

Estimating Password Strength

(fools rush in where angels fear to tread

- this approach is preliminary and may change)

Bill Burr NIST william.burr@nist.gov 301-975-2914

Draft for comment Subject to change

Disclaimer - Preliminary

- ♦ This is a proposal for review and comment.
- ♦ It is subject to change, large and small
 - Can easily adjust threshold
 - May also significantly change approach
 - There probably is no right solution

Review the Bidding

- Assurance Levels
- Draft GSA/OMB guidance defines 4 assurance levels
 - http://a257.g.akamaitech.net/7/257/2422/14mar200108 00/edocket.access.gpo.gov/2003/pdf/03-17634.pdf
- Assurance level needed determined by consequences of authentication error
 - Inconvenience
 - Financial loss
 - Distress
 - Standing or reputation
 - Harm to agency programs or reputation
 - Civil or criminal violations
 - Personal safety

Draft for comment Subject to change

- ♦ Level 1 Minimal Assurance
 - Little or no assurance on the asserted identity
 - Authentication Error might at worst result in
 - minimal inconvenience, financial loss, distress, damage to reputation
 - no risk of harm to agency programs or public interests, release of sensitive information, civil or criminal violations or to personal safety

- ♦ Level 2 Low Assurance
 - "On the balance of probabilities" there is confidence in the asserted identity
 - Authentication Error might at worst result in
 - minor inconvenience, financial loss, distress, damage to reputation
 - no risk of harm to agency programs, public interests, release of sensitive information or personal safety
 - civil or criminal violations not normally subject to agency enforcement efforts

- ♦ Level 3 Substantial Assurance
 - Transactions that are "official in nature"
 - High confidence in the asserted identity
 - Authentication error might at worst result in
 - significant inconvenience, financial loss, distress, damage to reputation, harm to agency programs & public interests
 - a significant release of sensitive information
 - civil or criminal violations normally subject to agency enforcement efforts
 - no risk to personal safety

- ♦ Level 4 High Assurance
 - Very high confidence in the asserted identity
 - Authentication error might result in
 - considerable inconvenience, financial loss, distress, damage to reputation, harm to agency programs & public interests
 - extensive release of sensitive information
 - considerable risk of an egregious criminal act
 - civil or criminal violations of special importance to agency enforcement efforts
 - risk to personal safety

Passwords and Assurance levels

- ♦ Level 1 PINs
- ◆ Level 2 "Strong" passwords done tolerably well
 - What's a strong password?
- ◆ Level 3 very strong passwords done really well
 - What's very strong and done really well?
- ◆ Level 4 you gotta be kidding

What is a password?

- Password is a secret character string you commit to memory.
 - Secret and memory are the key words here
 - As a practical matter we often do write our passwords down, whatever we are supposed to do with them, and when we do write them down we have to protect them
- ♦ A password is really a (generally weak) key
 - People can't remember good keys
- Enrolment and verification phases

Passwords will ever be with us

- ♦ Multifactor authentication
 - Something you are
 - Something you have
 - Something you know
- Problem comes when we depend on passwords as the only factor in remote authentication

Password Hell

- We all are asked to remember far too many passwords
 - Forced to change them frequently
 - often peremptorily forced to change a password without warning when we try to log on
 - Every system has different rules for passwords
 - Often use them only very infrequently
 - May be given arbitrary, randomly generated passwords
 - who can remember these?

Simplification

- We're only concerned with on-line authentication to a server, not passwords used, for example to encrypt or lock local files
- ◆ Assume that the authentication server is secure and can impose rules to detect or limit attacks

Attacks on Passwords

- In-band
 - Attacker repeatedly tries passwords until he authenticates/gets access
 - guessing, dictionary, or brute force exhaustion
 - Can't entirely prevent these attacks
 - can ensure they don't succeed very often
- ♦ Out of band everything else
 - Eavesdropper
 - Man-in-the-middle
 - Shoulder surfing
 - Social engineering

Password Strength

- Define password strength in terms of probability of a determined attacker discovering a selected user's password by an in-band attack
 - Strength is then a function of both the "entropy" of the password and the way unsuccessful trials are limited
 - Many strategies for limiting unsuccessful trials
 - 3 strikes and you're out
 - hang up after an unsuccessful trial
 - some total number of unsuccessful trials and lock account
 - change passwords periodically
 - notify user of successful and unsuccessful login attempts
 - Trade-offs with help desk costs

Strong Password Definition

- ◆ The probability of an attacker with no *a priori* knowledge of the password finding a given user's password by an in-band attack shall not exceed one in 2¹⁶ (1/65,563) over the life of the password
 - The more entropy required in the password, the more trials the system can allow
 - Note that there is not necessarily any particular time limit

Estimating Password Entropy

• Entropy of a password is the uncertainty an attacker has in his knowledge of the password, that is how hard it is to guess it.

$$H(X) := -\sum_{x} P(X = x) \log_2 P(X = x)$$

- Easy to compute entropy of random passwords
- ♦ We typically state entropy in bits. A random 32-bit number has 2³² values and 32-bits of entropy
- A password of length *l* selected at random from the keyboard set of 94 printable (nonblank) characters has 94^{*l*} values and about 6.55×*l* bits of entropy.

