Apple Inc.

Apple corecrypto Module v11.1 [Intel, User, Software] FIPS 140-3 Non-Proprietary Security Policy

document version 1.3

November, 2022

Prepared by:

atsec information security corporation

9130 Jollyville Road, Suite 260

Austin, TX 78759

www.atsec.com

Trademarks

Apple's trademarks applicable to this document are listed in <u>https://www.apple.com/legal/intellectual-property/</u> <u>trademark/appletmlist.html</u>. Other company, product, and service names may be trademarks or service marks of others.

Table of Contents

1. General	5
2. Cryptographic Module Specification	6
3. Cryptographic Module Interfaces	12
4. Roles, services, and authentication	13
5. Software/Firmware security	21
5.1. Integrity Techniques	21
5.2. On-Demand Integrity Test	21
6. Operational Environment	22
7. Physical Security	23
8. Non-invasive Security	24
9. Sensitive Security Parameter Management	25
9.1. Random Number Generation	28
9.2. Key / SSP Generation	29
9.3. Keys/SSPs Establishment	29
9.4. Keys/SSPs Import/Export	30
9.5. Keys/SSPs Storage	30
9.6. Keys/SSPs Zeroization	30
10.Self-tests	31
10.1.Pre-operational Software Integrity Test	31
10.2.Conditional Self-Tests	31
10.2.1.Conditional Cryptographic Algorithm Self-Tests	31
10.2.2.Conditional Pairwise Consistency Test	32
10.3.Error Handling	32
11. Life-cycle assurance	33
11.1. Delivery and Operation	33
11.2.Crypto Officer Guidance	33
12. Mitigation of other attacks	35

List of Tables

Table 1 - Security Levels	5
Table 2 – Tested Operational Environments	6
Table 3 – Vendor Affirmed Operational Environments	6
Table 4 – Approved Algorithms	9
Table 5 – Non-Approved Algorithms Allowed in the Approved Mode of Operation with No Security Claimed	9
Table 6 – Non-Approved Not Allowed in the Approved Mode of Operation	11
Table 7 – Interfaces	12
Table 8 – Approved Services	16
Table 9 – Non-Approved Services	20
Table 10 - SSPs	28
Table 11 - Non-Deterministic Random Number Generation Specification	29
Table 12 - Pre-Operational Cryptographic Algorithms Self-Tests	32
Table 13 – Error Indicators	32

1. General

This document is the non-proprietary FIPS 140-3 Security Policy for Apple corecrypto Module v11.1 [Intel, User, Software] cryptographic module. It contains the security rules under which the module must operate and describes how this module meets the requirements as specified in FIPS PUB 140-3 (Federal Information Processing Standards Publication 140-3) for a Security Level 1 module.

This document provides all tables and diagrams (when applicable) required by NIST SP 800-140B. The column names of the tables follow the template tables provided in NIST SP 800-140B.

Table 1 describes the individual security areas of FIPS 140-3, as well as the Security Levels of those individual areas.

ISO/IEC 24759 Section 6. [Number Below]	FIPS 140-3 Section Title	Security Level
1	General	1
2	Cryptographic Module Specification	1
3	Cryptographic Module Interfaces	1
4	Roles, Services, and Authentication	1
5	Software/Firmware Security	1
6	Operational Environment	1
7	Physical Security	Not Applicable
8	Non-invasive Security	Not Applicable
9	Sensitive Security Parameter Management	1
10	Self-tests	1
11	Life-cycle Assurance	1
12	Mitigation of Other Attacks	Not Applicable

Table 1 - Security Levels

2. Cryptographic Module Specification

The Apple corecrypto Module v11.1 [Intel, User, Software] cryptographic module (hereafter referred to as "the module") is a Software module running on a multi-chip standalone general-purpose computing platform. The version of module is 11.1, written as v11.1. The module provides implementations of low-level cryptographic primitives to the Host OS's (macOS Big Sur 11.0.1) Security Framework and Common Crypto. The module has been tested by atsec CST lab on the following platforms with and without AES-NI:

#	Operating System	Hardware Platform	Processor	PAA/Acceleration
1	macOS Big Sur 11.0.1	MacBook Air	Intel i5-8210Y (Amber Lake)	AES-NI
2	macOS Big Sur 11.0.1	MacBook Air	Intel i7-1060NG7 (Ice Lake)	AES-NI
3	macOS Big Sur 11.0.1	MacBook Pro	Intel i7-8850H (Coffee Lake)	AES-NI
4	macOS Big Sur 11.0.1	MacBook Pro	Intel i9-9880H (Coffee Lake)	AES-NI
5	macOS Big Sur 11.0.1	iMac Pro	Xeon W-2140B (Sky Lake)	AES-NI
6	macOS Big Sur 11.0.1	Mac Pro	Xeon W-3223 (Cascade Lake)	AES-NI

Table 2 – Tested Operational Environments

In addition to the platforms listed in Table 2, Apple Inc. has also tested the module on the following platforms and claims vendor affirmation on them:

#	Operating System	Hardware Platform	Processor	Release Year
1	macOS Big Sur 11.0.1	MacBook Pro	i5 (Ice Lake)	2020
2	macOS Big Sur 11.0.1	MacBook Pro	i5 (Coffee Lake)	2020, 2019, 2018
3	macOS Big Sur 11.0.1	MacBook Pro	i7 (Amber Lake)	2019, 2018
4	macOS Big Sur 11.0.1	MacBook Pro	i7 (Coffee Lake)	2020, 2019, 2018
5	macOS Big Sur 11.0.1	MacBook Pro	i7 (Ice Lake)	2020
6	macOS Big Sur 11.0.1	MacBook Pro	i9 (Coffee Lake)	2019, 2018
7	macOS Big Sur 11.0.1	MacBook Air	i5 (Ice Lake)	2020
8	macOS Big Sur 11.0.1	MacBook Air	i7 (Ice Lake)	2020
9	macOS Big Sur 11.0.1	MacBook Air	i5 (Amber Lake)	2019, 2018
10	macOS Big Sur 11.0.1	MacBook Air	i7 (Amber Lake)	2018
11	macOS Big Sur 11.0.1	Mac mini	i5 (Coffee Lake)	2018
12	macOS Big Sur 11.0.1	Mac mini	i7 (Coffee Lake)	2018
13	macOS Big Sur 11.0.1	iMac	i5 (Comet Lake)	2020
14	macOS Big Sur 11.0.1	iMac	i7 (Comet Lake)	2020
15	macOS Big Sur 11.0.1	iMac	i9 (Comet Lake)	2020
16	macOS Big Sur 11.0.1	iMac	i5 (Coffee Lake)	2019
17	macOS Big Sur 11.0.1	iMac	i7 (Coffee Lake)	2019
18	macOS Big Sur 11.0.1	iMac	i9 (Coffee Lake)	2019

Table 3 – Vendor Affirmed Operational Environments

© 2022 Apple Inc., All rights reserved.

The CMVP makes no statement as to the correct operation of the module or the security strengths of the generated keys when so ported if the specific operational environment is not listed on the validation certificate.

The table below lists all Approved or Vendor-affirmed security functions of the module, including specific key size(s) employed for approved services, and implemented modes of operation. The module is in the Approved mode of operation when the module utilizes the services that use the security functions listed in the table below. Not all algorithms tested with CAVP are used by the module. The Approved mode of operation is configured in the system by default and can only be transitioned into the non-Approved mode by calling one of the non-Approved services listed in Table 9 – Non-Approved Services. If the device starts up successfully, then the module has passed all self-tests and is operating in the Approved mode.

