. The partition can be identified with the command "df | grep boot". For example: 
 

$ df  | grep boot 
 

Filesystem  1K-blocks Used  Available Use% Mounted on 
/dev/sda1  233191  30454  190296  14%  /boot 

 
The partition of the /boot file system is located on /dev/sda1 in this example. 
 
Therefore the parameter boot=/dev/sda1 needs to be appended to the kernel command line in addition 
to the parameter fips=1. 

 

10.2 User Guidance 

The applications must be linked dynamically to run the module.  Only the services listed in Table 9 are allowed to 
be used in FIPS mode. 



 

 

Oracle Linux 8 Gnu TLS Cryptographic Module Security Policy 

 Page 25 of 31 

 
The libraries of GMP and Nettle provides the support of cryptographic operations to the GnuTLS library. The 
operator shall use the API provided by the GnuTLS library for the services. Invoking the APIs provided by the 
supporting libraries are forbidden. 

 

10.2.1 TLS and Diffie-Hellman 

The TLS protocol implementation provides both, the server and the client sides. As required by SP 800-131A, For 
Diffie-Hellman only the safe prime groups listed in RFC7919 are approved to be used in FIPS mode. The TLS 
protocol cannot enforce the support of FIPS Approved Diffie-Hellman key sizes. To ensure full support for all TLS 
protocol versions, the TLS client implementation of the cryptographic module must accept Diffie-Hellman key 
sizes smaller than 2048 bits offered by the TLS server.  

The TLS server implementation of the cryptographic Module allows the application to set the Diffie-Hellman key 
size. The server side must always set the DH parameters with the API call of: 

SSL_CTX_set_tmp_dh(ctx, dh) 

Alternatively it is possible to use SSL_CTX_set_dh_auto(ctx, 1); function call that makes GnuTLS use built-in 2048 
bit parameters when the server RSA certificate is at least 2048 bits and 3072 bit DH parameters with RSA 
certificate of 3072 bits. 

To comply with the FIPS 140-2 standard the requirement to not allow Diffie-Hellman key sizes smaller than 2048 
bits must be met, to do this the Crypto Officer must ensure that: 

• in case the Module is used as TLS server, the Diffie-Hellman parameters (dh argument) of the 
aforementioned API call must be 2048 bits or larger; 

• in case the Module is used as TLS client, the TLS server must be configured to only offer Diffie-Hellman keys 
of 2048 bits or larger. 

 
10.2.2 AES GCM IV Guidance 

In case the module’s power is lost and then restored, the key used for the AES GCM encryption or decryption shall 
be re-distributed.  The AES GCM IV generation is in compliance with the [RFC 5288] and shall only be used for the 
TLS protocol version 1.2 to be compliant with [FIPS140-2_IG] IG A.5; thus, the module is compliant with [SP 800 
52].  If the nonce_explicit part of the IV exhausts, GnuTLS will mark the TLS session as invalid and the key will need 
to be renegotiated. 

 
10.2.3 AES-XTS Guidance 

The length of a single data unit encrypted or decrypted with the AES-XTS shall not exceed 2²⁰ AES blocks that is 
16MB of data per AES-XTS instance.  An XTS instance is defined in section 4 of SP 800-38E.  The AES-XTS mode 
shall only be used for the cryptographic protection of data on storage devices.  The AES-XTS shall not be used for 
other purposes, such as the encryption of data in transit. The module implements the check to ensure that the 
two AES keys used in XTS-AES algorithm are not identical. 

 
10.2.4 RSA and DSA Keys 

As per SP 800-131A, RSA and DSA must be used at least 2048 bit keys in FIPS mode. To comply with the 
requirements of [FIPS 140-2], the operator must therefore only use keys with at least 2048 bits in FIPS mode. 
 



