Security Builder® FIPS Module

Version 6.5.0

FIPS 140-2 Non-Proprietary Security Policy

BlackBerry Limited

July 12, 2022

Copyright © 2022 BlackBerry Limited

This document may be freely reproduced and distributed whole and intact including this Copyright Notice.

This software contains trade secrets, confidential information, and other intellectual property of BlackBerry Ltd. and its licensors. This software cannot be used, reproduced, or distributed in whole or in part by any means without the explicit prior consent of BlackBerry Ltd. Such consent must arise from a separate license agreement from BlackBerry or its licensees, as appropriate.

Certicom, Certicom AMS, ACC, Asset Control Core, Certicom Bar Code Authentication Agent, Certicom ECC Core, Certicom Security Architecture, Certicom Trusted Infrastructure, Certicom CodeSign, Certicom KeyInject, ChipActivate, DieMax, Security Builder, Security Builder API, Security Builder API, Security Builder BSP, Security Builder Crypto, Security Builder ETS, Security Builder GSE, Security Builder IPSec, Security Builder MCE, Security Builder NSE, Security Builder PKI, Security Builder SSL and SysActivate are trademarks or registered trademarks of BlackBerry Ltd. All other companies and products listed herein are trademarks or registered trademarks of their respective holders.

BlackBerry®, RIM®, Research In Motion® and related trademarks are owned by BlackBerry Limited, used under license.

Patents per 35 U.S.C. § 287(a) and in other jurisdictions, where allowed: www.blackberry.com/patents.

Contents

1	INTR	ODUCTION	5
	1.1	Overview	5
	1.2	Purpose	5
	1.3	References	5
	1.4	CHANGE HISTORY	6
2	CRYF	PTOGRAPHIC MODULE SPECIFICATION	7
	2.1	PHYSICAL SPECIFICATIONS	7
	2.2	COMPUTER HARDWARE AND OS	9
	2.3	SOFTWARE SPECIFICATIONS	10
3	CRYF	PTOGRAPHIC MODULE PORTS AND INTERFACES	10
4	ROLE	S, SERVICES, AND AUTHENTICATION	12
	4.1	Roles and Services	12
	4.2	OPERATOR AUTHENTICATION	16
5	FINIT	E STATE MODEL	17
6	PHYS	SICAL SECURITY	18
7	OPE	RATIONAL ENVIRONMENT	19
	7.1	Modes of Operations	19
8	CRYF	PTOGRAPHIC KEY MANAGEMENT	20
	8.1	KEY GENERATION	21
	8.2	KEY ESTABLISHMENT	21
	8.3	KEY ENTRY AND OUTPUT	21
	8.4	KEY STORAGE	21
	8.5	ZEROIZATION OF KEYS AND CSPS	21
9	SELF	-TESTS	22
	9.1	Power-up Tests	22
		9.1.1 Tests upon Power-up	22
		9.1.2 On-Demand Self-Tests	23
	9.2	CONDITIONAL TESTS	23
	9.3	CRITICAL FUNCTION TESTS	23
	9.4	FAILURE OF SELF-TESTS	23
10	DESIG	GN ASSURANCE	24
	10.1	CONFIGURATION MANAGEMENT	24
	10.2	DELIVERY AND OPERATION	24
	10.3	DEVELOPMENT	24
	10.4	GUIDANCE DOCUMENTS	24
11	МІТІ	GATION OF OTHER ATTACKS	25
	11.1	TIMING ATTACK ON RSA	25

12 ENT	ROPY SOURCE	26
A CRY	PTO OFFICER AND USER GUIDE	27
A.1	INSTALLATION	27
	A.1.1 Installing	27
	A.1.2 Uninstalling	27
A.2	COMMANDS	27
	A.2.1 Load	27
	A.2.2 Unload	28
	A.2.3 Self-Tests	28
	A.2.4 Show Status/Mode	28
A.3	WHEN MODULE IS DISABLED	28
A.4	OPERATION LIMITATION FOR FIPS APPROVED MODE	28

1 Introduction

1.1 Overview

This is a non-proprietary Federal Information Processing Standard (FIPS) 140-2 Security Policy for Certicom's **Security Builder® FIPS Module Version 6.5.0** (SB FIPS Module). SB FIPS Module is a cryptographic toolkit for C language users, providing services of various cryptographic algorithms such as hash algorithms, encryption schemes, message authentication, and public key cryptography. This Security Policy specifies the rules under which SB FIPS Module must operate. These security rules are derived from the requirements of FIPS 140-2 [1], and related documents [6, 7, 8].

1.2 Purpose

This Security Policy is created for the following purposes:

- 1. It is required for FIPS 140-2 validation.
- 2. To outline SB FIPS Module's conformance to FIPS 140-2 Level 1 Security Requirements.
- 3. To provide users with information on how to configure and operate the cryptographic module in order to comply with FIPS 140-2.