CAVP Cert.	Algorithm and Standard	Mode / Method	Description / Key Size(s)	Use / Function
A918 (vng_asm) A919 (c_ltc) A921 (c_asm) A925 (c_aesni) A929 (vng_aesni)	CTR_DRBG [SP800-90A]	AES-128, AES-256 Derivation Function Enabled No Prediction Resistance	128, 256 bits	Random Number Generation
A919 (c_ltc) A923 (c_avx2) A924 (c_avx) A930 (c_sse3)	HMAC_DRBG [SP800-90A]	SHA-1, SHA-224, SHA-256, SHA-384, SHA-512 No Prediction Resistance	112 bits or greater	Random Number Generation
A919 (c_ltc) A921 (c_asm) A925 (c_aesni)	AES [FIPS 197] [SP 800-38A] [SP 800-38B] [SP 800-38C] [SP 800-38D] [SP 800-38E]	CBC, ECB, CCM, GCM, CFB128, CFB8, OFB, CTR, XTS CMAC (only in A919, with MAC Length: 128 bits)	Key Length: 128, 192, 256 bits XTS (128 and 256-bits key size only)	Symmetric Encryption and Decryption
A920 (c_glad)	AES [FIPS 197] [SP 800-38A]	СВС	Key Length: 128, 192, 256	Symmetric Encryption and Decryption
A927 (asm_aesni) A926 (asm_x86)	AES [FIPS 197] [SP 800-38A] [SP 800-38E]	CBC, ECB, XTS	Key Length: 128, 192, 256 XTS (128 and 256-bits key size only)	Symmetric Encryption and Decryption
A918 (vng_asm) A929 (vng_aesni)	AES [FIPS 197] [SP 800-38A] [SP 800-38C] [SP 800-38D]	ECB, CCM, CTR, GCM	Key Length: 128, 192, 256	Symmetric Encryption and Decryption

CAVP Cert.	Algorithm and Standard	Mode / Method	Description / Key Size(s)	Use / Function
A919 (c_ltc) A921 (c_asm) A925 (c_aesni)	KTS (AES) [FIPS 197] [SP 800-38F]	AES-KW	Key Length: 128, 192, 256	Key Wrapping and Unwrapping
A919 (c_ltc) A923 (c_avx2) A924 (c_avx) A930 (c_sse3)	RSA [FIPS 186-4]	Key Generation (ANSI X9.31), (CKG using method in Sections 4 and 5.1 [SP 800-133])	Modulus: 2048, 3072, 4096	Asymmetric Key Generation
A919 (c_ltc) A923 (c_avx2) A924 (c_avx) A930 (c_sse3)	RSA [FIPS 186-4]	Signature Generation (PKCS#1 v1.5) and (PKCS PSS)	Modulus: 2048, 3072, 4096	Digital Signature Generation
A919 (c_ltc) A923 (c_avx2) A924 (c_avx) A930 (c_sse3)	RSA [FIPS 186-4]	Signature Verification (PKCS#1 v1.5) and (PKCS PSS)	Modulus: 1024, 2048, 3072, 4096	Digital Signature Verification
A919 (c_ltc) A923 (c_avx2) A924 (c_avx) A930 (c_sse3)	ECDSA [FIPS 186-4]	Key Pair Generation (PKG) CKG using method in Sections 4 and 5.1 [SP 800-133])	Curve: P-224, P-256, P-384, P-521	Asymmetric Key Generation
A919 (c_ltc) A923 (c_avx2) A924 (c_avx) A930 (c_sse3)	ECDSA [FIPS 186-4]	Public Key Validation (PKV)	Curve: P-224, P-256, P-384, P-521	Asymmetric Public Key Verification
A919 (c_ltc) A923 (c_avx2) A924 (c_avx) A930 (c_sse3)	ECDSA [FIPS 186-4]	Signature Generation	Curve: P-224, P-256, P-384, P-521	Digital Signature Generation
A919 (c_ltc) A923 (c_avx2) A924 (c_avx) A930 (c_sse3)	ECDSA [FIPS 186-4]	Signature Verification	Curve: P-224, P-256, P-384, P-521	Digital Signature Verification
A919 (c_ltc) A923 (c_avx2) A924 (c_avx) A928 (vng_lntel) A930 (c_sse3)	SHS [FIPS 180-4]	SHA-1, SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/256 (except for A928)	N/A	Message Digest

© 2022 Apple Inc., All rights reserved.

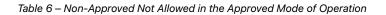
CAVP Cert.	Algorithm and Standard	Mode / Method	Description / Key Size(s)	Use / Function
A919 (c_ltc) A923 (c_avx2) A924 (c_avx) A928 (vng_Intel) A930 (c_sse3)	HMAC [FIPS 198-1]	SHA-1, SHA-224, SHA-256, SHA-384, SHA-512 SHA-512/256 (except for A928)	Key Length: 112 bits or greater	Keyed Hash
A919 (c_ltc)	KAS-FFC-SSC [SP800-56A Rev 3]	Scheme: dhEphem: KAS Role: initiator, responder	Domain Parameter Generation Methods: MODP-2048, MODP-3072, MODP-4096, MODP-6144, MODP-8192	Shared Secret Computation
A919 (c_ltc)	KAS-ECC-SSC [SP800-56A Rev 3]	Scheme: ephemeralUnified: KAS Role: initiator, responder	Domain Parameter Generation Methods: P-224, P-256, P-384, P-521	Shared Secret Computation
A919 (c_ltc) A923 (c_avx2) A924 (c_avx) A930 (c_sse3)	KBKDF [SP800-108]	KDF Mode: Counter and Feedback MAC Mode: HMAC-SHA-1, HMAC-SHA2-224, HMAC- SHA2-256, HMAC- SHA2-384, HMAC- SHA2-512	Supported Lengths: 8-4096 Increment 8 Fixed Data Order: Before Fixed Data Counter Length: 32	Key Derivation
A919 (c_ltc)	KBKDF [SP800-108]	KDF Mode: Counter MAC Mode: CMAC-AES128, CMAC-AES192, CMAC- AES256	Supported Lengths: 8-4096 Increment 8 Fixed Data Order: Before Fixed Data Counter Length: 8, 16, 24, 32	Key Derivation
A919 (c_ltc) A923 (c_avx2) A924 (c_avx) A930 (c_sse3)	PBKDF [SP800-132]	HMAC with: SHA-1, SHA-224, SHA-256, SHA-384, SHA-512	Password length: 8- 128 bytes Increment 1 Salt Length: 128-4096 Increment 8 Iteration Count: 10-1000 Increment 1	Key Derivation
A919 (c_ltc)	Safe Primes Key Generation	KeyGen for DH (CKG using method in Sections 4 and 5.1 [SP 800-133])	Safe Prime Groups: MODP-2048, MODP-3072, MODP-4096, MODP-6144, MODP-8192	Key Generation
N/A	ENT (P) [SP800-90B] ENT (NP) [SP800-90B]	N/A	Seeding for the DRBG. (is provided by the underlying operational environment)	Random Number Generation

Table 4 – Approved Algorithms

The table below list non-Approved but Allowed in Approved mode of operation when used as part of an approved key transport scheme where no security is provided by the algorithm.

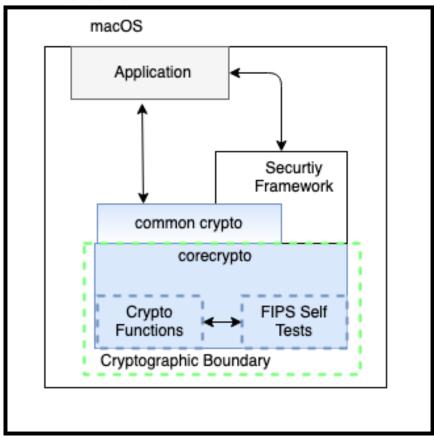
Algorith	n Caveat	Use/Function
MD5	Allowed in Approved mode with no security claimed per IG 2.4.A Digest Size: 128-bit	Message Digest (used as part of the TLS v1.0, v1.1 key establishment scheme only)

Table 5 – Non-Approved Algorithms Allowed in the Approved Mode of Operation with No Security Claimed


© 2022 Apple Inc., All rights reserved.

The table below lists Non-Approved security functions that are not Allowed in the Approved Mode of Operation:

Algorithm/Functions	Use/Function	Notes
RSA	ANSI X9.31 Key Pair Generation	Non-Approved
Asymmetric Key Pair Generation	Key Size < 2048	
RSA	PKCS#1 v1.5 and PSS Signature Generation	Non-Approved
Signature Generation	Key Size < 2048	
RSA	PKCS#1 v1.5 and PSS Signature Verification	Non-Approved
Signature Verification	Key Size < 1024	
RSA Key Wrapping	OAEP, PKCS#1 v1.5 and -PSS schemes	Non-Approved
Diffie-Hellman	Shared Secret Computation using key size < 2048	Non-Approved
EC Diffie-Hellman	Shared Secret Computation using curves < P-224	Non-Approved
Ed25519	Key Agreement	Non-Approved
	Key Generation	
	Signature Generation	
	Signature Verification	
ANSI X9.63 KDF	Hash based Key Derivation Function	Non-Approved
RFC6637	Key Derivation Function	Non-Approved
HKDF [SP800-56C]	Key Derivation Function	Non-Approved
DES	Encryption / Decryption	Non-Approved
	Key Size 56-bits	
CAST5	Encryption / Decryption	Non-Approved
	Key Sizes 40 to 128-bits in 8-bit increments	
RC4	Encryption / Decryption	Non-Approved
	Key Sizes 8 to 4096-bits	
RC2	Encryption / Decryption	Non-Approved
	Key Sizes 8 to 1024-bits	
MD2	Message Digest	Non-Approved
	Digest size 128-bit	
MD4	Message Digest	Non-Approved
	Digest size 128-bit	
RIPEMD	Message Digest	Non-Approved
	Digest size 160-bits	
ECDSA	PKG: Curve P-192	Non-Approved due to the small curve size
	PKV: Curve P-192	
	Signature Generation: Curve P-192	
	Signature Verification: Curve P-192	
ECDSA	Key Pair Generation for compact point representation of points	Non-Approved


© 2022 Apple Inc., All rights reserved.