 

 

Oracle Linux 8 Gnu TLS Cryptographic Module Security Policy 

 Page 26 of 31 

10.2.5 Symmetric Key Generation 

The API function gnutls_key_generate() shall not be used in FIPS mode of operation.  The caller shall call 
gnutls_rnd() which calls the DRBG compliant to [SP 800-90A] to generate the key materials for symmetric keys or 
HMAC keys. 
10.2.6 Triple-DES 

According to IG A.13, the same Triple-DES key shall not be used to encrypt more than 216 64- bit blocks of data. 

 
10.2.7 Key derivation using SP800-132 PBKDF 

The module provides password-based key derivation (PBKDF), compliant with SP 800-132. The module supports 
option 1a from section 5.4 of [SP 800-132], in which the Master Key (MK) or a segment of it is used directly as the 
Data Protection Key (DPK).  

In accordance to [SP 800-132], the following requirements shall be met. 

• Derived keys shall only be used in storage applications. The Master Key (MK) shall not be used for other 
purposes. The length of the MK or DPK shall be of 112 bits or more. 

• A portion of the salt, with a length of at least 128 bits, shall be generated randomly using the SP 800-90A 
DRBG. 

• The iteration count shall be selected as large as possible, as long as time required to generate the key using 
entered password is acceptable for the users. The minimum value shall be 1000. 

• Passwords or passphrases, used as an input for PBKDF, shall not be used as cryptographic keys.  

The length of the password or passphrase shall be of at least 20 characters, and shall consist of lower-case, 
upper-case and numeric characters. The probability of guessing the value is estimated to be 1/6220 = 10-36, which 
is less than 2-112. 

The calling application shall also observe the rest of the requirements and recommendations specified in [SP 800-
132]. 

10.3 Handling Self-Test Errors 

When the module fails any self-test, it will return an error code to indicate the error and enters error state that 
any further cryptographic operations is inhibited. Here is the list of error codes when the module fails any self-
test or in error state: 
 

Error Events Error Codes Error Messages 
When the KAT or Integrity fails at the 
power-up 

GNUTLS_E_SELF_TEST_ERROR (-400) “Error while performing self checks.” 

When the KAT of DRBG fails at the 
power-up 

GNUTLS_E_RANDOM_FAILED (-206) “Error while performing self checks.” 

When the new generated RSA, DSA or 
ECDSA key pair fails the PCT 

GNUTLS_E_PK_GENERATION_ERROR (-403) “Error in public key generation.” 

When the module is in error state and 
caller requests cryptographic 
operations 

GNUTLS_E_LIB_IN_ERROR_STATE (-402) "An error has been detected in the 
library and cannot continue 
operations." 

Table 14:  Error Events and Error Messages 
 



 

 

Oracle Linux 8 Gnu TLS Cryptographic Module Security Policy 

 Page 27 of 31 

Self-test errors transition the module into an error state that keeps the module operational but prevents any 
cryptographic related operations.  The module must be restarted and perform power-up self-test to recover from 
these errors.  If failures persist, the module must be re-installed.   
 
A completed list of the error codes can be found in Appendix C “Error Codes and Descriptions” in the gnutls.pdf 
provided with the module's code. 



 

 

Oracle Linux 8 Gnu TLS Cryptographic Module Security Policy 

 Page 28 of 31 

11. Mitigation of Other Attacks 

RSA is vulnerable to timing attacks. In a setup where attackers can measure the time of RSA decryption or 
signature operations, blinding is always used to protect the RSA operation from that attack. 
 
The internal API function of _rsa_blind() and _rsa_unblind() are called by the module for RSA signature generation 
and RSA decryption operations.  The module generates a random blinding factor and include this random value in 
the RSA operations to prevent RSA timing attacks. 