1.3 References

References

- [1] NIST Security Requirements for Cryptographic Modules, FIPS PUB 140-2, December 3, 2002.
- [2] NIST Security Requirements for Cryptographic Modules, Annex A: Approved Security Functions for FIPS PUB 140-2, Draft, May 10, 2017.
- [3] NIST Security Requirements for Cryptographic Modules, Annex B: Approved Protection Profiles for FIPS PUB 140-2, Draft, December 21, 2016.
- [4] NIST Security Requirements for Cryptographic Modules, Annex C: Approved Random Number Generators for FIPS PUB 140-2, Draft, January 04, 2016.
- [5] NIST Security Requirements for Cryptographic Modules, Annex D: Approved Key Establishment Techniques for FIPS PUB 140-2, Draft, May 10, 2017.
- [6] NIST Derived Test Requirements for FIPS 140-2, Draft, January 4, 2011.
- [7] NIST Implementation Guidance for FIPS PUB 140-2 and the Cryptographic Module Validation Program, May 10, 2017.
- [8] NIST Frequently Asked Questions for the Cryptographic Module Validation Program, October 28, 2016.

1.4 Change History

Change history is recorded in Table 1.

Table 1: Change History

Revision	Date	Author	Description	
0.1	2020/12/22	R.T.	Initial revision.	
			Created based on the Security Policy for SB FIPS	
			Module 6.3.0.	
0.2	2021/03/15	R.T.	Updated platform list. Added hashes for entropy	
			libraries.	
0.3	2021/04/16	R.T.	Addressed comments from validation lab.	
0.4	2021/05/17	R.T.	Added CAVP certificate.	
0.5	2021/07/15	R.T.	Addressed additional comments from validation	
			lab.	
0.6	2021/07/23	R.T.	Added entropy estimates.	
0.7	2021/10/28	R.T.	Updated hash values for SB API library.	
0.8	2022/04/01	R.T.	Updated per comments from CMVP.	
0.9	2022/05/25	R.T.	Updated per comments from lab.	
0.10	2022/06/15	R.T.	Updated per second round comments from	
			CMVP.	
0.11	2022/06/29	R.T.	Updated per third round comments from CMVP.	
0.12	2022/07/06	R.T.	Addressed fourth round comments from CMVP.	
0.13	2022/07/12	R.T.	Addressed fifth round comments from CMVP.	

2 Cryptographic Module Specification

SB FIPS Module is a multiple-chip standalone software cryptographic module in the form of an object that operates with the following components:

- Commercially available general-purpose computer hardware.
- Commercially available Operating System (OS) that runs on the computer hardware.

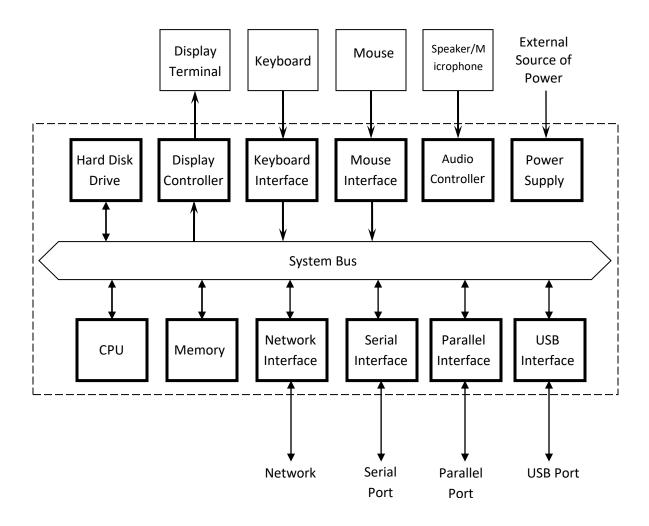
Table 2: level of validation

FIPS 140-2 Section Title	Validation	
	Level	
Cryptographic Module Specification	1	
Cryptographic Module Ports and Interfaces	1	
Roles, Services, and Authentication	1	
Finite State Model	1	
Physical Security	N/A	
Operational Environment		
Cryptographic Key Management	1	
Electromagnetic Interference / Electromagnetic	1	
Compatibility		
Self-Tests	1	
Design Assurance	1	
Mitigation of Other Attacks	1	

2.1 Physical Specifications

The tested platforms consist of the following devices:

- 1. CPU (Microprocessor)
- 2. Memory
 - (a) Working memory is located on the RAM containing the following spaces:
 - i. Input/output buffer
 - ii. Plaintext/ciphertext buffer
 - iii. Control buffer


Key storage is not deployed in this module.

- (b) Program memory is also located on RAM.
- 3. Hard Disk (or disks)
- 4. Display Controller, including Touch Screen Controller
- 5. Keyboard Interface
- 6. Mouse Interface, including Trackball Interface
- 7. Audio Controller
- 8. Network Interface
- 9. Serial Interface

- 10. Parallel Interface
- 11. USB Interface
- 12. Power Supply

The configuration of this component is illustrated in Figure 1.

Figure 1: Cryptographic Module Hardware Block Diagram

: Physical Cryptographic Boundary

: Flow of data, control input, and status output

: Flow of control input : Flow of status output

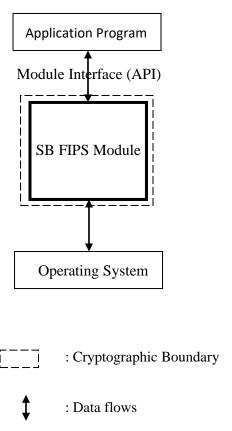
2.2 Computer Hardware and OS

The combinations of computer hardware and OS include the following representative platforms.

