

Security Functional Testing Using An Interface-Driven Model-Based

Test Automation Approach

Ramaswamy Chandramouli

Computer Security Division, NIST
mouli@nist.gov

Mark Blackburn
T-VEC Technologies

blackbur@software.org

Abstract

Independent security functional testing on a
product occupies a backseat in traditional security
evaluation because of the cost and stringent coverage
requirements. In this paper we present the details of an
approach we have developed to automate security
functional testing. The underlying framework is called
TAF (Test Automation Framework) and the toolkit we
have developed based on TAF is the TAF-SFT toolkit.
The TAF-SFT toolkit uses text-based specifications of
security functions provided by the product vendor and
the requirements of the underlying security model to
develop a machine-readable specification of security
functions using the SCR (Software Cost Reduction)
formal language. The resultant behavioral specification
model is then processed through the TAF-SFT Toolkit to
generate test vectors. The behavioral model and the test
vectors are then combined with product interface
specifications to automatically generate test drivers
(test execution code). We illustrate the application of
TAF-SFT toolkit for security functional testing of a
commercial DBMS product. We also discuss the
advantages and disadvantages of using TAF-SFT toolkit
for security functional testing and the scenarios under
which the impact of disadvantage can be minimized.

1. Introduction

Independent security functional testing (or in
general security testing) often occupies a backseat in
traditional security evaluations of many commercial
products, except in the case of high-assurance products
deployed in life-critical environments. The reasons for
this scenario are:

(a) Cost – not many security evaluations are

performed by evaluators to amortize the
initial investment in developing the
infrastructure to perform security testing
as well as the non-reusability of the
previously developed tests and

(b) Technical Complexity – this arises from
the complexity of representing the

security function specifications and the
coverage requirements for the test data
used for conducting the tests.

In this paper we describe an approach and an
associated toolkit that addresses the issues outlined
above in the case of security functional testing. The
underlying framework of our approach is called the Test
Automation Framework (TAF)* [1,2]. The TAF is an
architectural framework that automates the process of
system or software testing by providing end-to-end tool
support for the various process steps. These process
steps include functional model development, model
analysis, automated test code generation, automated test
execution and results analysis. We have developed a
toolkit called the TAF-SFT toolkit that applies TAF to
security functional testing of a product and have
demonstrated the application of this toolkit for testing
the security behavior of a commercial DBMS product.
 The organization of the rest of our paper is as
follows: In section 2 we discuss the characteristics of
security functional testing and the role it plays in the
overall realm of security testing. In section 3 we
describe the details of the application of TAF to security
functional testing (as well as the TAF-SFT toolkit) in
terms of the functions performed in the various TAF
process steps. Section 4 illustrates the application of
TAF-SFT toolkit for security functional testing of the
Oracle DBMS product using a sample set of security
function specifications. Section 5 discusses the
advantages and disadvantages of our automated security
functional testing approach and conditions under which
the impact of disadvantages can be minimized.

* Certain commercial products and standards are
mentioned in this paper. This does not imply
recommendation or endorsement by the National
Institute of Standards and Technology, nor does it imply
that the products and standards mentioned are
necessarily the best available for the purpose.

mailto:blackbur@software.org

2. Characteristics of Security Functional
Testing

There are subtle differences between traditional
software conformance testing and security testing in
general, in terms of purpose, scope, emphasis, error
implications and strategy [3]. The main purpose of
software conformance testing is verification of
correctness of implementations with respect to
specifications. The market largely determines the
effectiveness of the implementation. However security
testing is concerned with both correctness and
effectiveness since measures of effectiveness such as
strength of functions and robustness are very much an
integral part of any security specifications. In traditional
conformance testing, the emphasis is on testing the
implementation for conformance to functional
specifications while in security testing the product must
be tested not only for conformance to security function
specifications but also for compliance with mandatory
features of the underlying security model. For example
testing an access control function in a DBMS product
will involve not only verification of specified behavior
(correct access denials and clearances for a particular
user) but also conformance to the underlying
Discretionary Access Control Model (DAC) that
provides the logic governing denials and clearances
depending upon certain user attributes and state
variables. In traditional conformance testing,
verification using test cases that satisfy some statistical
coverage measures can provide the assurance that
certain defects will seldom occur. However in security
testing, complete test coverage is required since obscure
flaws can be exploited individually and collectively to
subvert the behavior of other correctly implemented
functions. The requirement for complete coverage can
result in the number of test cases for security testing
being an order of magnitude more than for traditional
conformance testing.