Algorithm/Functions	Use/Function	Notes
Integrated Encryption Scheme on elliptic curves (ECIES)	Encryption / Decryption	Non-Approved
Blowfish	Encryption / Decryption	Non-Approved
OMAC (One-Key CBC MAC)	MAC generation	Non-Approved
Triple-DES [SP 800-67]	CBC, CTR, CFB64, ECB, CFB8, OFB	Encryption/Decryption Note: The module itself does not enforce the limit of 2 ¹⁶ encryptions with the same Triple- DES key, as required by FIPS 140-3 IG C.G.

The Apple corecrypto Module v11.1 [Intel, User, Software] executes within the user space of the computing platforms and operating systems listed in Table 2. Figure 1 below shows the logical block diagram representing the following information:

- o The location of the logical object of the module with respect to the operating system, other supporting applications, and the cryptographic boundary so that all the logical and physical layers between the logical object and the cryptographic boundary are clearly defined.
- o The interactions of the logical object of the module with the operating system and other supporting applications resident within the cryptographic boundary.

Device TOEPP

Figure 1 – Logical block diagram

© 2022 Apple Inc., All rights reserved. This document may be reproduced and distributed only in its original entirely without revision.

3. Cryptographic Module Interfaces

As a software-only module, the module does not have physical ports. For the purpose of the FIPS 140-3 validation, the physical ports are interpreted to be the physical ports of the hardware platform on which it runs.

The underlying logical interfaces of the module are the C language Application Programming Interfaces (APIs). In detail these interfaces are described in (Table 7):

Logical Interface	Data that passes over port/interface
Data Input	Data inputs are provided in the variables passed in the API and callable service invocations, generally through caller-supplied buffers
Data Output	Data outputs are provided in the variables passed in the API and callable service invocations, generally through caller-supplied buffers
Control Input	Control inputs which control the mode of the module are provided through dedicated parameters.
Control Output	Not Applicable
Status Output	Status output is provided in return codes and through messages. Documentation for each API lists possible return codes. A complete list of all return codes returned by the C language APIs within the module is provided in the header files and the API documentation. Messages are also documented in the API documentation.

Table 7 – Interfaces

The module is optimized for library use within the macOS user space and does not contain any terminating assertions or exceptions. It is implemented as a macOS dynamically loadable library. After the dynamically loadable library is loaded, its cryptographic functions are made available to the macOS application. Any internal error detected by the module is reflected back to the caller with an appropriate return code. The calling macOS application must examine the return code and act accordingly.

The module communicates any error status synchronously using its documented return codes, thus indicating the module's status. It is the responsibility of the caller to handle exceptional conditions in a FIPS 140-3 appropriate manner.

Caller-induced or internal errors do not reveal any sensitive material to callers. Cryptographic bypass capability is not supported by the module.

4. Roles, services, and authentication

The module supports a single instance of one authorized role: The Crypto Officer (CO). No support is provided for multiple concurrent operators or a Maintenance Operator.

FIPS 140-3 does not require an authentication mechanism for level 1 modules. Therefore, the module does not implement an authentication mechanism for Crypto Officer. The Crypto Officer role is authorized to access all services provided by the module (see Table 8 – Approved Services and Table 9 – Non-Approved Services below).

The module implements a dedicated API function to indicate if a requested service utilizes an approved security function. For services listed in Table 8 – Approved Services, the indicator function returns 1. For services listed in Table 9 – Non-Approved Services, the indicator function returns 0.

The table below lists all approved services that can be used in the approved mode of operation. The abbreviations of the access rights to keys and SSPs have the following interpretation:

G = Generate: The module generates or derives the SSP.

R = **Read**: The SSP is read from the module (e.g., the SSP is output).

W = Write: The SSP is updated, imported, or written to the module.

E = **Execute**: The module uses the SSP in performing a cryptographic operation.

Z = **Zeroise**: The module zeroises the SSP.

N/A= The service does not access any SSP during its operation

Service	Description and Input/ Output	Approved Security Functions	Keys and/ or SSPs	Roles	Access rights to Keys and/or SSPs	Indicator
AES Encryption / Decryption	Input for Encryption: key and plain text Output for Encryption: cipher text Input for Decryption: key and cipher text Output for Decryption: plain text	AES-CBC, AES-ECB, AES- CFB128, AES-CFB8, AES- OFB, AES-CTR, AES-XTS, AES-GCM, AES-CCM, AES-CMAC	AES key	со	W, E	1
AES Key Wrapping	Input: key encryption key and key to be wrapped Output: wrapped key	AES-KW	AES key encryption key	со	W, E	1
Secure Hash Generation	Input: message Output: Hash value	Message Digest: SHA-1, SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/256	none	со	N/A	1
MD5 Hash Generation (non-approved but allowed for TLS 1.0/1.1)	Input: message Output: Hash value	Message Digest MD5	none	со	N/A	1

© 2022 Apple Inc., All rights reserved.

Service	Description and Input/ Output	Approved Security Functions	Keys and/ or SSPs	Roles	Access rights to Keys and/or SSPs	Indicator
HMAC generation and verification	Generation: Input: HMAC key and message Output: keyed Hash value Verification: Input: HMAC key, message, and keyed hash value Output: True or False	HMAC Keyed Hash	HMAC key	со	W, E	1
RSA signature generation and verification	Input for signature generation: RSA private key and message Output: signature Input for signature verification: RSA public key and signature Output: True or False	RSA signature generation, RSA signature verification	RSA key pair	со	W, E	1
ECDSA signature generation and verification	Input for signature generation: ECDSA private key and message Output: signature Input for signature verification: ECDSA public key and signature Output: True or False	ECDSA signature generation, ECDSA signature verification	ECDSA key pair	со	W, E	1
Random number generation	Input: Entropy input string, nonce Output: Random numbers	HMAC_DRBG, CTR_DRBG	Entropy input string, DRBG seed, values V and Key	со	G, R, E, Z	1
PBKDF	Input: password Output: derived key	Key Derivation	PBKDF derived key, PBKDF password	со	G, R, E	1
KBKDF	Input: key derivation key Output: derived key	Key Derivation	KBKDF key derivation key, KBKDF derived key	со	G, R, E	1

Service	Description and Input/ Output	Approved Security Functions	Keys and/ or SSPs	Roles	Access rights to Keys and/or SSPs	Indicator
ECDSA Key-pair Generation	Input: curve size Output: generated private and public key pair	Key Pair Generation EC KeyGen	EC key pair	со	G, R, E	1
RSA Key-pair Generation	Input: key size Output: generated private and public key pair	Key Pair Generation RSA KeyGen	RSA key pair	со	G, R, E	1
Safe primes key generation	Input: key size Output: generated private and public key pair	Key Pair Generation	Diffie Hellman key pair	со	G, R, E	1
Diffie-Hellman Shared Secret Computation	Input: domain parameter, received public key and possessed private key Output: shared secret	KAS-FFC-SSC	Asymmetric keys (DH key) and shared secret	со	G, R, W, E	1
EC Diffie- Hellman Shared Secret Computation	Input: domain parameter, received public key and possessed private key Output: shared secret	KAS-ECC-SSC	Asymmetric keys (EC key) and shared secret	СО	G, R, W, E	1
Release all resources of symmetric crypto function context	Input: handler of symmetric crypto function context Output: zeroised and released memory space	N/A	AES key	со	Z	1
Release all resources of hash context	Input: handler of hash context Output: released memory space	N/A	HMAC key	со	Z	1
Release of all resources of Diffie-Hellman context for Diffie-Hellman and EC Diffie- Hellman	Input: handler of (EC) Diffie- Hellman context Output: zeroised and released memory space	N/A	(EC)Diffie- Helman key pairs and shared secret	со	Z	1

© 2022 Apple Inc., All rights reserved.