- Android 9 on Google Pixel 3 smart phone, Qualcomm Snapdragon 845 64-bit ARMv8 processor
- 2. Android 9 on Google Pixel 3 smart phone, Qualcomm Snapdragon 845 64-bit ARMv8 processor (32-bit ARMv7 instructions)
- 3. iOS 12.4.7 on Apple iPad mini 2, Apple A7 64-bit ARMv8 processor
- 4. Mac OS 10.15. on Apple Mac Book Pro late 2012 laptop computer, Intel Core i7 64-bit x86 processor
- 5. Windows 10 Pro on Lenovo P15 laptop computer, Intel Core i7 64-bit x86 processor
- 6. Windows Server 2019 on Lenovo SR630, Intel Xeon Silver 64-bit x86 processor (virtual machine running on VMware ESX 6)
- 7. CentOS 7.0 on Lenovo SR630, Intel Xeon Silver 64-bit x86 processor (virtual machine running on VMware ESX 6)
- 8. Ubuntu Linux 18.04 on Lenovo SR630, Intel Xeon Silver 64-bit x86 processor (virtual machine running on VMware ESX 6)
- 9. QNX SDP 7.1 on NXP i.MX8 QuadXPlus Multisensory Enablement Kit , Cortex-A35 ARMv8 processor
- QNX SDP 7.1 on Xilinx Zynq UltraScale+ MPSoC ZCU102 Eval. Kit, Cortex-A53 64-bit ARMv8 processor
- 11. QNX SDP 7.1 on Supermicro A2SDi-4C-HLN4F-O server motherboard, Intel Atom 64-bit x86 processor.

For the platforms listed above, SB FIPS Module is tested supporting NEON instructions on ARMv7 and ARMv8 processor, supporting Crypto Extensions instructions on ARMv8 processor, and supporting AES-NI instructions on 64-bit x86 processor. It has also been tested that when these instruction sets are missing or turned off, SB FIPS Module still works.

SB FIPS Module is also suitable for any platforms of any manufactures with compatible processors and equivalent system configurations, and compatible OS versions. For example, an identical SB FIPS Module can be used on any compatible QNX for 64-bit x86 processors, or Android for ARMv8 processors. SB FIPS Module will run on such platforms and OS versions while maintaining its compliance to the FIPS 140-2 Level 1 requirements.


Additionally, the CMVP makes no statement as to the correct operation of the module or the security strengths of the generated keys when ported to an operational environment which is not listed on the validation certificate.

2.3 Software Specifications

SB FIPS Module is manufactured by BlackBerry Limited., providing services to the C computer language users in object format.

The interface into SB FIPS Module is via Application Programmer's Interface (SB API) function calls. These function calls provide the interface to the cryptographic services, for which the parameters and return codes provide the control input and status output (see Figure 2).

Figure 2: Cryptographic Module Software Block Diagram

3 Cryptographic Module Ports and Interfaces

The physical and logical interfaces are summarized in Table 3.

Table 3: Logical and Physical Interfaces

I/O Logical Interface		Physical Interface	
Data Input API		Keyboard, Mouse, USB ports,	
		Serial, and Ethernet port	
Data Output API		USB ports, Serial ports and	
		Ethernet port	
Control Input	API	Keyboard and Mouse	
Status Output	API return code and	Display	
	state returned by		

	sbg_FIPS140GetState()	
Power Input	OS API to load the	The Power Supply is the power interface.
	module (library)	
Maintenance	Not supported	Not supported

The APIs logically separate data input from control input, and data output and status output.

4 Roles, Services, and Authentication

4.1 Roles and Services

SB FIPS Module supports Crypto Officer and User Roles (see Table 4). These roles are enforced by this Security Policy.

Table 4: Roles and Services

Service	Roles	Key/CSP	Permission
Installation, etc.	·		
Installation	Crypto Officer/User	None	execute
Self-tests	If-tests Crypto Officer/User Crypto Officer/User All Keys/CSPs listed in Table 6, with the exception of ephemeral key pair generation.		execute
Show status	Crypto Officer/User	None	execute
Symmetric Ciphers (AES and 7	Triple-DES)		
Key generation	User	AES Key, Triple-DES key	read/write/execute
Key input	User	AES Key, Triple-DES key	read/write/execute
Encrypt	User	AES Key, Triple-DES key	read/write/execute
Decrypt	User	AES Key, Triple-DES key	read/write/execute
Key zeroization	User	AES Key, Triple-DES key	read/write/execute
Hash Algorithms and Message	Authentication	(SHA, HMAC)	
Hashing	User	None	read/write/execute
Message Authentication	User	HMAC Key	read/write/execute
Seed from system (ENT (NP))			
Request	User	None	read/write/execute
Random Number Generation (DRBG)			
Instantiation	User	Entropy input, V, Key or C	read/write/execute
Seeding	User	Entropy input, V, Key or C	read/write/execute
Request	User	Entropy input, V, Key or C	read/write/execute
CSP/Key zeroization	User	Entropy input, V, Key or C	read/write/execute
Digital Signature (DSA, ECDS.	A, RSA)		
Key pair generation	User	Key pair	read/write/execute
Key pair input	User	Key pair	read/write/execute
Sign	User	Private Key	read/write/execute
Verify	User	Public Key	
Key zeroization	User	Key pair	read/write/execute
Key Establishment (KAS-FFC,	KAS-ECC, RS	SA, AES-KW)	
Key pair generation	User	Key pair	read/write/execute
Key pair input			read/write/execute
Shared secret generation (KAS-FFC-SSC and KAS-ECC-SSC)			read/write/execute
Wrap and Unwrap (RSADP)			read/write/execute
Wrap and Unwrap (KTS-RSA)	User	RSA Public Key and RSA Private Key	read/write/execute
		AES Key	read/write/execute
Key zeroization	User	Key pair	read/write/execute

SB FIPS Module does not support multiple concurrent operators.

