U.S. flag   An unofficial archive of your favorite United States government website
Dot gov

Official websites do not use .rip
We are an unofficial archive, replace .rip by .gov in the URL to access the official website. Access our document index here.

Https

We are building a provable archive!
A lock (Dot gov) or https:// don't prove our archive is authentic, only that you securely accessed it. Note that we are working to fix that :)

This is an archive
(replace .gov by .rip)
Presentation

Let’s Standardize Garbled Circuits!

November 5, 2020

Presenters

Vladimir Kolesnikov - Georgia Tech

Description

Abstract: Garbled Circuits (GC) is the classic, most popular and often the fastest approach to general secure two-party computation (2PC). In the semi-honest model, we can evaluate about two million AND gates per second on commodity devices and networks. This translates, for example, to approximately 330 shared-key AES evaluations per second. With specialized hardware or allowing precomputation, this number can be further greatly increased.Since its introduction by Andrew Yao in 1986, there have been only a small number of improvements to the basic protocol. In this talk, time permitting, I will briefly review the basic protocol and some of the improvements, such as Free-XOR and our recent work Stacked Garbling. I will also talk about stronger security models, particularly cheap-to-achieve covert and publicly verifiable covert (PVC) models.The stability, wide acceptance, simplicity, efficiency and generality of the GC protocol is unique among MPC protocols, and make it a strong candidate for standardization. A standardized GC variant would be a powerful and versatile tool, which would catalyze both wide practical adoption of rich cryptography and further MPC research.

Presented at

NIST Workshop on Multi-Party Threshold Schemes (MPTS) 2020. https://csrc.nist.rip/events/2020/mpts2020

This talk relied on joint works with David Heath and Thomas Schneider.

Event Details

Location

    
                            

Related Topics

Security and Privacy: cryptography

Created May 04, 2021, Updated June 07, 2021