Service	Description and Input/ Output	Approved Security Functions	Keys and/ or SSPs	Roles	Access rights to Keys and/or SSPs	Indicator
Release of all resources of asymmetric crypto function context	Input: handler of asymmetric crypto function context Output: zeroised and released memory space	N/A	RSA/ECDSA key pairs	со	Z	1
Release of all resources of key derivation function context	Input: handler of key derivation function context Output: zeroised and released memory space	N/A	KBKDF key derivation key, PBKDF password, KBKDF and PBKDF derived key	со	Z	1
Self-test	Input: power Output: Pass/Fail status	AES-CCM, AES-GCM, AES-XTS, AES-CBC, AES- ECB, HMAC_DRBG, CTR_DRBG, HMAC, AES- CMAC, RSA Signature Generation, RSA Signature Verification, ECDSA Signature Generation, ECDSA Signature Verification, DH and ECDH Z computation, PBKDF, KBKDF	Software integrity key	со	Ε	1
Show Status	Input: API invocation Output: Operational/Error status	N/A	None	со	N/A	none
Show Module Info	Input: API invocation Output: Module Base Name and Module Version Number	N/A	None	со	N/A	none

Table 8 – Approved Services

The table below lists all non-Approved services that can only be used in the non-Approved mode of operation.

ServiceDescription and Input/OutputAlgorithms AccessedRoleIndicatorTriple-DES encryption decryptionModule does not meet FIPS 140-3 1G C.G Bacause 1: to encrypted under the same Triple-DES key.Triple-DESCO0Input for Encryption: opher text output for Encryption: opher text pain textInput for Secryption: opher text pain textTriple-DESCO0RSA Key EncapsulationThe CAST does not perform the full KTS, only the raw RSA encrypt/decrypt.RSA encrypt/decrypt.CO0Input (RSA encrypt): wrapped key input (RSA encrypt): generate key and paintextRSA encrypt/decrypt.CO0RSA Key-pair Generation Key Size < 2048 Input: key size Output: key size < 2048 Input: signature Generation Key Size < 2048 Input: signatureRSA Signature Generation Key Size < 2048 Input: RSA privak key and message Output: signatureRSA Signature Generation Key Size < 2048 Input: RSA privak key and message Output: signatureRSA Signature Verification Key Size < 1024 Input: RSA privak key and message Output: RSA privak key and message Output: RSA privak key and message Output: RSA privak key and message Output: RSA privak key and signature<					
decryptiondoes not have a control over the number of blocks to be encrypted under the same Triple-DES key.Imput for Encryption: control to rencryption: output for Encryption: key and plaintextImput for Encryption: control to Decryption: key and plaintextImput for Decryption: key and key to be wrappedRSA encrypt/decryptImput (RSA encrypt): RSA public key and key to be wrapped Output (RSA decrypt): mrapped key imput (RSA decrypt): mrapped key imput (RSA decrypt): plaintext keyRSA key EncapsulationRSA Key EncapsulationCO0RSA Key-pair Generation Key Size < 2048 imput: key size Output: signature egenerated key pairRSA key GenerationCO0RSA Signature Generation Key Size < 2048 input: signature output: signatureRSA Sig VerificationRSA Sig GenerationCO0RSA Signature Verification Key Size < 2048 input: signature output: signatureRSA Sig VerificationCO00RSA Signature Verification Key Size < 1024 input: input: RSA public key and message Output: isignatureRSA Sig VerificationCO0RSA Signature Verification Key Size < 1024 input: input: RSA public key and signature Output:RSA Sig VerificationCO0	Service	Description and Input/Output		Roles	Indicator
key and plaintext Output for Encryption: icpiber text Input for Decryption: lepiantext Output for Decryption: plaintextselectionselectionRSA Key EncapsulationThe CAST does not perform the full KTS, only the raw RSA encrypt/decrypt.RSA encrypt/decryptCO0Input (RSA encrypt): RSA public key and key to be wrapped Output (RSA decrypt): niput (RSA decrypt): plaintext keyNSA encrypt/decryptCO0RSA Key-pair Generation Key Size < 2048 Input: signature Generation Key Size < 2048 Input: input: RSA private key and heys and expanseRSA Key GenerationCO0RSA Signature Generation Key Size < 2048 Input: ingenerated key pairRSA Sig GenerationCO0RSA Signature Generation Key Size < 2048 Input: ingenerated key pairRSA Sig GenerationCO0RSA Signature Generation Key Size < 2048 Input: ingenerated key pairRSA Sig GenerationCO0RSA Signature Generation Key Size < 2048 Input: ingenerated key and message Output: inginatureRSA Sig VerificationCO0RSA Signature Verification Key Size < 1024 Input: RSA public key and signature Output: input: RSA public key and signature Input: RSA public key and signature Not public key and signatureCO0		does not have a control over the number of blocks to be encrypted under the same Triple-DES key.	Triple-DES	со	0
Imput for Decryption: key and cipher text Output for Decryption: plain textImput (RSA encrypt)RespectiveRe		key and plaintext Output for Encryption:			
RSA Key EncapsulationThe CAST does not perform the full KTS, only the raw RSA encrypt/decrypt.RSA encrypt/decrypt.CO0Input (RSA encrypt): RSA public key and key to be wrapped Output(RSA decrypt): 		Input for Decryption: key and cipher text			
raw RSA encrypt/decrypt.Input (RSA encrypt): RSA public key and key to be wrapped Output(RSA decrypt): wrapped key 		plain text			
RSA public key and key to be wrapped Output(RSA encrypt): wrapped key Input (RSA decrypt): plaintext key and key to be unwrapped Output(RSA decrypt): plaintext keySRA private key and key to be unwrapped Output(RSA decrypt): plaintext keySRA fried and set of the se	RSA Key Encapsulation		RSA encrypt/decrypt	со	0
wrapped key Input (RSA decrypt): RSA private key and key to be unwrapped Output(RSA decrypt): plaintext keyke		RSA public key and key to be wrapped			
RSA private key and key to be unwrapped Output(RSA decrypt): plaintext keyRSA key cenerationRSA Key GenerationCO0RSA Key-pair Generation Key Size < 2048 Input: key size Output: generated key pairRSA Key GenerationCO0RSA Signature Generation Key Size < 2048 Input: senarated key pairPKCS#1 v1.5 and PSS Signature Generation Key Size < 2048 Input: RSA private key and message Output: signatureRSA Sig GenerationCO0RSA Signature Verification Key Size < 1024 Input: RSA public key and signature Output: output: signatureRSA Sig VerificationCO0		wrapped key			
Output(RSA decrypt): plaintext keySeriesSer					
RSA Key-pair GenerationANSI X9.31 Key Pair Generation Key Size < 2048 Input: key size Output: generated key pairRSA Key GenerationCO0RSA Signature GenerationPKCS#1 v1.5 and PSS Signature Generation Key Size < 2048 Input: RSA private key and message Output: signatureRSA Sig GenerationCO0RSA Signature VerificationPKCS#1 v1.5 and PSS Signature Generation Key Size < 2048 Input: RSA private key and message Output: signatureRSA Sig GenerationCO0RSA Signature Verification Louput: signaturePKCS#1 v1.5 and PSS Signature VerificationRSA Sig VerificationCO0RSA Signature Verification Louput: RSA public key and signature Output: RSA public key and signature Output:RSA Sig VerificationCO0					
Key Size < 2048Input: key SizeKey Size < 2048Input: key SizeInput: key SizeInput: key SizeInput: wey SizeInput: wey SizeInput: wey Size < 2048Input: wey Size < 2048RSA Sig GenerationCO0RSA Signature Generation Key Size < 2048		plaintext key			
Input: key size Output: generated key pairInput: RSA Signature GenerationRSA Sig GenerationCO0RSA Signature Generation Ney Size < 2048 Input: RSA private key and message Output: signatureRSA Sig GenerationCO0RSA Signature Verification Ney Size < 1024 Input: RSA public key and signature Output: Output:RSA Sig VerificationCO0RSA Signature Verification Liput: RSA public key and signature Output:RSA Sig VerificationCO0	RSA Key-pair Generation		RSA Key Generation	со	0
key size Output: generated key pairkey size Output: generated key pairkey size signature GenerationRSA Sig GenerationCO0RSA Signature Generation Key Size < 2048 Input: RSA private key and message Output: signatureRSA Sig GenerationCO0RSA Signature VerificationPKCS#1 v1.5 and PSS Signature Verification signatureRSA Sig VerificationCO0RSA Signature Verification Linput: RSA public key and signature Output: Uput: RSA public key and signatureRSA Sig VerificationCO0					
generated key pairImpute RSA Signature GenerationRSA Sig GenerationCO0Inpute RSA private key and message Outpute signatureInpute RSA private key and message OutputeImpute RSA private key and messageImpute RSA private key and message OutputeImpute RSA private key and message OutputeImpute RSA private key and message OutputeImpute RSA public key and signatureImpute RSA pub					
RSA Signature GenerationPKCS#1 v1.5 and PSS Signature Generation Key Size < 2048 Input: RSA private key and message Output: signatureRSA Sig GenerationCO0RSA Signature VerificationPKCS#1 v1.5 and PSS Signature VerificationRSA Sig VerificationCO0RSA Signature VerificationPKCS#1 v1.5 and PSS Signature VerificationRSA Sig VerificationCO0RSA Signature VerificationPKCS#1 v1.5 and PSS Signature VerificationRSA Sig VerificationCO0RSA Signature VerificationKey Size < 1024 Input: RSA public key and signature Output:CO0					
Key Size < 2048					
RSA private key and message Output: -	RSA Signature Generation	, i i i i i i i i i i i i i i i i i i i	RSA Sig Generation	0	0
Output: signature signature RSA Signature Verification RSA Signature Verification RSA Sig Verification Key Size < 1024		-			
RSA Signature Verification PKCS#1 v1.5 and PSS Signature Verification RSA Sig Verification CO 0 Key Size < 1024					
Key Size < 1024		signature			
Input: RSA public key and signature Output:	RSA Signature Verification	PKCS#1 v1.5 and PSS Signature Verification	RSA Sig Verification	со	0
RSA public key and signature Output:					
True or False		Output:			
		True or False			