SB FIPS Module supports many cryptographic algorithms. The set of cryptographic algorithms supported by SB FIPS Module is given in Table 5. The algorithms test certificate is A1303 (https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33912).

Table 5: Supported Algorithms and Standards

FIPS Approved Algorithms				
Algorithm		CAVP Certificate		
Block Ciphers	3-Key Triple-DES (ECB, CBC, CFB64, OFB64) [SP 800-67rev2]	Cert# A1303		
	AES (ECB, CBC, CFB8, CFB128, OFB128, CTR) [FIPS 197]	Cert# A1303		
Block Cipher	CMAC [NIST SP 800-38B]	Cert# A1303		
Modes	CCM [NIST SP 800-38C]	Cert# A1303		
	GCM [NIST SP 800-38D] ¹	Cert# A1303		
	XTS-AES [NIST SP 800-38E] ²³	Cert# A1303		
	KW [NIST SP 800-38F]	Cert# A1303		
Hash Functions	SHA-1 [FIPS 180-4] ⁴⁵⁶	Cert# A1303		
	SHA-224 [FIPS 180-4]	Cert# A1303		
	SHA-256 [FIPS 180-4]	Cert# A1303		
	SHA-384 [FIPS 180-4]	Cert# A1303		
	SHA-512 [FIPS 180-4]	Cert# A1303		
	SHA-512/224 [FIPS 180-4]	Cert# A1303		
	SHA-512/256 [FIPS 180-4]	Cert# A1303		
	SHA3-224 [FIPS 202]	Cert# A1303		
	SHA3-256 [FIPS 202]	Cert# A1302 ⁷ , A1303		
	SHA3-384 [FIPS 202]	Cert# A1303		
	SHA3-512 [FIPS 202]	Cert# A1303		
Extended-Output	SHAKE128 [FIPS 202]	Cert# A1303		
Functions	SHAKE256 [FIPS 202]	Cert# A1303		
Message	HMAC-SHA-1 [FIPS 198-1] ⁸	Cert# A1303		

¹ IV is generated according to scenario 2 in IG A.5, internally by DRBG with length >= 96 bits

 $^{^2}$ XTS-AES uses two keys, and the module checks explicitly that Key_1 \neq Key_2, regardless of how Key_1 and Key_2 are obtained.

³ The XTS-AES mode was designed for the cryptographic protection of data on storage devices that use fixed length data units. It was not designed for other purposes, such as the encryption of data in transit.

⁴ SHA-1 may only be used for digital signature generation where specifically allowed by NIST protocol-specific guidance. For all other applications, SHA-1 is disallowed for digital signature generation.

⁵ When used for digital signature verification, SHA-1 is allowed for legacy use.

⁶ For non-digital-signature applications, the use of SHA-1 is acceptable for applications that do not require collision resistance.

⁷ Cert# A1302 is for the SHA-3 implementation used as the conditioning component of the Entropy Source

⁸ HMAC-SHA-1 shall have a key size of at least 112 bits.

Authentication	HMAC-SHA-224 [FIPS 198-1]	Cert# A1303				
	HMAC-SHA-256 [FIPS 198-1]	Cert# A1303				
	HMAC-SHA-384 [FIPS 198-1]	Cert# A1303				
	HMAC-SHA-512 [FIPS 198-1]	Cert# A1303				
	HMAC-SHA-512/224 [FIPS 198-1]	Cert# A1303				
	HMAC-SHA-512/256 [FIPS 198-1]	Cert# A1303				
	HMAC-SHA3-224 [FIPS 198-1]	Cert# A1303				
	HMAC-SHA3-256 [FIPS 198-1]	Cert# A1303				
	HMAC-SHA3-384 [FIPS 198-1]	Cert# A1303				
	HMAC-SHA3-512 [FIPS 198-1]	Cert# A1303				
Random Number	Hash_DRBG [NIST SP 800-90A]	Cert# A1303				
Generators	HMAC_DRBG [NIST SP 800-90A]	Cert# A1303				
	CTR_DRBG [NIST SP 800-90A]	Cert# A1303				
Digital Signature ⁹	DSA (KeyGen, PQGGen, SigGen, SigVer) [FIPS 186-4] Security strength 112-128 bits ¹⁰	Cert# A1303				
	ECDSA (KeyGen, KeyVer, SigGen, SigVer) [FIPS 186-4, ANSI X9.62] Security strength 112-256 bits	Cert# A1303				
	RSA PKCS1 v1.5 (KeyGen, SigGen, SigVer, DP) [FIPS 186-4, PKCS #1 v2.1] Modulus size 1024, 2048 and 3072 bits only ¹¹	Cert# A1303				
	RSA PSS (SigGen, SigVer) [FIPS 186-4, PKCS #1 v2.1]	Cert# A1303				
Key Establishment	KAS-FFC-SSC [NIST SP 800-56A] (Domain Parameter Generation Methods: FB, FC) Security strength 112 bits	Cert# A1303				
	KAS-ECC-SSC [NIST SP 800-56A] (curves K-233, K-283, K-409, K-571, P-224, P-256, P-384, P-521) Security strength 112-256 bits	Cert# A1303				
	KTS-RSA [NIST SP 800-56B] ¹² Security strength 112-150 bits (used in key wrapping)	Cert# A1303				
	KTS (AES-KW) Security strength 128-256 bits (used in key wrapping)	Cert# A1303				
	KDA-OneStep [NIST SP 800-56A]	Cert# A1303				
Cryptographic Key Generation (CKG)	Cryptographic Key Generation, (SP 800-133) is using output from DRBG for asymmetric and symmetric key generation, no post-processing.	N/A				
Components	CVL-RSADP [NIST SP 800-56B] (used in key wrapping)	Cert# A1303				
	CVL-ANSI X9.63-2001 KDF [NIST SP 800-135] (used in KAS-ECC key agreement)	Cert# A1303				
Entropy Source	Entropy Source, Non-Physical (SP 800-90B) (ENT (NP))	N/A				
	FIPS Allowed Algorithms					
Algorithm		Status				
Block Cipher	2-Key Triple-DES (ECB, CBC, CFB64, OFB64) decryption [SP800-67rev2]	Allowed				
	FIPS Disallowed Algorithms					
Algorithm		Status				
Block Ciphers	2-Key Triple-DES (ECB, CBC, CFB64, OFB64) encryption [SP800-67rev2]	Disallowed				