User Selected Passwords

- People have a hard time remembering random passwords
 - So we may let them pick their own
- People pick bad passwords
 - Passwords that are easy to remember are often easy to guess
 - use common words
 - frequency distributions of characters
 - phone number, street address, SSN, dog's name, birthday...
 - Sophisticated attacker takes advantage of this with (possibly large) dictionaries of common passwords

Entropy of User Chosen Pswd

- ♦ No really rigorous way to estimate
- Propose starting from Shannon's estimate of entropy in English text
 - C. E. Shannon, "Prediction and Entropy of Printed English" *Bell System Technical Journal*, v.30, n.1, 1951, pp. 50-64
 - One of the most widely referenced papers in computing
 - Seems to be relatively little progress beyond Shannon.

Shannon's estimate of entropy

- Shannon used 26 English letters plus space
 - Left to their own devices user will choose only lower case letters.
- ♦ Shannon's method involves knowing the *i*-1 first letters of a string of English text; how well can we guess the *i*th letter?
- Entropy per character decreases for longer strings
 - 1 character 4.7 bits/character
 - ≤ 8 characters 2.3 bits per character
 - order of 1 bit/char for very long strings

Use Shannon as Lower Bound

- Users are supposed to pick passwords that don't look like ordinary English
 - But, of course, they want to remember them
- ◆ Attacker won't have a perfect dictionary or learn much by each unsuccessful trial

Estimate Entropy vs PWD length

Password	Entropy	Password	Entropy
Length	Bits	Length	Bits
1	4	10	21
2	6	12	24
3	8	14	27
4	10	16	30
5	12	18	33
6	14	20	36
7	16	30	46
8	18		

Estimate Entropy vs PWD length

- ◆ 1- 10 character passwords consistent with curves in Fig. 4 of paper
- ◆ 10 20 character passwords assume that entropy grows at 1.5 bits of entropy per character
- Over 20 character passwords assume that entropy grows at 1 bit per character

Password Rules

- We can increase the "effective" entropy of user chosen passwords by imposing rules on them that make the passwords less like ordinary English (or French or German or..) words. For example:
 - Passwords must contain at least one upper case
 letter, one number and one special character
 - Passwords must not contain any strings from a dictionary of common strings

Password Rules

- ♦ Rules reduce the total number of possible passwords, which is bad
 - But they can eliminate a lot of commonly used (easily guessed) passwords and make users select passwords they just wouldn't otherwise choose, stretching the effective space
- ◆ If we go overboard rules make it hard to remember the passwords
 - We let users pick their passwords in the first place so they can remember them

Proposal

- Award an entropy bonus of up to 6 bits for password composition rules
- Award an entropy bonus of up to 6 bits for a dictionary test
 - Bonus declines for long "pass-phrases"
 - Have to contain common words or you can't remember them
 - No bonus for over 20 char.
- Rules don't work as well in combination for very short passwords

How do rules affect entropy?

- Assign entropy "bonus" for composition rules
- Consider
 - Passwords must contain at least one upper case letter, one lower case letter, one number and one special character
 - we'll often get just one of each, however long the password, at the the beginning or the end of the password
 - Redskins1!
 - Algernon8*
 - A!11gernon
 - some combinations will be common
 - 1! 2@ 3#
 - Probably some benefit even for very long passwords

Estimate Entropy vs PWD length with Composition Rule

Password	Entropy	Password	Entropy
Length	Bits	Length	Bits
1	_	10	27
2	-	12	30
3	-	14	33
4	15	16	36
5	18	18	39
6	20	20	42
7	22	30	52
8	24		

Dictionary Test

- ♦ Attacker will use a dictionary first
- Can be quite extensive
- Test passwords against a dictionary
 - Even a big dictionary doesn't occupy much of the total password space and half the passwords is one bit of entropy
- Dictionary less effective for long passwords
 - Need to allow phrases of words if long passwords are to be practical
 - Assume dictionary test doesn't help for 20 char or longer passwords

Estimate Entropy vs PWD length with Dictionary Test

Password	Entropy	Password	Entropy
Length	Bits	Length	Bits
1	-	10	26
2	-	12	28
3	-	14	30
4	14	16	32
5	17	18	34
6	20	20	36
7	22	30	50
8	24		

Estimate Entropy vs PWD length with Rule & Dictionary

Password	Entropy	Password	Entropy
Length	Bits	Length	Bits
1	_	10	32
2	-	12	34
3	-	14	36
4	16	16	38
5	20	18	40
6	23	20	42
7	27	30	52
8	30		

Entropy estimate versus length

Draft for comment Subject to change

A Measurement Experiment?