Service	Description and Input/Output	Algorithms	Roles	Indicator
		Accessed		
Diffie Hellman Shared Secret Computation	Diffie-Hellman SSC using key sizes < 2048 Input: peer public key and own private key Output: shared secret	KAS-FFC-SSC	со	0
EC Diffie Hellman Shared Secret Computation	EC Diffie-Hellman SSC using curve sizes < P-224 Input: peer public key and own private key Output: shared secret	KAS-ECC-SSC	со	0
ECDSA Key-pair Generation (PKG) and ECDSA Key Validation (PKV)	ECDSA PKG and PKV using curve P-192 Input for PKG: curve size (P-192) Output: generated (P-192) private and public key pair Input for PKV: public key Output: True or False	ECDSA Key Generation, ECDSA Key Validation	со	0
ECDSA Signature Generation	ECDSA Signature Generation using curve P-192 Input: (P-192) private key and message Output: signature	ECDSA Signature Generation	со	0
ECDSA Signature Verification	ECDSA Signature Verification using curve P-192 Input: (P-192) public key and signature Output: True or False	ECDSA Signature Verification	со	0
ECDSA Key Pair Generation for compact point representation of points	Key Pair Generation for compact point representation of points Input: key size Output: generated private and public key pair	ECDSA Key Generation	со	0
Ed25519 Key Generation	Ed25519 Key Generation Input: none Output: generated Curve25519 private and public key pair	Ed25519 Key Generation	со	0

Service	Description and Input/Output	Algorithms Accessed	Roles	Indicator
Ed25519 Signature Generation	EdDSA Signature Generation over Curve25519 Input: (Curve25519) private key and message Output: signature	Ed25519 Signature Generation	со	0
Ed25519 Signature Verification	EdDSA Signature Verification over Curve25519 Input: (Curve25519) public key and signature Output: True or False	Ed25519 Signature Verification	со	0
Ed25519 Key Agreement	Ed25519 Key Agreement Input: peer public key and own private key Output: shared secret	Ed25519 Key Agreement	со	0
ANSI X9.63 Key Derivation	SHA-1 hash-based key derivation function Input: key derivation key Output: derived key	SHA-1	со	0
ECIES	Integrated Encryption Scheme on elliptic curves Input for encryption: peer public key, plaintext Output for encryption: public key, ciphertext (with authentication tag) Input for decryption: authentication tag, ciphertext, own private key Output for decryption: plaintext message or error	ECIES Encrypt/Decrypt	со	0
SP800-56C Key Derivation (HKDF)	SHA-256 hash-based key derivation function Input: key derivation key Output: derived key	SHA-256	со	0
RFC6637 Key Derivation	SHA hash based key derivation function Input: key derivation key Output: derived key	SHA-256, SHA-512, AES-128, AES-256	со	0

Service	Description and Input/Output	Algorithms Accessed	Roles	Indicator
OMAC Message Authentication Code Generation and Verification	One-Key CBC MAC using 128-bit key For Message Authentication Code Generation Input: message and key Output: message authentication code For Message Authentication Code Verification Input: message, key and message authentication code Output: True or False	OMAC	со	0
Message digest generation	Message digest generation using non-approved algorithms Input: message Output: message digest	MD2, MD4, RIPEMD	со	0
(other) symmetric encryption / decryption	symmetric encryption / decryption using non- approved algorithms Input for Encryption: key and plain text Output for Encryption: cipher text Input for Decryption: key and cipher text Output for Decryption: plain text	Blowfish, CAST5, DES, RC2, RC4	со	0

Table 9 – Non-Approved Services

5. Software/Firmware security

5.1. Integrity Techniques

The Apple corecrypto Module v11.1 [Intel, User, Software] which is made up of a single component, is in the form of binary executable code. A software integrity test is performed on the runtime image of the module. The HMAC-SHA256 implemented in the module is used as an approved algorithm for the integrity test. If the test fails, the module enters an error state where no cryptographic services are provided, and data output is prohibited i.e., the module is not operational.

5.2. On-Demand Integrity Test

Integrity tests are performed as part of the Pre-Operational Self-Tests. It is automatically executed at power-on. It can also be invoked by self-test service or powering-off and reloading the module.

6. Operational Environment

The Apple corecrypto Module v11.1 [Intel, User, Software] operates in a modifiable operational environment per FIPS 140-3 level 1 specifications. The module is supplied as part of macOS Big Sur 11.0.1, a commercially available general-purpose operating system executing on the hardware specified in section 2.

7. Physical Security

The FIPS 140-3 physical security requirements do not apply to the Apple corecrypto Module v11.1 [Intel, User, Software], since it is a software module.

8. Non-invasive Security

Currently, the non-invasive security is not required by FIPS 140-3 (see NIST SP 800-140F). The requirements of this area are not applicable to the module.

9. Sensitive Security Parameter Management

The following table summarizes the keys and Sensitive Security Parameters (SSPs) that are used by the cryptographic services implemented in the module:

Key/SSP Name/ Type	Strength	Security Function and Cert. number	Generation	lmport /Export	Establis h-ment	Storage	Zeroisation	Use and related keys
AES Keys	128 to 256 bits	AES Encryption/ Decryption A918 (vng_asm) A919 (c_ltc) A920 (c_glad) A921 (c_asm) A925 (c_aesni) A925 (c_aesni) A926 (asm_x86) A927 (asm_aesni) A929 (vng_aesni)	N/A	Import from calling applicatio n No Export	N/A	N/A: The module does not provide persistent keys/SSPs storage.	Automatic zeroisation when structure is deallocated or when the system is powered down	Symmetric Encryption and Decryption
AES Key- wrapping Key	128 to 256 bits	AES Key Wrapping A919 (c_ltc) A921 (c_asm) A925 (c_aesni)	N/A	Import from calling applicatio n No Export	N/A	N/A: The module does not provide persistent keys/SSPs storage.	Automatic zeroisation when structure is deallocated or when the system is powered down	Key Transport
HMAC Keys	Min: 112 bits	HMAC generation A919 (c_ltc) A923 (c_avx2) A924 (c_avx) A928 (vng_lntel) A930 (c_sse3)	N/A	Import from calling applicatio n No Export	N/A	N/A: module does not provide persistent keys/SSPs storage.	Automatic zeroisation when structure is deallocated or when the system is powered down	Keyed Hash
ECDSA Key Pair (including intermediate keygen values)	112 to 256 bits	ECDSA signature generation and verification A919 (c_ltc) A923 (c_avx2) A924 (c_avx) A930 (c_sse3)	The key pairs are generated conformant to SP800-133r2 (CKG) using FIPS186-4 Key Generation method, and the random value used in the key generation is generated using SP800-90A DRBG	Import and Export to calling applicatio n for key pair only. Intermedi ate keygen values are not output. Intermedi ate keygen values are not output.	N/A	N/A: module does not provide persistent keys/SSPs storage.	Automatic zeroisation when structure is deallocated or when the system is powered down. Intermediate keygen values are zeroized before the module returns from the key generation function.	Digital Signature

© 2022 Apple Inc., All rights reserved.