_

⁹ Digital signature generation using SHA-1 as its underlying hash function is disallowed.

 $^{^{10}}$ For DSA signature generation, only the primes p and q pairs with bit lengths (2048, 224), (2048, 256) and (3072, 256) can be used in the approved mode for signature generation.

¹¹ Modulus 1024 in RSA signature verification (Legacy SigVer) only.

 $^{^{\}rm 12}$ Only cryptographic keys may be wrapped using KTS-RSA.

	DES (ECB, CBC, CFB64, OFB64)	Disallowed
	DESX (ECB, CBC, CFB64, OFB64)	Disallowed
	AES EAX [ANSI C12.22]	Disallowed
	ARC2 (ECB, CBC, CFB64, OFB64) [RFC 2268]	Disallowed
Block Cipher Mode	AES (CCM*) [ZigBee 1.0.x]	Disallowed
Stream Cipher	ARC4	Disallowed
Hash Functions	MD5 [RFC 1321]	Disallowed
	MD4 [RFC 1320]	Disallowed
	MD2 [RFC 1115]	Disallowed
	AES MMO [ZigBee 1.0.x]	Disallowed
Message	HMAC-MD5 [RFC 2104]	Disallowed
Authentication	AES-XCBC-MAC [RFC 3566]	Disallowed
Random Number	ANSI X9.62 RNG [ANSI X9.62]	Disallowed
Generators	ANSI X9.31 RNG [ANSI X9.31]	Disallowed
Digital Signature	DSA [FIPS 186-4] Security strength 56-111	Disallowed
	ECDSA [FIPS 186-4, ANSI X9.62] Security strength 80-111	Disallowed
	RSA PKCS1 v1.5 Modulus sizes other than 1024, 2048 and 3072	Disallowed
	RSA PKCS1 v1.5 [FIPS 186-4, PKCS #1 v2.1] Security strength 56-111	Disallowed
	ECNR [IEEE 1363]	Disallowed
	ECQV	Disallowed
Key Establishment	KAS-FFC [NIST SP 800-56A] Security strength 56-111 bits	Disallowed
	KAS-ECC [NIST SP 800-56A] Security strength 80-111	Disallowed
	ECPVS [ANSI X9.92]	Disallowed
	ECSPEKE [IEEE 1363.2]	Disallowed
	RSA KEM [ANSI X9.44]	Disallowed
	KTS-RSA [NIST SP 800-56B] Security strength 56-111 bits (used in key wrapping)	Disallowed
Component	ECIES [ANSI X9.63]	Disallowed

Table 6 summarizes the keys and CSPs used in the FIPS mode.

Table 6: Key and CSP, Key Size, Security Strength, and Access

Algorithm	Keys and CSPs	Key Size	Strength	Access
AES	key	128-256 bits	128-256 bits	Create, Read, Use
AES-GCM	IV	>= 96 bits	>=96 bits	Create, Use
Triple-DES ¹³	key	168 bits	112 bits	Create, Read, Use
HMAC	key	160-512 bits	128-256 bits	Use
DRBG Seed	seed	112-256 bits	112-256 bits	Use
DRBG(CTR_AES)	V and AES Key, entropy input	112-256 bits	112-256 bits	Use
DRBG(HASH)	V and C, entropy input	112-256 bits	112-256 bits	Use

¹³ Triple-DES is disallowed after 2023.