- No time to affect the first round of guidance; but
- Can we find a source of lots of actual user selected passwords?
 - On the order of at least hundreds of thousands
 - With different rules
 - Probably could live with password hashes
 - Use collision frequencies
 - Couldn't use hash(password||username||salt)

Proposed Thresholds

- ♦ Level 1, minimal assurance
 - Probability of a successful in-band password attack less than .0005 (one in 2¹¹)
- ♦ Level 2, low assurance
 - Probability of a successful in-band password attack less than .000015 (one in 2¹⁶).
- ♦ Level 3, substantial assurance
 - Probability of a successful in-band password attack less than .000001 (one in 2²⁰).

Level 1 – Minimal Assurance

- Basically for PINs, or passwords sent without encryption
 - Not expected to resist eavesdroppers
- ◆ No more than 1 in 2¹¹ (2048) chance of inband attack succeeding over life of password

Level 2 – Low Assurance

- Useful for routine e-commerce and e-gov transactions
- Must resist eavesdroppers
 - resist off-line analysis of authentication protocol run
- Resist replays
- ♦ No more than 1 in 2¹⁶ (65,536) chance of in-band attack succeeding over life of password
- Not required to defeat man-in-the-middle or verifier impersonation attacks

Level 3 — Substantial Assurance

- Useful for e-commerce and e-gov transactions of substantial value
- Must resist eavesdroppers
 - resist off-line analysis of authentication protocol run
- Resist replays
- Resist man-in-the-middle or verifier impersonation attacks
- ♦ No more than 1 in 2²⁰ (1,000,000) chance of inband attack succeeding over life of password

Example – Level 2

- ♦ 6 characters, randomly selected
 - -94^6 possible values (about 6.9×10^{11})
 - That's about 39 bits of entropy
- ♦ Authentication system must limit the total number of unsuccessful authentication attempts to $94^6/2^{16} \approx 10,000,000$

Example – Level 2

- ♦ 8 characters, user selected, no composition rule or dictionary check
 - estimate 18-bits of entropy which is about 250,000
- Authentication system must limit the total number of unsuccessful authentication attempts to $2^{18}/2^{16} = 4$ trials

Example - Level 2

- ♦ 8 characters, user selected, with composition rule and dictionary check
 - estimate 30-bits of entropy which is about
 10⁹
- ♦ Authentication system must limit the total number of unsuccessful authentication attempts to $2^{30}/2^{16} = 2^{15} \approx 16,000$ trials

Example – Level 2

- ♦ 6 characters, user selected, with composition rule and dictionary check
 - estimate 26-bits of entropy
- ♦ Authentication system must limit the total number of unsuccessful authentication attempts to $2^{26}/2^{16} = 1024$ trials

Zero Knowledge Password Auth.

- Verifier and claimant share a password
- ◆ If attacker fools claimant into an authentication protocol run, he gains no knowledge of password
- Verifier and claimant wind up with a strong shared secret, which can be used in any protocol that requires a symmetric key
- Eavesdropper learns nothing about password or strong shared secret

Diffe-Hellman key exchange

Pick a generator *g* of a large finite group G. *a* and *b* are large random numbers.

Alice and Bob now share a common secret g^{ab} . An eavesdropper must solve discrete log problem to

Draft for comment Subject to change

EKE exchange

Let p be Alice's password, w=hash(p), Bob knows w, and $E_w(x)$ be x encrypted under key w

$$E_{w}(g^{a})$$

$$(D_{w}(E_{w}(g^{b})))^{a}$$

$$= g^{ba}$$

$$E_{w}(g^{b})$$

$$E_{w}(g^{b})$$

$$E_{w}(g^{b})$$

$$Bob$$

Alice and Bob now share a common cryptographic strength secret g^{ab} .

Draft for comment Subject to change

Token Type by Level

Allowed Token Types				4
Hard crypto token	$\sqrt{}$	$\sqrt{}$	√	$\sqrt{}$
Soft crypto token	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	
password with zero knowledge protocol	V	V	1	
Strong password with eavesdropper protection	$\sqrt{}$	\checkmark		
PIN				

Required Protections by Level

Protection Against	1	2	3	4
Eavesdropper		$\sqrt{}$	1	√
Replay	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	√
On-line guessing	1	$\sqrt{}$	1	√
Verifier Impersonation			1	√
Man-in-the-middle			1	√
Session Hijacking				√

Auth. Protocol Type by Level

Allowed Protocol Types	1			4
Private key PoP	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
Symmetric key PoP	1	1	1	$\sqrt{}$
Zero knowledge password	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	
Tunneled password	$\sqrt{}$	1		
Challenge-reply password	√ \			

Required Protocol Properties by Level

Required properties			4
Shared secrets not revealed to 3 rd parties	√	1	V
Session Data transfer authenticated		√	√