Key/SSP Name/ Type	Strength	Security Function and Cert. number	Generation	lmport /Export	Establis h-ment	Storage	Zeroisation	Use and related keys
RSA Key Pair (including intermediate keygen values)	112 to 150 bits	RSA signature generation and verification A919 (c_ltc) A923 (c_avx2) A924 (c_avx) A930 (c_sse3)	The key pairs are generated conformant to SP800-133r2 (CKG) using FIPS186-4 Key Generation method, and the random value used in the key generation is generated using SP800-90A DRBG	Import and Export to calling applicatio n for key pair only. Intermedi ate keygen values are not output. Intermedi ate keygen values are not output.	N/A	N/A: module does not provide persistent keys/SSPs storage	Automatic zeroisation when structure is deallocated or when the system is powered down. Intermediate keygen values are zeroized before the module returns from the key generation function.	Digital Signature
Entropy Input String	256 bits	Random Number Generation ENT (P) and ENT (NP)	Obtained from two entropy sources	Import from OS No Export	N/A	N/A: The module does not provide persistent keys/SSPs storage	Automatic zeroisation when structure is deallocated or when the system is powered down	Random Number Generation
DRBG seed, internal state secret values: V and Key	256 bits	Random Number Generation A918 (vng_asm) A919 (c_ltc) A921 (c_asm) A923 (c_avx2) A924 (c_avx) A929 (vng_aesni) A930 (c_sse3)	Derived from entropy input string as defined by SP800-90A	N/A	N/A	N/A: The module does not provide persistent keys/SSPs storage	Automatic zeroisation when structure is deallocated or when the system is powered down	Random Number Generation
PBKDF Derived Keys (including password hash)	Min: 112 bits	PBKDF A919 (c_ltc) A923 (c_avx2) A924 (c_avx) A930 (c_sse3)	Internally generated via SP800-132 PBKDF key derivation algorithm	No Import Export to calling applicatio n	N/A	N/A: The module does not provide persistent keys/SSPs storage	Automatic zeroisation when structure is deallocated or when the system is powered down	Key Derivation

Key/SSP Name/ Type	Strength	Security Function and Cert. number	Generation	Import /Export	Establis h-ment	Storage	Zeroisation	Use and related keys
PBKDF Password	N/A	PBKDF A919 (c_ltc) A923 (c_avx2) A924 (c_avx) A930 (c_sse3)	N/A	imported from calling applicatio n No Export	N/A	N/A: The module does not provide persistent keys/SSPs storage	Automatic zeroisation when structure is deallocated or when the system is powered down	Key Derivation
KBKDF Key Derivation Key	Min: 112 bits	KBKDF A919 (c_ltc) A923 (c_avx2) A924 (c_avx) A930 (c_sse3)	N/A	imported from calling applicatio n No Export	N/A	N/A: The module does not provide persistent keys/SSPs storage	Automatic zeroisation when structure is deallocated or when the system is powered down	Key Derivation
KBKDF Derived Key	Min: 112 bits	KBKDF A919 (c_ltc) A923 (c_avx2) A924 (c_avx) A930 (c_sse3)	Internally generated via SP800-108 KBKDF key derivation algorithm	No Import Export to calling applicatio n	N/A	N/A: The module does not provide persistent keys/SSPs storage	Automatic zeroisation when structure is deallocated or when the system is powered down	Key Derivation
DH Key Pair (including intermediate keygen values)	112 and 200 bits	DH Shared Secret Computation A919 (c_Itc)	The key pairs are generated conformant to SP800-133r2 (CKG) using Safe-prime groups MODP groups belonging to (RFC 3526)	Import from calling applicatio n No Export	N/A	N/A: The module does not provide persistent keys/SSPs storage	Automatic zeroisation when structure is deallocated or when the system is powered down. Intermediate keygen values are zeroized before the module returns from the key generation function.	KAS-SSC FFC
DH Shared Secret	112 and 200 bits	DH Shared Secret Computation A919 (c_ltc)	Internally generated using SP800-56Ar3 DH shared secret computation	No Import Export to calling applicatio n	N/A	N/A: The module does not provide persistent keys/SSPs storage	Automatic zeroisation when structure is deallocated or when the system is powered down	KAS-SSC FFC

Key/SSP Name/ Type	Strength	Security Function and Cert. number	Generation	lmport /Export	Establis h-ment	Storage	Zeroisation	Use and related keys
ECC DH Key Pair (including intermediate keygen values)	112 to 256 bits	EC Diffie Hellman Shared Secret Computation A919 (c_ltc)	The key pairs are generated conformant to SP800-133r2 (CKG) using FIPS 186-4 Key Generation method, and the random value used in key generation is generated using SP800-90A DRBG	Import from and Export to calling applicatio n for key pair only. Intermedi ate keygen values are not output.	N/A	N/A: The module does not provide persistent keys/SSPs storage	Automatic zeroisation when structure is deallocated or when the system is powered down. Intermediate keygen values are zeroized before the module returns from the key generation function.	KAS-SSC ECC
ECC CDH Shared Secret	112 to 256 bits	EC Diffie Hellman Shared Secret Computation A919 (c_ltc)	Internally generated via SP800-56A ECC CDH shared secret computation	No Import Export to calling applicatio n	N/A	N/A: The module does not provide persistent keys/SSPs storage	Automatic zeroisation when structure is deallocated or when the system is powered down	KAS-SSC ECC
Software integrity key	N/A	HMAC SHA-256 A919 (c_ltc) A923 (c_avx2) A924 (c_avx) A928 (vng_lntel) A930 (c_sse3)	N/A	N/A	N/A	Stored in the module binary computed during build.	N/A	Self-Test

Table 10 - SSPs

9.1. Random Number Generation

A NIST approved deterministic random bit generator based on a block cipher as specified in NIST [SP 800-90A] is used. The default Approved DRBG used for random number generation is a CTR_DRBG using AES-256 with derivation function and without prediction resistance. The random numbers used for key generation are all generated by CTR_DRBG in this module. Per section 10.2.1.1 of [SP 800-90A], the internal state of CTR_DRBG is the values of V, and Key.

The module also employs a HMAC_DRBG for random number generation. The HMAC_DRBG is only used at the early boot time of macOS kernel for memory randomization. The output of HMAC_DRBG is not used for key generation. Per section 10.1.2.1 of [SP 800-90A], the internal state of HMAC_DRBG is the values of V, and Key.

The deterministic random bit generators are seeded by /dev/random. The /dev/random is the User Space interface. Two entropy sources (one non-physical entropy source and one physical entropy source) residing within the TOEPP provide the random bits. The output of entropy pool provides 256-bits of entropy to seed and reseed SP800-90B DRBG during initialization (seed) and reseeding (reseed).

Entropy Source	Minimum number of bits of entropy	Details
NIST SP800-90B compliant ENT (P) and	256	The seed is provided by post-processed entropy data from two entropy sources
NIST SP800-90B compliant ENT (NP)		

Table 11 - Non-Deterministic Random Number Generation Specification

9.2. Key / SSP Generation

The module generates Keys and SSPs in accordance with FIPS 140-3 IG D.H. The cryptographic module performs Cryptographic Key Generation (CKG) for asymmetric keys as per sections 4 and 5.1 [SP800-133r2] (vendor affirmed), compliant with [FIPS186-4], and using DRBG compliant with [SP800-90A]. A seed (i.e., the random value) used in asymmetric key pair generation is a direct output from [SP800-90A] CTR_DRBG. The key generation service for RSA, Diffie-Hellman, and EC key pairs as well as the [SP 800-90A] DRBG have been ACVT tested with algorithm certificates found in Table 4.

9.3. Keys/SSPs Establishment

The module provides the following key/SSP establishment services in the Approved mode:

- AES-Key Wrapping
 - o The module implements a Key Transport Scheme (KTS) using AES-KW compliant to [SP800-38F]. The SSP establishment methodology provides between 128 and 256 bits of encryption strength.
- Diffie-Hellman Shared Secret Computation
 - o The module provides SP800-56Arev3 compliant key establishment according to FIPS 140-3 IG D.F scenario 2 path (1) with DH shared secret computation. The shared secret computation provides between 112 and 200 bits of encryption strength.
- EC Diffie-Hellman Shared Secret Computation
 - o The module provides SP800-56Arev3 compliant key establishment according to FIPS 140-3 IG D.F scenario 2 path (1) with ECDH shared secret computation. The shared secret computation provides between 112 and 256 bits of encryption strength.
- PBKDF Key Derivation
 - o The module implements a CAVP compliance tested key derivation function compliant to [SP800-132]. The service returns the key derived from the provided password to the caller. The length of the password used as input to PBKDFv2 shall be at least 8 characters and the worst-case probability of guessing the value is 10^8 assuming all characters are digits only. The user shall choose the password length and the iteration count in such a way that the combination will make the key derivation computationally intensive. PBKDFv2 is implemented to support the option 1a specified in section 5.4 of [SP800-132]. The keys derived from [SP800-132] map to section 4.1 of [SP800-133] as indirect generation from DRBG. The derived keys may only be used in storage applications..
- KBKDF Key Derivation
 - The KBKDF is compliant to [SP800-108]. The module implements both Counter and Feedback modes with HMAC-SHA-1 and HMAC-SHA2- as the PRF. The module implements Counter mode with CMAC-AES (128/192/256) as the PRF.