Security Testing itself can be generally classified as
security functional testing and security vulnerability
testing. Security functional testing involves testing the
product or implementation for conformance to the
security function specifications as well as for the

underlying security model. The conformance criteria
state the conditions necessary for the product to exhibit
the desired security behavior or satisfy a security
property. In other words security functional testing
involves what the product should do. Security
vulnerability testing on the other hand is concerned
with identification of flaws in design or implementation
that may be exploited to subvert the security behavior
which has been made possible by the correct
implementation of the security functions. In other words
security vulnerability testing involves testing the
product for what it should not do.

3. TAF for Security Functional Testing

Our application of the TAF to security functional
testing (and the associated Toolkit TAF-SFT) involves
the use of the SCR formal language [4], its support tool
TTM and test automation tool T-VEC [5,6], and the
following process steps:

TAF-SFT (Step 1): Develop a behavioral model of the
security functions specifications of a product (as
obtained from its text-based documentation) using a
tabular-type specification called SCR model using the
TTM tool.

TAF-SFT (Step 2): Translate SCR specifications into T-
VEC specifications using a model translator.

TAF-SFT (Step 3): Generate test vectors from the
transformed SCR specification

TAF-SFT (Step 4): Develop test driver schemas and
object mappings (explained later) for target test
environment.

TAF-SFT (Step 5): Generate test drivers, execute tests
and generate test report.

The process flow diagram of the above steps is given in
Figure 3.1 and the details of each of the above process
steps are explained in the following sections.

Product Under
Security Testing

Key

T-VEC Test
Specification

T-VEC
Test Vector
Generator

Test Vectors

T-VEC
Test Driver
Generator

Test Driver Schemas

Product Security
Functional Specification

Tool

- Role

- Tool

- Artifact(s)

Test
Drivers

Test
Report

SCR Modeling

Security Behavior
under

SCR Modeling
Condition

Event
State machine

Object Mappings

Figure 3.1
(Test Automation Framework for Security Functional Testing – Process Flow Diagram)

3.1 Develop SCR Model of Security Function
specifications (TAF-SFT (Step 1))

The SCR models the behavior of a software system

in the form of “a set of functions associated with output
variables (or controlled variables)” [7]. These functions
will involve besides controlled variables, other variables
such as monitored variables, terms and mode classes. A
monitored variable represents an input quantity (input
variable). A term is an auxiliary variable (that may be a
combination of monitored variables or other terms used
for simplifying the model or for representing some
intermediate concepts). A mode class is a special case of
a term whose values are modes. A mode stands for a
particular system state.

For example let us consider the modeling of a
security function that determines the conditions under

which a delete access request can be granted (let us call
this the GDA security function). Let us call the
controlled (output) variable in this context
Grant_Delete_Access. The variables determining the
value of this output variable (i.e. whether
Grant_Delete_Access is TRUE or FALSE) are the
particular user (identified by a UserID) and the
privileges held by that user. Hence the monitored
(input) variables in the context of the GDA security
function are UserID and User_Object_Priv. Let us also
define a term variable, User_has_Delete_Access, to
group together the combinations of user privileges that
are relevant in the context of granting delete access.
These variables (and their associated types) and terms
are defined and stored in the various dictionaries of the
SCR model as follows:

Table 3.1 – Variable Dictionary

Name Class Type Initial Value Accuracy
UserID Monitored UserID_Type 1111 N/A

User_Object_Priv Monitored Priv_Type SELECT N/A
Grant_Delete_Access Controlled Boolean FALSE N/A

Table 3.2 – Term Dictionary

Name Type Initial Value Accuracy
User_has_Delete_Access Boolean FALSE N/A

Table 3.3 – Type Dictionary

Name Base Type Units Legal Values
UserID_Type Integer N/A [1111-9999]

Priv_Type Enumerated N/A ALL, DELETE,
UPDATE, SELECT,

INSERT

Having represented the input, term and output
variables involved in modeling the GDA security
function, we will show how the behavior of the GDA
security function is modeled using SCR functions. The
functions in SCR consist of conditions and events and
the corresponding tables used to represent them are
called ‘condition function tables’ and ‘event function

tables’ respectively. A condition is a predicate defined
on one or more state variables (a state variable is a
monitored or controlled variable, a mode class or a
term). In our GDA security function context, the
conditions that determine the truth values for the term
variable User_has_Delete_Access are represented using
the following condition function table:

