Rijndael

Joan Daemen
 Proton World
 Belgium
 Vincent Rijmen
 COSIC
 Belgium

Vincent meets Joan

- Where: K.U.Leuven, research group COSIC
- When: Summer ‘93
- Why: Evaluation of propriety cipher
- What: successful cryptanalysis (under NDA :-(

The Mother of Rijndael: Square

- Need for a 128 -bit block cipher with 128-bit keys
- 56-bit DES key: exhaustive key search feasible
- 64-bit DES block (and Triple-DES): MAC weaknesses
- Summer-Fall ‘96: Design
- symmetrical parallel structure
- byte-oriented
- no arithmetic operations
- Spring ‘97: Publication
- Fast Software Encryption Workshop in Haifa, Israel

Our AES Proposal: Rijndael

- Spring '97: early draft of AES call for proposals:
- key and block lengths 128, 196 and 256 bits
- we started to work on a Square variant satisfying this
- Summer ‘97: Official AES call
- requirement of 192 and 256 bit block lengths removed
- "would be infeasible to realize"
- June '98: AES submission deadline
- We baptized our design Rijndael (Rijmen \& Daemen) and submitted it to NIST

AES Selection Process

- August 98': AES 1 in Ventura (CA)
- 15 proposals were presented
- Square had made school
- Rijndael: son of Square
- Crypton (Korea) has the Square structure
- Twofish (Counterpane) uses Square features
- August '99: Announcement of the five finalists
- October 2000: Rijndael announced as AES

What makes Rijndael stand out?

- The symmetric and parallel structure
- gives implementers a lot of flexibility
- has not allowed effective cryptanalytic attacks
- Well adapted to modern processors
- Pentium
- RISC and parallel processors
- Suited for Smart cards
- Flexible in dedicated hardware
\rightarrow Let's have a look at what's inside!

Rijndael: what is inside?

- Key and State bytes arranged in rectangular arrays

$\mathrm{k}_{0.0}$	k_{0}	$\mathrm{k}_{0.2}$	k_{0}	$\mathrm{k}_{0.4}$	$\mathrm{k}_{0.5}$		
$\mathrm{k}_{1,0}$	k_{1}	$\mathrm{k}_{1,2}$	k_{1}	k_{1}	k_{1}	$\mathrm{k}_{1,6}$	
$\mathrm{k}_{2,0}$	k_{2}	$\mathrm{k}_{2,2}$	$\mathrm{k}_{2,3}$	k_{2}	k_{25}		

Variable Key size:
16,24 or 32 bytes

Variable Block size:
16, 24 or 32 bytes

$\mathrm{a}_{0,0}$	$\mathrm{a}_{0,1}$	$\mathrm{a}_{0,2}$	$\mathrm{a}_{0,3}$	$\mathrm{a}_{0,4}$	$\mathrm{a}_{0,5}$	$\mathrm{a}_{0,6}$	$\mathrm{a}_{0,7}$
$\mathrm{a}_{1,0}$	$\mathrm{a}_{1,1}$	$\mathrm{a}_{1,2}$	$\mathrm{a}_{1,3}$	$\mathrm{a}_{1,4}$	$\mathrm{a}_{1,5}$	$\mathrm{a}_{1,6}$	$\mathrm{a}_{1,7}$
$\mathrm{a}_{2,0}$	$\mathrm{a}_{2,1}$	$\mathrm{a}_{2,2}$	$\mathrm{a}_{2,3}$	$\mathrm{a}_{2,4}$	$\mathrm{a}_{2,5}$	$\mathrm{a}_{2,6}$	$\mathrm{a}_{2,7}$
$\mathrm{a}_{3,0}$	$\mathrm{a}_{3,1}$	$\mathrm{a}_{3,2}$	$\mathrm{a}_{3,3}$	$\mathrm{a}_{3,4}$	$\mathrm{a}_{3,5}$	$\mathrm{a}_{3,6}$	$\mathrm{a}_{3,7}$

Rijndael: Iterated Block Cipher

- 10/12/14 times applying the same round function
- Round function: uniform and parallel, composed of 4 steps
- Each step has its own particular function:
- ByteSub: nonlinearity
- ShiftRow: inter-column diffusion
- MixColumn: inter-byte diffusion within columns
- Round key addition

Round step 1: ByteSub

- Bytes are transformed by applying invertible S-box.
- One single S-box for the complete cipher
- High non-linearity

Round step 2: MixColumn

- Bytes in columns are linearly combined
- High intra-column diffusion:
- based on theory of error-correcting codes

Round step 3: ShiftRow

- Rows are shifted over 4 different offsets
- High diffusion over multiple rounds:
- Interaction with MixColumn

Round step 4: Key addition

- Makes round function key-dependent
- Computation of round keys: "keep it simple"
- small number of operations
- small amount of memory

Rijndael on Modern Processors

Round function: just 16 table-lookups and EXORS

Rijndael in Hardware

Future of AES/Rijndael

- AES
- US Government Administration
- IPSEC
- commercial file encryption products
- Banking (DIGIPASS, ...)
- Rijndael
- UMTS
- Windows
- ...

We like to thank

- NIST: for the open way in which the AES process was conducted
- Rijndael Programmers: for showing that it can be efficiently implemented
- Antoon Bosselaers, Paulo Barretto, Cryptix, Brian Gladman, Geoffrey Keating, Helger Lipmaa, Kazumaro Aoki, Mitsuru Matsui, a.m.o.
- Anyone who motivated us by expressing their interest in our work