9.4. Keys/SSPs Import/Export

All keys and SSPs that are entered from, or output to module, are entered from or output to the invoking application running on the same device. Keys/SSPs entered into the module are electronically entered in plain text form. Keys/SSPs are output from the module in plain text form if required by the calling application.

The module allows the output of plaintext CSPs (i.e., EC/DH/RSA Key Pairs). To prevent inadvertent output of sensitive information, the module performs the following two independent internal actions:

1. The module will internally request the random number generation service to obtain the random numbers and verify that the service completed without errors.

2. Once the keys are generated the module will perform the pairwise consistency test and verify that the test is completed without errors.

Only after successful completion of both actions, are the generated CSPs output via the KPI output parameter in plaintext.

9.5. Keys/SSPs Storage

The Apple corecrypto Module v11.1 [Intel, User, Software] stores ephemeral keys/SSPs in memory only. They are received for use or generated by the module only at the command of the calling application. The module does not provide persistent keys/SSPs storage.

The module protects all keys/SSPs through the memory separation and protection mechanisms provided by the operating system. No process other than the module itself can access the keys/SSPs in its process' memory.

9.6. Keys/SSPs Zeroization

Keys and SSPs are zeroised when the appropriate context object is destroyed or when the system is powered down. Input and output interfaces are inhibited while zeroisation is performed.

10. Self-tests

This section specifies the pre-operational and conditional self-tests performed by the module. The preoperational and conditional self-tests ensure that the module is not corrupted and that the cryptographic algorithms work as expected. The module does not implement a bypass mode nor security functions critical to the secure operation of the cryptographic module and thus, does not implement neither a pre-operational bypass test nor pre-operational critical functions test. While the module is executing the self-tests, services are not available, and input and output are inhibited. If the test fails either pre-operational and conditional self-tests, the module reports an error message indicating the cause of the failure and enters the Error State (See section 10.3). The module permits operators to initiate the pre-operational or conditional self-tests on demand for periodic testing of the module by rebooting the system (i.e., power-cycling).

10.1. Pre-operational Software Integrity Test

The module performs a pre-operational software integrity automatically when the module is loaded into memory (i.e., at power on) before the module transitions to the operational state. A software integrity test is performed on the runtime image of the Apple corecrypto Module v11.1 [Intel, User, Software] with HMAC-SHA256 used to perform the approved integrity technique. Prior to using HMAC-SHA-256, a Conditional Cryptographic Algorithm Self-Tests (CAST) is performed. If the CAST on the HMAC-SHA-256 is successful, the HMAC value of the runtime image is recalculated and compared with the stored HMAC value pre-computed at compilation time.

10.2.Conditional Self-Tests

Conditional self-tests are be performed by a cryptographic module when the conditions specified for the following tests occur: Cryptographic Algorithm Self-Test, Pair-Wise Consistency Test.

The module does not implement any functions requiring a Software/Firmware Load Test, Manual Entry Test, Conditional Bypass Test nor Conditional Critical Functions Test; therefore, these tests are not performed by the module.

The following sub-sections describe the conditional tests supported by the Apple corecrypto Module v11.1 [Intel, User, Software].

10.2.1. Conditional Cryptographic Algorithm Self-Tests

In addition to the pre-operational software integrity test described in Section 10.1, the Apple corecrypto Module v11.1 [Intel, User, Software] also runs the Conditional Cryptographic Algorithm Self-Tests (CAST) for all cryptographic functions of each approved cryptographic algorithm implemented by the module during power-up as well. All CASTs are performed prior to the first operational use of the cryptographic algorithm. These tests are detailed in Table 12 below.

Cryptographic Algorithm	Notes
HMAC-SHA256	Used for module integrity test
AES implementations selected by the module for the corresponding environment AES-CCM, AES-GCM, AES-XTS, AES-CBC, AES-ECB using 128-bit key	Separate encryption / decryption operations are performed
CTR_DRBG and HMAC_DRBG	Each DRBG mode tested separately
HMAC-SHA-1, HMAC-SHA-256, HMAC-SHA-512, AES-CMAC	КАТ
SHA-1, SHA-256, SHA-512	Covered by high level HMAC self-test
RSA, 2048-bit modulus with SHA-256	Separate Signature generation/ verification KAT are performed
ECDSA, P-256 curve with SHA-256	Separate Signature generation/verification KAT are performed

© 2022 Apple Inc., All rights reserved.

Cryptographic Algorithm	Notes
Diffie-Hellman "Z" computation	КАТ
EC Diffie-Hellman "Z" computation	КАТ
PBKDF	КАТ
KBKDF (counter mode, SHA-1 PRF)	КАТ

Table 12 - Pre-Operational Cryptographic Algorithms Self-Tests

10.2.2. Conditional Pairwise Consistency Test

The Apple corecrypto Module v11.1 [Intel, User, Software] does generate RSA, DH, and EC asymmetric keys and performs all required pair-wise consistency tests on the newly generated key pairs.

10.3.Error Handling

If any of the above-mentioned self-tests described in Sections 10.1, 10.2.1 or 10.2.2 fail, the module reports the cause of the error and enters an error state. In the Error State, no cryptographic services are provided, and data output is prohibited. The only method to recover from the error state is to power cycle the device which results in the module being reloaded into memory and reperforming the pre-operational software integrity test and the Conditional CASTs. The module will only enter into the operational state after successfully passing the pre-operational software integrity test and the Conditional CASTs. The table below shows the different causes that lead to the Error State and the status indicators reported.

Cause of Error	Error Indicator
Failed Pre-operational Software Integrity Test	print statement "FAILED: fipspost_post_integrity" to stdout
Failed Conditional CAST	print statement "FAILED:< <i>event</i> >" to stdout (< <i>event</i> > refers to any of the cryptographic functions listed in Table 12)
Failed Conditional PCT	Error code "CCEC_GENERATE_KEY_CONSISTENCY" returned for EC Error code "CCRSA_GENERATE_KEY_CONSISTENCY" returned for RSA Error code "CCDH_GENERATE_KEY_CONSISTENCY" returned for DH

Table 13 – Error Indicators

11. Life-cycle assurance

11.1. Delivery and Operation

The module is built into macOS Big Sur 11.0.1 and delivered with macOS. There is no standalone delivery of the module as a software library.

The vendor's internal development process guarantees that the correct version of module goes with its intended macOS version. For additional assurance, the module is digitally signed by vendor, and it is verified during the integration into macOS.

This digital signature-based integrity protection during the delivery/integration process is not to be confused with the HMAC-256 based integrity check performed by the module itself as part of its pre-operational self-tests.

11.2. Crypto Officer Guidance

The Approved mode of operation is configured in the system by default and can only be transitioned into the non-Approved mode by calling one of the non-Approved services listed in Table 9 – Non-Approved Services. If the device starts up successfully, then the module has passed all self-tests and is operating in the Approved mode.

A Crypto Officer Role Guide is provided by Apple which offers IT System Administrators with the necessary technical information to ensure FIPS 140-3 Compliance of macOS Big Sur 11.0.1 systems. This guide walks the reader through the system's assertion of cryptographic module integrity and the steps necessary if module integrity requires remediation. A link to the Guide can be found on the Product security, validations, and guidance page found in [macOS].

The Crypto Officer shall consider the following requirements and restrictions when using the module:

• AES-GCM IV is constructed in compliance with IG C.H scenario 1a (TLS 1.2) and scenario 1b (IPsec-v3). The TLS and IPSec/IKE protocols have not been reviewed or tested by the CAVP and CMVP.

The GCM IV generation follows RFC 5288 and shall only be used for the TLS protocol version 1.2. The counter portion of the IV is set by the module within its cryptographic boundary. The module does not implement the TLS protocol. The module's implementation of AES-GCM is used together with an application that runs outside the module's cryptographic boundary. The design of the TLS protocol implicitly ensures that the nonce_explicit, or counter portion of the IV will not exhaust all of its possible values.

The GCM IV generation follows RFC 4106 and shall only be used for the IPsec-v3 protocol version 3. The counter portion of the IV is set by the module within its cryptographic boundary. The module does not implement the IPsec protocol. The module's implementation of AES-GCM is used together with an application that runs outside the module's cryptographic boundary. The design of the IPsec protocol implicitly ensures that the nonce_explicit, or counter portion of the IV will not exhaust all of its possible values.