DRBG(HMAC)	V and Key, entropy input	112-256 bits	112-256 bits	Use
DSA	key pair	L=2048, 3072, N=224, 256 bits	112-128 bits	Create, Read, Use
ECDSA	key pair	f=224-521 bits	112-256 bits	Create, Read, Use
RSA	key pair	k=2048-3072 bits	112-128 bits	Create, Read, Use
RSADP	key pair	k=2048 bits	112 bits	Create, Read, Use
KAS-FFC	static/ephemeral key pair	L=2048, N=224, 256 bits	112 bits	Create, Read, Use
KAS-ECC	static/ephemeral key pair	f=224-521 bits	112-256 bits	Create, Read, Use
RSA Key wrapping	key pair	k=2048, 3072, 4096 bits	112-150 bits	Create, Read, Use

The module does not enforce FIPS 140-2 compliance. It is up to the user to select the algorithms and cryptographic strength that complies with this Security Policy.

4.2 Operator Authentication

SB FIPS Module does not deploy authentication mechanism. The roles of Crypto Officer and User are implicitly selected by the operator.

5 Finite State Model

The Finite State model contains the following states:

- Power Off
- Power On
- Self-Test
- Idle
- Crypto Officer/User/Key Entry
- Error

The following is the important features of the state transition:

- 1. When the module is installed by the Crypto Officer, the module is in the Power Off state
- 2. When the module is loaded on the memory, turning to the Power On state. Then, it transitions to the Self-Test state automatically, running the Power-up Tests. While in the Self-Test state, all data output via the data output interface is prohibited. On success, the module enters Idle state; on failure, the module enters the Error state and the module is disabled. From the Error state the Crypto Officer may need to re-install to attempt correction.
- 3. From the Idle state (which is only entered if self-tests have succeeded), the module can transition to the Crypto Officer, User or Key/CSP Entry state when an API function is called.
- 4. When the API function has completed successfully, the state transitions back to Idle.
- 5. If the Conditional Test (Continuous RNG Test or Pair-wise Consistency Test) fails, the state transitions to Error and the module is disabled.
- 6. When On-demand Self-test is executed, the module enters the Self-Test state. On success, the module enters Idle; on failure, the module enters Error and the module is disabled.

6 Physical Security

Physical security is not applicable to this software module at Level 1 Security.

7 Operational Environment

This module is designed for commercially available general-purpose computer operating systems such as Windows, Android or QNX. These operating systems provide modifiable environment.

This module is to be run in single user operational environment, where each user application runs in virtually separated independent space. Note that modern Operating Systems such as Windows, Android or QNX provide such operational environment, that no other process can access private and secret keys, intermediate key generation values, and other CSPs, while the cryptographic process is in use.

7.1 Modes of Operations

This module supports two modes of operations: Approved and Non-Approved. The module operates in Approved mode after the power-up self-tests have completed successfully and whenever an approved or allowed algorithm is executed (see Table 5). It will switch to Non-Approved mode upon execution of a disallowed algorithm, and back to Approved mode when an approved or allowed algorithm is executed.

8 Cryptographic Key Management

SB FIPS Module provides the underlying functions to support FIPS 140-2 Level 1 key management. The user will select FIPS Approved algorithms and will handle keys with appropriate care to build up a system that complies with FIPS 140-2. It is the Crypto Officer and User's responsibility to select FIPS 140-2 validated algorithms (see Table 5).

Table 7 summarizes the management of the keys and CSPs used in the FIPS mode.

Table 7: Cryptographic Key Management

Algorithm	Keys and CSPs	Generation/Input	Output	Storage	Zeroization
AES	key	Internally Generated or Input	API parameter	Volatile Memory	API call Power cycle
AES-GCM	IV	IV is generated according to scenario 2 in IG A.5	API parameter	Volatile Memory	API call Power cycle
Triple-DES	key	Internally Generated or Input	API parameter	Volatile Memory	API call Power cycle
HMAC	key	Internally Generated or Input	API parameter	Volatile Memory	API call Power cycle
DRBG seed	Seed	Internally Generated or Input	API parameter	Volatile Memory	API call Power cycle
DRBG(CTR)	V and Key, entropy input	Entropy: generated by ENT (NP). V and Key: internally generated.	API parameter	Volatile Memory	API call Power cycle
DRBG(HASH)	V and C, entropy input	Entropy: generated by ENT (NP). V and C: internally generated.	API parameter	Volatile Memory	API call Power cycle
DRBG(HMAC)	V and Key, entropy input	Entropy: generated by ENT (NP). V and Key: generated.	API parameter	Volatile Memory	API call Power cycle
DSA	key pair	Internally Generated or Input	API parameter	Volatile Memory	API call Power cycle
ECDSA	key pair	Internally Generated or Input	API parameter	Volatile Memory	API call Power cycle
RSA	key pair	Internally Generated or Input	API parameter	Volatile Memory	API call Power cycle
RSADP	key pair	Internally Generated or Input	API parameter	Volatile Memory	API call Power cycle
KAS-FFC	static/ephemeral key pair	Internally Generated or Input	API parameter	Volatile Memory	API call Power cycle
KAS-ECC	static/ephemeral key pair	Internally Generated or Input	API parameter	Volatile Memory	API call Power cycle
KAS-FFC-SSC	Shared secret Z	Internally Generated	API parameter	Volatile Memory	API call Power cycle
KAS-ECC-SSC	Shared secret Z	Internally Generated	API parameter	Volatile Memory	API call Power cycle
RSA Key wrapping	key pair	Internally Generated or Input	API parameter	Volatile Memory	API call Power cycle

Note:

Keys must be imported or exported from the cryptographic boundary in encrypted form using a FIPS Approved algorithm.