Table 3.4 – Condition Function Table for the term variable – User_has_Delete_Access

Table Name Condition
 (User_Object_Priv = ‘ALL’) OR

(User_Object_Priv = ‘DELETE’)
(User_Obj_Priv != ‘ALL’)

AND
(User_Obj_Priv !=

‘DELETE’)
User_has_Delete_Access = TRUE FALSE

Coming back to the discussion of conditions and
events, an event refers to a moment in time and is said
to occur when the value of a condition changes from
true to false or vice versa. An example of an event when
a user gains delete privileges when he/she did not have
that privilege before is represented as:

@T(User_has_Delete_Priv)

For verification of security functions, we are
interested in the external behavior of a product under
various security conditions and not in the valid security
state transitions. Hence in our SCR model of security
function specification we will be dealing with only
conditions (represented using condition function tables)
rather than events (or event function tables). The
condition function table for the controlled variable
Grant_Delete_Access for our GDA security function is:

Table 3.5 – Condition Function Table for the controlled variable – Grant_Delete_Access

Table Name Condition
 (UserID=Active_user)

AND
(User_has_Delete_Access)

(UserID != Active_User) OR
NOT(User_has_Delete_Access)

Grant_Delete_Access TRUE FALSE

3.2 Translate SCR specifications to T-VEC
(Test Vector) specifications (TAF-SFT (Step 2))

As we have seen through an example specification,

the SCR model is composed of tables of conditions and
events. This model is not in a form that supports test
generation. Hence we use a T-VEC model translator
tool to transform the SCR model into a test specification
model (called the T-VEC Linear Form). A test
specification model is defined by outputs, inputs,
functional relationships and relevance predicates. A

functional relationship is an input-output relation and a
relevance predicate is a grouping of constraints on the
inputs associated with a given input-output relation. For
our example SCR model, the functional relationship
obtained for our GDA security function will be:

(UserID = Active_User) & User_has_Delete_Access
Grant_delete_access

The relevance predicate associated with the above
functional relationship (or input-output relation) is:

((UserID = Active_User) AND (User_Obj_Priv =
‘ALL’))

 OR
((UserID = Active_User) AND (User_Obj_Priv =
‘DELETE’))

From the above expressions it can be seen that a
relevance predicate is expressed in disjunctive normal
form, i.e. as a set of disjunctions of conjunctions. Each
disjunction is referred to as a domain convergence path
(DCP).

3.3 Test Vector generation from the

transformed SCR specification &
Coverage Analysis (TAF-SFT (Step 3))

The T-VEC test generator tool generates test data

for subdomains of an input variable space based on the
constraints of a DCP. In other words it tries to generate
a test vector for each DCP. In fact the test vector is a set
of test input values derived from a DCP and an expected
output value derived from the input-output relation.
Informally, from a test vector generation perspective, a
specification is satisfiable if at least one test vector
exists for each DCP.

There may exist input variables in the input-output
relation that are not constrained by DCP predicates. The
test vector also generates additional test points by
incorporating boundary value combinations from these
unconstrained inputs (e.g. low bound and high bound
for numeric objects, sets for enumerated variable). The
incorporation of these additional test points helps to
prove that unconstrained inputs do not the affect the
expected value of the input-output relation.

However the presence of a test vector for each DCP
is no guarantee that collectively the set of test vectors is
sufficient to verify all the path conditions for a
functional relationship. This scenario may result if
contradictions exist among DCPs. Hence we used the
T-VEC coverage analyzer to detect these contradictions
and ensure that the test vectors provide the intended
coverage.

3.4 Develop test driver schemas and object
mappings for target test environment (TAF-
SFT (Step 4))

We now have the translated SCR model containing

the behavioral specification of security functions and
the associated test vectors. These two documents by
themselves do not provide sufficient information to the
test driver to generate executable test code in a

procedural language. We do need to provide the test
driver generator the knowledge of the product’s
interface API (that pertains to the test code language)
and any other relevant APIs needed for extraction of
information pertaining to the product’s state. This is
exactly the information that is provided by the ‘Object
Mapping’ file that is shown in Figure 3.1. More
specifically, the ‘Object mapping file’ provides the
mapping between the behavioral model variables and
the interface elements needed to set, retrieve or evaluate
the values of those model variables. The combination of
the behavioral model and the object mapping
information is called the ‘verification model’ since it
represents the complete specification required for
carrying out the product’s functional verification
process.