In both protocols in case the module's power is lost and then restored, the key used for the AES GCM encryption/decryption shall be re-distributed. This condition is not enforced by the module; however, it is met implicitly. The module does not retain any state when power is lost. As indicated in Table 10, column Storage, the module exclusively uses volatile storage. This means that AES-GCM key/IVs are not persistently stored during power off: therefore, there is no re-connection possible when the power is back on with re-generation of the key used for GCM. After restoration of the power, the user of the module (e.g., TLS, IKE) along with User application that implements the protocol, must perform a complete new key establishment operation using new random numbers (Entropy input string, DRBG seed, DRBG internal state V and Key, shared secret values that are not retained during power cycle, see table 10) with subsequent KDF operations to establish a new GCM key/IV pair on either side of the network communication channel.

• AES-XTS mode is only approved for hardware storage applications. The length of the AES-XTS data unit does not exceed 2²⁰ blocks. The module checks explicitly that Key_1 ≠ Key_2 before using the keys in the XTS-Algorithm to process data with them compliant with IG C.I.

12. Mitigation of other attacks

The module does not claim mitigation of other attacks.

A. Glossary and Abbreviations

	,
AES	Advanced Encryption Standard
AES-NI	Advanced Encryption Standard New Instructions
CAVP	Cryptographic Algorithm Validation Program
CAST	Cryptographic Algorithm Self-Test
CBC	Cipher Block Chaining
ССМ	Counter with Cipher Block Chaining-Message Authentication Code
CFB	Cipher Feedback
CMAC	Cipher-based Message Authentication Code
СМУР	Cryptographic Module Validation Program
CSP	Critical Security Parameter
CTR	Counter Mode
DRBG	Deterministic Random Bit Generator
ECB	Electronic Code Book
ENT	NIST SP 800-90B Compliant Entropy Source
FFC	Finite Field Cryptography
FIPS	Federal Information Processing Standards Publication
GCM	Galois Counter Mode
HMAC	Hash Message Authentication Code
KAS	Key Agreement Schema
KAT	Known Answer Test
KBKDF	Key Based Key Derivation Function
KDF	Key Derivation Function
KW	AES Key Wrap
MAC	Message Authentication Code
NIST	National Institute of Science and Technology
ΟΑΕΡ	Optimal Asymmetric Encryption Padding
OFB	Output Feedback
PAA	Processor Algorithm Acceleration
PBKDF	Password Based Key Derivation Function
PKG	Key-Pair Generation
ΡΚν	Public Key Validation
PRF	Pseudo-Random Function
PSS	Probabilistic Signature Scheme
	© 2022 Apple Inc., All rights reserved. This document may be reproduced and distributed only in its original entirely without revisi

RSA	Rivest, Shamir, Addleman
SHA	Secure Hash Algorithm
SHS	Secure Hash Standard
SSC	Shared Secret Computation
ТОЕРР	Tested Operational Environment Physical Perimeter
хтѕ	XEX-based Tweaked-codebook mode with cipher text Stealing

B. Referen	ICES
FIPS140-3	FIPS PUB 140-3 - Security Requirements for Cryptographic Modules
	March 2019
	https://doi.org/10.6028/NIST.FIPS.140-3
SP 800-140x	CMVP FIPS 140-3 Related Reference
	https://csrc.nist.gov/Projects/cryptographic-module-validation-program/fips-140-3- standards
FIPS140-3_IG	Implementation Guidance for FIPS PUB 140-3 and the Cryptographic Module Validation Program September 2020
	https://csrc.nist.gov/Projects/cryptographic-module-validation-program/fips-140-3-ig- announcements
FIPS140-3_MM	CMVP FIPS 140-3 Draft Management Manual
	https://csrc.nist.gov/CSRC/media/Projects/cryptographic-module-validation-program/ documents/fips%20140-3/Draft%20FIPS-140-3- CMVP%20Management%20Manual%2009-18-2020.pdf
SP 800-140	FIPS 140-3 Derived Test Requirements (DTR)
	https://csrc.nist.gov/publications/detail/sp/800-140/final
SP 800-140A	CMVP Documentation Requirements https://csrc.nist.gov/publications/detail/sp/800-140a/final
SP 800-140B	CMVP Security Policy Requirements
	https://csrc.nist.gov/publications/detail/sp/800-140b/final
SP 800-140C	CMVP Approved Security Functions
	https://csrc.nist.gov/publications/detail/sp/800-140c/final
SP 800-140D	CMVP Approved Sensitive Security Parameter Generation and Establishment Methods
	https://csrc.nist.gov/publications/detail/sp/800-140d/final
SP 800-140E	CMVP Approved Authentication Mechanisms https://csrc.nist.gov/publications/detail/sp/800-140e/final
SP 800-140F	CMVP Approved Non-Invasive Attack Mitigation Test Metrics <u>https://csrc.nist.gov/</u> publications/detail/sp/800-140f/final
FIPS180-4	Secure Hash Standard (SHS) March 2012 http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
FIPS186-4	Digital Signature Standard (DSS) July 2013 http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
FIPS197	Advanced Encryption Standard November 2001 http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
FIPS198-1	The Keyed Hash Message Authentication Code (HMAC) July 2008 http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
	© 2022 Apple Inc., All rights reserved.

FIPS202	SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions August 2015 http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
PKCS#1	Public Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version 2.1 February 2003 http://www.ietf.org/rfc/rfc3447.txt
RFC3394	Advanced Encryption Standard (AES) Key Wrap Algorithm September 2002 http://www.ietf.org/rfc/rfc3394.txt
RFC5649	Advanced Encryption Standard (AES) Key Wrap with Padding Algorithm September 2009 http://www.ietf.org/rfc/rfc5649.txt
SP800-38A	NIST Special Publication 800-38A - Recommendation for Block Cipher Modes of Operation Methods and Techniques December 2001 http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
SP800-38B	NIST Special Publication 800-38B - Recommendation for Block Cipher Modes of Operation: The CMAC Mode for Authentication May 2005 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
SP800-38C	NIST Special Publication 800-38C - Recommendation for Block Cipher Modes of Operation: the CCM Mode for Authentication and Confidentiality May 2004 http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf
SP800-38D	NIST Special Publication 800-38D - Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC November 2007 http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
SP800-38E	NIST Special Publication 800-38E - Recommendation for Block Cipher Modes of Operation: The XTS AES Mode for Confidentiality on Storage Devices January 2010 http://csrc.nist.gov/publications/nistpubs/800-38E/nist-sp-800-38E.pdf
SP800-38F	NIST Special Publication 800-38F - Recommendation for Block Cipher Modes of Operation: Methods for Key Wrapping December 2012 http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
SP800-38G	NIST Special Publication 800-38G - Recommendation for Block Cipher Modes of Operation: Methods for Format - Preserving Encryption March 2016 http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38G.pdf
SP800-56Ar3	Recommendation for Pair-Wise Key-Establishment Schemes Using Discrete Logarithm Cryptography April, 2018 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf

SP800-56Br2	Recommendation for Pair-Wise Key Establishment Schemes Using Integer Factorization Cryptography March 2019 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br2.pdf
SP800-56Cr2	Recommendation for Key-Derivation Methods in Key-Establishment Schemes August 2020 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Cr2.pdf
SP800-57	NIST Special Publication 800-57 Part 1 Revision 5 - Recommendation for Key Management Part 1: General May 2020 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf
SP800-67	NIST Special Publication 800-67 Revision 1 - Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher January 2012
SP800-90Ar1	http://csrc.nist.gov/publications/nistpubs/800-67-Rev1/SP-800-67-Rev1.pdf NIST Special Publication 800-90A - Revision 1 - Recommendation for Random Number Generation Using Deterministic Random Bit Generators June 2015 http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
SP800-90B	NIST Special Publication 800-90B - Recommendation for the Entropy Sources Used for Random Bit Generation January 2018 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90B.pdf
SP800-108	NIST Special Publication 800-108 - Recommendation for Key Derivation Using Pseudorandom Functions (Revised) October 2009 http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf
SP800-131Ar2	Transitioning the Use of Cryptographic Algorithms and Key Lengths March 2019 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar2.pdf
SP800-132	NIST Special Publication 800-132 - Recommendation for Password-Based Key Derivation - Part 1: Storage Applications December 2010 http://csrc.nist.gov/publications/nistpubs/800-132/nist-sp800-132.pdf
SP800-133r2	Recommendation for Cryptographic Key Generation June 2020 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-133r2.pdf
SP800-135	NIST Special Publication 800-135 Revision 1 - Recommendation for Existing Application-Specific Key Derivation Functions December 2011 http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-135r1.pdf
MACOS	macOS Technical Overview https://developer.apple.com/macos/
SEC	Apple Platform Security (Spring 2020) https://support.apple.com/guide/security/welcome/web

macOS Product security certifications for macOS https://support.apple.com/HT201159