To comply with FIPS 140-2, AES-GCM must generate IV internally with Approved DRBG. DRBG seed also must be generated internally. The minimum 96-bit IV length is enforced by the module.

8.1 Key Generation

SB FIPS Module provides FIPS 140-2 compliant key generation (CKG). The underlying random number generation uses a FIPS Approved method, a DRBG (Hash, HMAC or Counter).

The module also supports ANSI X9.62 and ANSI X9.31 RNGs, however, the use of ANSI X9.62/ANSI X9.31 RNG is non-approved for key generation. No keys generated using ANSI X9.62/ANSI X9.31 RNG can be used to protect sensitive data in the Approved mode.

8.2 Key Establishment

SB FIPS Module provides the following FIPS Approved or allowed key establishment techniques [5]:

- 1. KAS-FFC (key agreement; key establishment methodology provides 112 bits of encryption strength)
- 2. KAS-ECC (key agreement; key establishment methodology provides between 112 and 256 bits of encryption strength)
- 3. RSA (key wrapping; key establishment methodology provides between 112 and 150 bits of encryption strength)
- 4. KTS (key wrapping using AES-KW; key establishment methodology provides between 128 and 256 bits of encryption strength)

It is the responsibility of the application to ensure that the appropriate key establishment techniques are applied to the appropriate keys.

8.3 Key Entry and Output

Keys must be imported or exported from the cryptographic boundary in encrypted form using a FIPS Approved algorithm.

8.4 Key Storage

SB FIPS Module is a low-level cryptographic toolkit, and as such does not provide key storage.

8.5 Zeroization of Keys and CSPs

SB FIPS Module provides zeroizable interfaces which implement zeroization functions (see Table 4). Zeroization of keys and CSPs must be performed by calling the corresponding destroy functions of the objects when no longer needed.

Internally, SB FIPS Module zeroize all intermediate keys and CSPs upon each function returns.

9 Self-Tests

9.1 Power-up Tests

9.1.1 Tests upon Power-up

Self-tests are initiated automatically by the module at start-up without any intervention from an application. It does not involve any inputs by the operator. The following tests are applied:

1. Software Integrity Test:

The software integrity test deploys HMAC SHA-256 to verify the integrity of the module.

2. Known Answer Tests (KATs):

The following KATs are performed:

AES-ECB Encrypt KAT,

AES-ECB Decrypt KAT,

AES-GCM Encrypt KAT,

AES-GCM Decrypt KAT,

AES-KW Wrapping KAT,

AES-KW Unwrapping KAT,

DRBG-CTR KAT,

DRBG-HASH KAT,

DRBG-HMAC KAT,

DSA PCT,

ECDSA PCT.

KAS-FFC-SSC KAT,

KAS-ECC-SSC KAT,

KDA-onestep (KDA-56C) KAT,

HMAC SHA-1 KAT,

HMAC SHA-224 KAT,

HMAC SHA-256 KAT,

HMAC SHA-384 KAT,

HMAC SHA-512 KAT,

HMAC SHA-512/224 KAT, HMAC SHA-512/256 KAT,

HMAC SHA3-224 KAT,

HMAC SHA3-256 KAT.

HMAC SHA3-384 KAT,

HMAC SHA3-512 KAT,

ANS X9.63-2001 KDF KAT,

RSA Signature Generation KAT,

RSA Signature Verification KAT,

RSADP Encrypt KAT,

RSADP Decrypt KAT,

Triple-DES-ECB Encrypt KAT, and

Triple-DES-ECB Decrypt KAT.

Pairwise-consistency test (PCT) is used for DSA, RSA and ECDSA. ECMQV tests are covered by the underlying arithmetic tests via ECDSA PCT and ANSI X9.63-2001 KDF KAT. Each SHA KAT is considered covered by the corresponding HMAC SHA KAT. SP 800-56A Primitive "Z" Computation

KATs are covered by KAS-FFC KAT and KAS-ECC KAT. The SP 800-56B Self-Tests per IG D.4 are covered by RSADP Encrypt KAT and RSADP Decrypt KAT.

9.1.2 On-Demand Self-Tests

On-demand self tests may be invoked by the Cryptographic Officer or User by invoking a function, which is described in the Crypto Officer And User Guide in Appendix A.

9.2 Conditional Tests

Continuous RNG Tests for ENT (NP),
Adaptive Proportion Tests for ENT (NP),
Continuous RNG Tests for DRBG-CTR,
Continuous RNG Tests for DRBG-HASH,
Continuous RNG Tests for DRBG-HMAC,
Pair-wise Consistency Tests for FFC key generation,
Pair-wise Consistency Tests for ECC key generation, and
Pair-wise Consistency Tests for RSA key generation.

9.3 Critical Function Tests

For DRBG (CTR, HASH, and HMAC), the module implements the following critical function tests:

- SP 800-90A DRBG Instantiate Health Test
- SP 800-90A DRBG Generate Health Test
- SP 800-90A DRBG Reseed Health Test
- SP 800-90A DRBG Uninstantiate Health Test

9.4 Failure of Self-Tests

Failure of the Self-tests places the cryptographic module in the Error state, wherein no cryptographic operations can be performed. If any Self-test fails, the cryptographic module will output an error code, and goes into the Error state.