The last but not the least important piece of
information that the test driver generator needs is the
generic sequence of steps needed for executing any test.
It is this piece of information that is provided in the
‘Test driver Schema’ file. The test driver schema file
describes the simple algorithmic pattern that is used to
load, execute and receive test data and other
environmental information pertaining to the target test
environment.

3.5 Generate test drivers, execute tests and
generate test results report (TAF-SFT (Step 5))

The test driver generator operates on the behavioral

model, test vectors, object mapping information and test
execution template definitions (in the test driver schema
file) to generate the executable test code. In our TAF-
SFT toolkit, the test driver generator generates code in
Java, though conceptually any language generator
module can be incorporated within the test driver
generator. The test driver generator also generates the
‘Expected Outputs File’ whose format is again specified
in the test driver schema.
 The generated test driver code is then executed
against the product by incorporation of the appropriate
run-time libraries (e.g. Java Virtual Machine and java
run-time libraries). This process generates the ‘Actual
Outputs’ File. The last process in our TAF application
for security functional testing is the ‘Cross Comparison’
that compares the expected outputs with the actual
outputs to generate the test results report.

4. TAF-SFT Toolkit for a commercial
DBMS product

We will now illustrate the application of the TAF-

SFT Toolkit for security functional testing of a
commercial DBMS product – Oracle 8.0.5. The generic
process flow steps in TAF-SFT (sections 3.1 through
3.5) mapped to the application of TAF-SFT for the
Oracle DBMS product are given in Figure 4.1. As stated
in section 3.1, our first step is to obtain the security
functions specifications. We obtained the text-based
specification of the security functions for Oracle 8.0.5
from the Oracle 8.0.5 Security Target (ST) Document
[8]. The Security Target is a structured specification of

security functional requirements as well as specification
of security functions that meet those requirements
expressed using a pre-defined catalog of requirements
and function representations in the international security
criteria ISO/IS 15408 [9].

The next step after obtaining the text-based security
functions specifications is to develop an SCR model of
these specifications. In the next subsection we illustrate
the development of SCR model specification for an
example security function specification for the Oracle
DBMS.

Test
Results

Verification Model

TAF
Translator

Test Vector
Generator

Test Driver
Generator

Interfaces

Expected Outputs

Actual
Outputs

Cross
Comparison

Data dictionary
and

SQL commands

InterfacesObject Mapping

Object
Mapping

Test
Driver

Schema

javac java

JDBC

Model Variable

Oracle8
Security
Target

Database
Engine

Oracle8 Reference
Oracle8 SQL Reference

Behavior

Figure 4.1 – Application of TAF-SFT Toolkit for Oracle DBMS Security Functional Testing

4.1 SCR Model of an Oracle DBMS Security
Function Specification

The specification for a security function that
stipulates the conditions under which an Oracle
database user can grant an object privilege to another
user as stated in the Oracle ST document is:

Granting Object Privilege Capability (GOP) - A normal
user (the grantor) can grant an object privilege to
another user, role or PUBLIC (the grantee) only if:
GOP (a): the grantor is the owner of the object ; or
GOP(b): the grantor has been granted the object
privilege with the GRANT OPTION.
A role represents a group of privileges associated with a
business process. The keyword PUBLIC represents all
users.

Recall that the formulation of an SCR model
requires the identification of variables. The various
variables identified for modeling the GOP security
function are:

(a) Monitored Variables (input variable) - grantor,
grantee, selectedObj, selectedObjPriv,
granteeType, grantedObj, grantedObjPriv

(b) Controlled Variable (output variable) –
grant_obj_priv_OK – A Boolean variable that
will have the value TRUE when the conditions
for ‘granting objective privilege’ by one user to
another are satisfied.