 



 

 

Oracle Linux 8 Gnu TLS Cryptographic Module Security Policy 

 Page 29 of 31 

Acronyms, Terms and Abbreviations 
 

Term Definition 
AES Advanced Encryption Standard 

AES-NI Advanced Encryption Standard New Instructions 

API Application Program Interface 

CAVP Cryptographic Algorithm Validation Program 

CBC Cypher Block Chaining 

CFB Cipher Feedback 

CKG Cryptographic Key Generation 

CMVP Cryptographic Module Validation Program 

CSE Communications Security Establishment 

CSP Critical Security Parameter 

CTR Counter Mode 

DES Data Encryption Standard 

DSA Digital Signature Algorithm 

DH Diffie-Hellman 

DHE Diffie-Hellman Ephemeral 

DRBG Deterministic Random Bit Generator 

DTLS Datagram Transport Layer Security 
ECC Elliptic Curve Cryptography 

ECDH Elliptic Curve Diffie-Hellman 

ECDSA Elliptic Curve Digital Signature Algorithm 

FFC Finite Field Cryptography 

GCM Galois Counter Mode 

GPC General Purpose Computer 
HMAC (Keyed) Hash Message Authentication Code 

IG Implementation Guidance 

KAS Key Agreement Schema 

KAT Known Answer Test 

KDF Key Derivation Function 

NIST National Institute of Standards and Technology 
PAA Processor Algorithm Acceleration 

PBKDF Password Based Key Derivation Function 

PCT Pair-Wise Consistency Test 

PR Prediction Resistance 

PRF Pseudo Random Function 

PSS Probabilistic Signature Scheme 
PUB Publication 

RPM Red Hat Package Manager 

RSA Rivest, Shamir, Addleman 

SHA Secure Hash Algorithm 

SP Special Publication 

SSSE Supplemental Streaming SIMD Extensions 3 
TLS Transport Layer Security 

Table 15:  Acronyms 
 
 



 

 

Oracle Linux 8 Gnu TLS Cryptographic Module Security Policy 

 Page 30 of 31 

References 

The FIPS 140-2 standard, and information on the CMVP, can be found at 
http://csrc.nist.gov/groups/STM/cmvp/index.html.  More information describing the module can be found on the 
Oracle web site at https://www.oracle.com/linux/ . 
 
This Security Policy contains non-proprietary information. All other documentation submitted for FIPS 140-2 
conformance testing and validation is “Oracle - Proprietary” and is releasable only under appropriate non-
disclosure agreements. 
 

Document Author Title 
FIPS PUB 140-2 NIST FIPS PUB 140-2: Security Requirements for Cryptographic Modules 

FIPS IG NIST Implementation Guidance for FIPS PUB 140-2 and the Cryptographic Module Validation 
Program   

FIPS PUB 140-2 
Annex A 

NIST FIPS 140-2 Annex A: Approved Security Functions  

FIPS PUB 140-2 
Annex B 

NIST FIPS 140-2 Annex B: Approved Protection Profiles  

FIPS PUB 140-2 
Annex C 

NIST FIPS 140-2 Annex C: Approved Random Number Generators  

FIPS PUB 140-2 
Annex D 

NIST FIPS 140-2 Annex D: Approved Key Establishment Techniques  

DTR for FIPS 
PUB 140-2  

NIST Derived Test Requirements (DTR) for FIPS PUB 140-2, Security Requirements for 
Cryptographic Modules  

FIPS PUB 197 NIST Advanced Encryption Standard  

FIPS PUB 198-1 NIST The Keyed Hash Message Authentication Code (HMAC)  

FIPS PUB 186-4 NIST Digital Signature Standard (DSS)  

FIPS PUB 180-4 NIST Secure Hash Standard (SHS)  

NIST SP 800-52 NIST Guidelines for the Selection, Configuration, and Use of Transport Layer Security (TLS) 
Implementations 

NIST SP 800-
56Arev3 

NIST Recommendation for Pair-Wise Key-Establishment Schemes Using Discrete Logarithm 
Cryptography 

NIST SP 800-
56C 

NIST Recommendation for Key-Derivation Methods in Key-Establishment Schemes 

NIST SP 800-67 NIST Recommendation for the Triple Data Encryption Algorithm TDEA Block Cipher  
NIST SP 800-
90A 