10 Design Assurance

10.1 Configuration Management

A configuration management system for the cryptographic module is employed and has been described in a document to the testing laboratory. It uses Subversion (SVN) to track the configurations.

10.2 Delivery and Operation

Please refer to Section A.1 of Crypto Officer And User Guide in Appendix A to review the steps necessary for the secure installation and initialization of the cryptographic module.

10.3 Development

Detailed design information and procedures have been described in documentation submitted to the testing laboratory. The source code is fully annotated with comments, and is also submitted to the testing laboratory.

10.4 Guidance Documents

Crypto Officer Guide And User Guide is provided in Appendix A. This appendix outlines the operations for Crypto Officer and User to ensure the security of the module.

11 Mitigation of Other Attacks

SB FIPS Module implements mitigation of the following attacks:

1. Timing Attack on RSA

11.1 Timing Attack on RSA

When employing Montgomery computations, timing effects allow an attacker to tell when the base of exponentiation is near the secret modulus. This leaks information concerning the secret modulus.

In order to mitigate this attack, the following is executed: The bases of exponentiation are randomized by a technique that requires no inversion to remove (unlike other blinding methods e.g. BSAFE Crypto-C User Manual v 4.2).

Note that Remote Timing Attacks are practical: http://crypto.stanford.edu/ dabo/papers/ssl-timing.pdf

12 Entropy Source

The entropy source accumulates 256 noise samples, each sample consisting of 64 bits, into a 256 bit pool. Each noise sample is estimated to contain at least 1 bit of entropy, so the pool contains 256 bits of entropy. The pool is used for at most 256 output bits before another set of 256 noise samples are accumulated into the pool. Therefore, each output bit of the entropy source contains 1 bit of entropy.

A Crypto Officer and User Guide

A.1 Installation

In order to carry out a secure installation of SB FIPS Module, the Crypto Officer must follow the procedure described in this section.

A.1.1 Installing

The Crypto Officer is responsible for the installation of SB FIPS Module. Only the Crypto Officer is allowed to install the product.

Place the object in an appropriate location on the computer hardware for your development and runtime environments.

The entropy source tested is not part of the SB FIPS Module but included with the SB API library. The SB API library must be linked with the application that uses the SB FIPS Module. The Crypto Officer shall verify the SHA-256 digest of the static library matches the values listed in Table 8.

Table 8: SHA-256 Digest of Library including Entropy Source

Platform	Library File Name	SHA-256 Digest		
Android 64-bit ARMv8	libhu.a	d6125b28ef3ead380141ab8f248a59f169de34313dfe9d440 532224b867ace8a		
Android 32-bit ARMv7	libhu.a	d323f2710e961a5e42789930b39f16194f5b269a1c1e2985a c743dd2b2caa114		
iOS 64-bit x86	libhu.a	539d013368077338a53e910b26083ac8fcd4c1926d0529cdb 6bd3288f23e9d0e		
MacOS 64-bit x86	libhu.a	7c2fcca6dd581cae7113a916894daa2bbc071718a5a1a59ae e91899b77728589		
Windows 64-bit x86	hu.lib	58a149c1f58cba66bd3f33ddda67472a728f9e329ee9a2969 9304e867d671047		
Linux 64-bit x86	libhu.a	ed854bace6c704b69aab114da6d097d417defe3dee99f605b e74ebb036ca2fa0		
QNX SDP 7.1 64-bit ARMv8 libhu.a		727aaa6e6b58f34d2b3b6558ad0fb07185f49dd2264a812ed ed278cbab89cc63		
QNX SDP 7.1 64-bit x86 libhu.a		0481ee7a24a47bc5e0138bf8332271c99b941d110e29c5914 254abed27c7225f		

A.1.2 Uninstalling

Remove the object from the computer hardware.

A.2 Commands

A.2.1 Load

SB FIPS Module typically is a shared library. Depending on the platform, the module can be loaded on the memory automatically when an executable is run or calling a loader system function by an executable. Once the module is loaded, a series of self-tests will be automatically started without any intervention from an application. These tests examine the integrity of the object, and the correct operation of the cryptographic algorithms. If these tests are successful, a value of *SB_SUCCESS* will be returned and the module will be enabled.

A.2.2 Unload

When the executable which loaded SB FIPS Module finishes running, the module will be unloaded from the memory.

A.2.3 Self-Tests

sbg_FIPS140RunTest()

This user callable function runs a series of self-tests, and return *SB_SUCCESS* if the tests are successful. These tests examine the integrity of the object, and the correct operation of the cryptographic algorithms. If these tests fail, the module will be disabled. Section A.3 of this document describes how to recover from the disabled state.

A.2.4 Show Status/Mode

sbg_FIPS140GetState()

This function will return the current state of the module.

A.3 When Module is Disabled

When SB FIPS Module becomes disabled, uninstall the module and re-install it. If the module is loaded successfully by this re-installation, the recovery is successful. If this recovery attempt fails, it indicates a fatal error. Please contact Certicom Support immediately.

A.4 Operation Limitation for FIPS approved mode

For 3-key Triple-DES, NIST SP 800-67rev1 requires a limit that the same Triple-DES key shall not be used for more than 2^{28} encryptions.