In addition to the above variables, we need two
term variables to complete the GOP function
specification in SCR. They are: (a) grantor_owns_object
(to incorporate the conditions that affirm the fact that
the grantor is the owner of the selected object – the
requirement GOP(a)) and (b) has_grantable_obj_privs
(to incorporate the conditions that affirm that the grantor
holds the privilege in question for the selected object
with the ability to propagate (GRANT OPTION) – the
requirement GOP(b)). Expressing the conditions that
affirm the truth-values for the above discussed term
variables in SCR notation we get:

grantor_owns_object – TRUE when grantor =
selectedObjOwner (4.1.1)

has_grantable_obj_privs – TRUE when
selectedObj = grantedObj AND selectedObjPriv =
grantedObjPriv AND GRANT_OPTION (4.1.2)

Based on our previous discussion, it should be clear
that our security functional testing involves not only
testing the security function specifications, but also the
underlying model semantics (in this case the
Discretionary Access Control (DAC) model)). Clearly
the DAC model semantics in our case is that the object
owner and the holder of the privilege (with GRANT
option) are two different entities. This DAC model
semantic constraint should be added to the term
condition 4.1.2 above to yield:

has_grantable_obj_privs – TRUE when
selectedObj = grantedObj AND
selectedObjPriv = grantedObjPriv AND
GRANT_OPTION AND
selectedObjOwner != grantor AND
selectedObjOwner != grantee (4.1.2)’

Now that the expressions 4.1.1 and 4.1.2’ represents our
requirements GOP(a) and GOP(b) (along with DAC
model semantics) our SCR condition for the entire GOP
function becomes:
grant_obj_priv_OK – TRUE when grantor_owns_object
OR has_grantable_obj_privs

.Table 4.1 – SCR Condition Function Tables for the GOP Security Function

DAC
Constraints

Domain
Constraints

GOP(a)

GOP(b)

Table Name
grantor = selectedObjOwner NOT(grantor = selectedObjOwner)

grantor_owns_object = TRUE FALSE

Condition

Table Name
(GRANT_OPTION
 AND
 selectedObjPriv = grantedObjPriv)
AND selectedObj = grantedObj
AND selectedObjOwner != grantor
AND selectedObjOwner != grantee

NOT(GRANT_OPTION
 AND
 selectedObjPriv = grantedObjPriv)
AND selectedObj = grantedObj
AND selectedObjOwner != grantor
AND selectedObjOwner != grantee

has_grantable_obj_privs = TRUE FALSE

Condition

Table Name
((grantor_owns_object)
OR
(has_grantable_obj_privs))
AND
(grantor != grantee)
AND
(granteeType = user
OR (granteeType = role
 AND
 granteeRoleID = valid_roleID)
OR granteeType = PUBLIC)
AND
(selectedObjPriv = ALL
OR selectedObjPriv = UPDATE
OR selectedObjPriv = SELECT
OR selectedObjPriv = INSERT
OR selectedObjPriv = DELETE)

(NOT(grantor_owns_object))
 AND
(NOT(has_grantable_obj_privs))
AND
(grantor != grantee)
AND
(granteeType = user
OR (granteeType = role
 AND
 granteeRoleID = valid_roleID))
AND
(selectedObjPriv = ALL
OR selectedObjPriv = UPDATE
OR selectedObjPriv = SELECT
OR selectedObjPriv = INSERT
OR selectedObjPriv = DELETE)

grant_obj_priv_OK = TRUE FALSE

Condition

Now our SCR specification of the GOP security

function fully represents the claimed functionality in the
Oracle ST document along with DAC model semantics.
However we have still not incorporated constraints that
relate directly to the Oracle DBMS domain. These relate
to the fact that the grantee can only be of type user, role
or PUBLIC and that the object privilege can only be one
of UPDATE, DELETE, SELCT, INSERT or ALL (as
they are the valid privilege modes for objects managed
by the DBMS). Hence these domain constraints should
also be incorporated to complete the GOP function
specification. The SCR condition tables dealing with the
conditions for the term variables (4.1.1 and 4.1.2’) as
well as for the controlled variable (grant_obj_priv_OK)
(including the domain constraints) are given in table 4.1.

4.2 Generation of Test Vectors for DBMS

Security Function (GOP)

As outlined in our approach in section 3.2, we next

processed our SCR model for ‘ Granting Object
Privilege Capability’ (GOP security function) through
the T-VEC translator tool to obtain the following
functional relationship (input-output relation).