NIST Recommendation for Random Number Generation Using Deterministic Random Bit 
Generators 

NIST SP 800-
90B 

NIST Recommendation for the Entropy Sources Used for Random Bit Generation 

NIST SP 800-
131A 

NIST Recommendation for the Transitioning of Cryptographic Algorithms and Key Sizes  

NIST SP 800-
133 

NIST Recommendation for Cryptographic Key Generation 

NIST SP 800-
135 

NIST Recommendation for Existing Application-Specific Key Derivation Functions 

PKCS#1 RSA 
Laboratories 

PKCS#1 v2.1:  RSA Cryptographic Standard  

RFC4347 IETF Datagram Transport Layer Security 

RFC4357 IETF Additional Cryptographic Algorithms for Use with GOST 28147-89, GOST R 34.10-94, GOST 
R 34.10-2001, and GOST R 34.11-94 Algorithms 

http://csrc.nist.gov/groups/STM/cmvp/index.html
https://www.oracle.com/linux/


 

 

Oracle Linux 8 Gnu TLS Cryptographic Module Security Policy 

 Page 31 of 31 

Document Author Title 
RFC5288 IETF AES Galois Counter Mode (GCM) Cipher Suites for TLS 

RFC5246 IETF The Transport Layer Security (TLS) Protocol Version 1.2 

RFC5764 IETF Datagram Transport Layer Security (DTLS) Extension to Establish Keys for the Secure Real-
time Transport Protocol (SRTP) 

Table 16:  References 
 

 


	1. Introduction
	1.1 Overview
	1.2 Document Organization

	2. Oracle Linux 8 GnuTLS Cryptographic Module
	2.1 Functional Overview
	2.2 FIPS 140-2 Validation Scope

	3. Cryptographic Module Specification
	3.1 Definition of the Cryptographic Module
	3.2 Definition of the Physical Cryptographic Boundary
	3.3 Description of the Approved Modes of Operation
	3.4 Approved or Allowed Security Functions
	3.5 Non-Approved but Allowed Security Functions
	3.6 Non-Approved Security Functions

	4. Module Ports and Interfaces
	5. Physical Security
	6. Operational Environment
	6.1 Tested Environments
	6.2 Vendor Affirmed Environments
	6.3 Operational Environment Policy

	7. Roles, Services and Authentication
	7.1 Roles
	7.2 FIPS Approved Operator Services and Descriptions
	7.3 Non-FIPS Approved Services and Descriptions
	7.4 Operator Authentication

	8. Key and CSP Management
	8.1 Random Number Generation
	8.2 Key Generation
	8.3 Key Establishment / Key Derivation
	8.4 Key Entry and Output
	8.5 Key / CSP Storage
	8.6 Key / CSP Zeroization

	9. Self-Tests
	9.1 Power-Up Self-Tests
	9.1.1 Integrity Tests
	9.1.2 Cryptographic Algorithms Tests
	9.2 On Demand Self-Tests
	9.3 Conditional Self-Tests

	10. Crypto-Officer and User Guidance
	10.1 Crypto-Officer Guidance
	The version of the RPM containing the validated module is stated in section 3.1 above.  The RPM package of the Module can be installed by standard tools recommended for the installation of Oracle packages on an Oracle Linux system (for example, yum, R...
	Recommended method
	10.1.1    AES Hardware Acceleration Support and Manual Method
	10.2 User Guidance
	10.2.1 TLS and Diffie-Hellman
	10.2.2 AES GCM IV Guidance
	10.2.3 AES-XTS Guidance
	10.2.4 RSA and DSA Keys
	10.2.5 Symmetric Key Generation
	10.2.1
	10.2.6 Triple-DES
	10.2.7 Key derivation using SP800-132 PBKDF
	10.3 Handling Self-Test Errors

	11. Mitigation of Other Attacks
	Acronyms, Terms and Abbreviations
	References