((grantor_owns_object) OR (has_grantable_obj_privs))
AND <domain_constraints> grant_obj_priv_OK
 (4.2.1)

The next item we obtain from the T-VEC translator
tool are the relevance predicates. Recall that the
relevance predicate groups together all the constraints
associated with input values and is expressed in the
form of disjunctions of conjunctions and that each
disjunction is called the Domain Convergence Path
(DCP). In the GOP security function specification
context, each DCP should therefore contain either the

component GOP(a) or GOP(b) in table 4.1 along with
each of the possible value associations given in the
domain constraints. A few examples of DCPs are:

(grantor_owns_object) AND (grantee=’user’) AND
(selectedObjPriv = ‘UPDATE’) (4.2.2)
(has_grantable_obj_privs) AND (grantee=’PUBLIC’)
AND (selectedObjPriv = ‘SELECT’) (4.2.3)

In fact we can compute the total number of test
vectors for testing our GOP security function, by
calculating the number of DCPs in the relevance
predicate and the fact that the test vector generator will
generate at least one test vector for a DCP. Since a
DCP is one disjunction, each of the ORs in our SCR
condition function table 4.1 should participate in a
DCP. Since the conditions GOP(a) and GOP(b) are
connected with OR, each should give rise to a different
DCP. On examining the domain constraints we find
that there are three OR s for the expressions involving
input variable ‘grantee’ (three possible values for
grantee) and five OR s for the expressions involving
the input variable ‘selectedObjPriv’ (five possible
values for selectedObjPriv). Hence the total number of
disjunctions or DCPs we will obtain will equal 2*3*5 =
30. There should therefore be a minimum of thirty test
vectors for testing the GOP security function (all
yielding the value TRUE for the controlled variable
grant_obj_priv_OK). Including the test cases for
grant_obj_priv_OK being FALSE (by negating at least
one predicate in each DCP) and additional test points
derived from boundary value combinations of
unconstrained input variables like grantor, grantee,
grantee_ roleID, the test vector generator generated
about 80 test vectors for testing the GOP security
function. The test vectors are shown in table 4.2.

Table 4.2 – Test Vectors generated for testing the GOP Security Function

77 39 FALSE 1 2 role 1 1 INSERT 3 FALSE ALL 1 1
78 39 FALSE 4 3 role 2 2 INSERT 2 FALSE SELECT 4 4
79 40 FALSE 1 2 role 1 1 DELETE 3 FALSE ALL 1 1
80 40 FALSE 4 3 role 2 2 DELETE 2 FALSE SELECT 4 4

TSP
grant_obj
_priv_OK grantor grantee

grantee
Type

grantee
RoleID valid_roleID

selected
ObjPriv objOwner

GRANT_
OPTION

granted
ObjPriv

selected
Obj

granted
Obj

1 1 TRUE 1 2 user 2 2 ALL 1 TRUE ALL 4 4
2 1 TRUE 4 3 user 1 1 ALL 4 FALSE SELECT 1 1
3 2 TRUE 1 2 user 2 2 UPDATE 1 TRUE ALL 4 4
4 2 TRUE 4 3 user 1 1 UPDATE 4 FALSE SELECT 1 1
5 3 TRUE 1 2 user 2 2 SELECT 1 TRUE ALL 4 4
6 3 TRUE 4 3 user 1 1 SELECT 4 FALSE SELECT 1 1
7 4 TRUE 1 2 user 2 2 INSERT 1 TRUE ALL 4 4
8 4 TRUE 4 3 user 1 1 INSERT 4 FALSE SELECT 1 1
9 5 TRUE 1 2 user 2 2 DELETE 1 TRUE ALL 4 4

10 5 TRUE 4 3 user 1 1 DELETE 4 FALSE SELECT 1 1

. . .
77 39 FALSE 1 2 role 1 1 INSERT 3 FALSE ALL 1 1
78 39 FALSE 4 3 role 2 2 INSERT 2 FALSE SELECT 4 4
79 40 FALSE 1 2 role 1 1 DELETE 3 FALSE ALL 1 1
80 40 FALSE 4 3 role 2 2 DELETE 2 FALSE SELECT 4 4

TSP
grant_obj
_priv_OK grantor grantee

grantee
Type

grantee
RoleID valid_roleID

selected
ObjPriv objOwner

GRANT_
OPTION

granted
ObjPriv

selected
Obj

granted
Obj

1 1 TRUE 1 2 user 2 2 ALL 1 TRUE ALL 4 4
2 1 TRUE 4 3 user 1 1 ALL 4 FALSE SELECT 1 1
3 2 TRUE 1 2 user 2 2 UPDATE 1 TRUE ALL 4 4
4 2 TRUE 4 3 user 1 1 UPDATE 4 FALSE SELECT 1 1
5 3 TRUE 1 2 user 2 2 SELECT 1 TRUE ALL 4 4
6 3 TRUE 4 3 user 1 1 SELECT 4 FALSE SELECT 1 1
7 4 TRUE 1 2 user 2 2 INSERT 1 TRUE ALL 4 4
8 4 TRUE 4 3 user 1 1 INSERT 4 FALSE SELECT 1 1
9 5 TRUE 1 2 user 2 2 DELETE 1 TRUE ALL 4 4

10 5 TRUE 4 3 user 1 1 DELETE 4 FALSE SELECT 1 1

. . .

4.3 Generation of Test Drivers for Oracle
DBMS testing

At this stage we have the SCR Model (or a

translated variant) of Oracle DBMS’s security
behavioral specification and associated test vectors.
These two documents in themselves are not sufficient to
generate executable test code (or test driver) in Java
(which is the language capability of test driver generator
in our TAF-SFT toolkit) for testing the security
functions of the Oracle DBMS product. We do need the
knowledge of the Java APIs to interface with Oracle
DBMS as well as the knowledge of the structure of the
data stores that contain the security state information
and the API (content extraction API) needed to extract
and verify information from those data stores.
Fortunately since Oracle is a relational DBMS, it
supports the standardized Java Database Connectivity
(JDBC) [10] interface API, and Structured Query
Language (SQL) [11] as the content extraction API.

Now our test driver for our Oracle DBMS, in order
to perform its intended function, has to contain Java
code that verifies the conditions in our behavioral
specification (using the data from our test vectors) by
extracting the security state information stored in data
dictionary views through the JDBC API library calls
and SQL commands. In order to generate such a test
driver, we need to combine the behavioral specification
and test vectors with the interface API, content-
extraction API and the data dictionary views in Oracle
DBMS. In other words we need information that maps
the model variables in the behavioral specification to the
commands in JDBC API and SQL API and the data
dictionary views against which these commands must
be executed. It is this mapping information that is
specified in a file called ‘Object Mapping File’.

With the development of the ‘Object Mapping’ file,
the SCR behavioral specification and the test vectors we
have the constituent ingredients of the verification
model. The only other artifact that we need for the test
driver to generate security function tests for the Oracle
DBMS environment is the ‘Test driver schema’.

As already stated, the test driver schemas are
templates containing generic execution steps for each
of the tests. In a database environment the security state
is determined by a combination of security data that
consists of user attributes, roles (entities that represent
collection of privileges), database objects (tables, views
etc) and privilege assignments to users and roles for
various database objects. This security data is stored in
database dictionary tables (also called system tables or
database catalogues). The data in these tables cannot be
created or deleted using the traditional data
manipulation SQL commands but only through some
privileged SQL commands. Hence definition of generic
execution steps for each of the ‘security function tests’
against the database involves a set of these privileged
SQL commands to systematically populate the database
dictionary tables with security state-defining data as
well as other relevant data. In other words appropriate
database conditions must be established prior to the
execution of each of the ‘security function tests’ by
accessing the database as administrative-level system
user.

4.4 Test Driver Code Logic and Capabilities

We now provide the taxonomy of Java programs

generated by the test driver (along with their functions)
in the form of a table (Table 4.3).

Table 4.3 – Generated Java Programs and their functions

Java Class Name Function
ConfigManager Retrieve Global Test Configuration settings (log directory, output file directory, System

userid and password etc)
Constants Provide the set of global constants used by tests
Context Retrieve and set test vector parameters
Logger Provides methods to write to log files and generate test output file

SQLUtils Establish Oracle database connection through JDBC library routines
TestImpl Specify an interface to which each test must conform along with helper methods

Test Runner Provide a simple framework to handle the execution of the entire test

A brief description of the logic of the TestRunner class
is in order at this point to provide an understanding of
the logic of test execution in the generated test driver.

(1) Read global configuration file (using
ConfigManager class) to determine log file

directory, output file directory and the userids
and passwords of users).

(2) Initialize the database under test (delete all
existing security state-defining information
through appropriate privileged SQL
commands, define the desired security state)

(3) Get the test vectors (using TestImpl class) by
called TestImpl.getTestVectors. For each test
vector:

(a) create default data (based on the data
used to define the security state)

(b) Call TestImpl.setupTest – to set up
relevant data besides the security
state-defining data

(c) Call TestImpl.runTest – run the actual
test and generate output (using the
Logger class).

(d) Call TestImpl.cleanupTest – restore
the database to a known security state
for the next test vector.
Also perform cleanup of all other
relevant data

 (4) Exit

5. Conclusions

 We have presented an approach (and an associated
toolkit implementation) for automated security
functional testing that is driven by the use of a formal
behavioral model augmented with interface
specifications. The development of the TAF-SFT toolkit
and its application for security functional testing of a
complex commercial DBMS product established the
fact that both the model and the downstream test
generation process are scalable. The major advantages
of developing and deploying the TAF-SFT toolkit for
security functional testing are:

(a) Better quality of specifications and quality of
test data

(b) Automated generation of executable test code
and automated results analysis.

The major disadvantages are the detailed
knowledge of the security function semantics required
on the part of the modeler to develop good behavioral
models and the complexity of object mapping
information that may result in case of products with
complex interfaces. These disadvantages can be
partially overcome in situations where the following are
possible:

(a) Partial reuse of SCR security behavioral model
(b) Partial reuse of Object Mapping information
Since the SCR behavioral model is based on the

security function specifications, reuse of parts of this
model is possible if security function specifications in
the different products under security testing are based

on an interoperable security API like CDSA [12].
Partial reuse of Object Mapping information is possible
if the different products under security testing support a
common interface API (like the different relational
DBMS products supporting the JDBC API and the SQL
API).

6. References

[1] E.L.Safford. ”Key applications of Test Automation Framework
(TAF)”, Proc 12th Annual Software Technology Conference, April
30 - May 5, 2000.

[2] D.Statezni. “Test Automation Framework, State-based and
Signal Flow Examples”, Proc. 12th Annual Software Technology
Conference, April 30 – May 5, 2000.

[3] W.Jansen. “Security Testing Characteristics”,
http://csrc.ncsl.nist.gov/sectest/Security_Testing.html, April
1998

[4] C.Heitmeyer, J.Kirby,B.Labaw and R.Bharadwaj. “SCR: A
toolset for specifying and analyzing software
requirements”,Proc. 10th Annual Conference on Computer-
Aided Verification, Vancouver, Canada, 1998.
[5] M.R.Blackburn, R.D. Busser, “T-VEC: A Tool for
Developing Critical System”, Proc. 11th International Conference
on Computer Assurance, Gaithersburg, Maryland,USA pages 237-
249, June, 1996.

[6] M.R.Blackburn., R.D. Busser, J.S. Fontaine. “Automatic
Generation of Test Vectors for SCR-Style Specifications”, Proc.
12th h Annual Conference on Computer Assurance, Gaithersburg,
Maryland, pages 54-67, June, 1997.

[7] S.R.Faulk, P.C.Clements. “The NRL SCR requirements
specification”, Proc. 4th International Workshop on Software
Specification and Design, Monterey, California,USA, 1987.

[8] Oracle Corporation, Oracle8 Security Target Release 8.0.5,
April 2000.

[9] ISO/IEC International Standard (IS) 15408,
http://csrc.nist.gov/cc/ccv20/ccv2list.htm

[10] JDBC Data Access API,
http://java.sun.com/products/jdbc/download.html

 [11] ISO/IEC 9075:1999, "Information Technology --- Database
Languages --- SQL", http://www.iso.org

 [12] Common Data Security Architecture (CDSA),
http://www.opengroup.org/security/l2-cdsa.htm

http://csrc.nist.gov/cc/ccv20/ccv2list.htm
http://java.sun.com/products/jdbc/download.html
http://www.iso.org/
http://www.opengroup.org/security/l2-cdsa.htm

	Security Functional Testing Using An Interface-Driven Model-Based Test Automation Approach
	Abstract

