

Cryptographic Module Validation Program (CMVP)

- Established by NIST and the Communications Security Establishment (CSE) in 1995
- Original FIPS 140-1 requirements and updated FIPS 140-2 requirements developed with industry input
- Six NVLAP-accredited testing laboratories
 - True independent 3rd party accredited testing laboratories
 - <u>Cannot</u> test and provide design assistance

CMVP Accredited Laboratories

Sixth CMT laboratory added in 2001

Applicability of FIPS 140-2

- U.S. Federal organizations must use validated cryptographic modules
- GoC departments are recommended by CSE to use validated cryptographic modules

International recognition

Communications-Electronics Security Group (CESG) - UK

- December 28, 2001
 - CESG proposes the use of FIPS 140 as the basis for the evaluation of cryptographic products used in a number of UK government applications and encourages the setting up of accredited laboratories in the UK to perform these evaluations.

Flow of a FIPS 140-2 Validation

Vendor

Designs and Produces

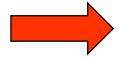
Cryptographic Module and Algorithm

CMT Lab

Tests for Conformance

Cryptographic Module and Algorithm

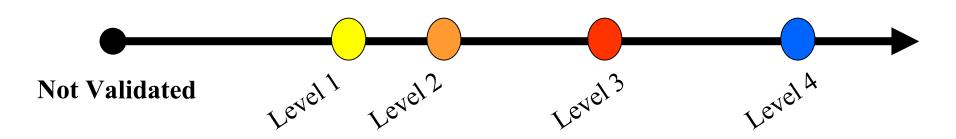
CMVP


Validates

Test Results and Signs Certificate

User

Specifies and Purchases


Security and Assurance

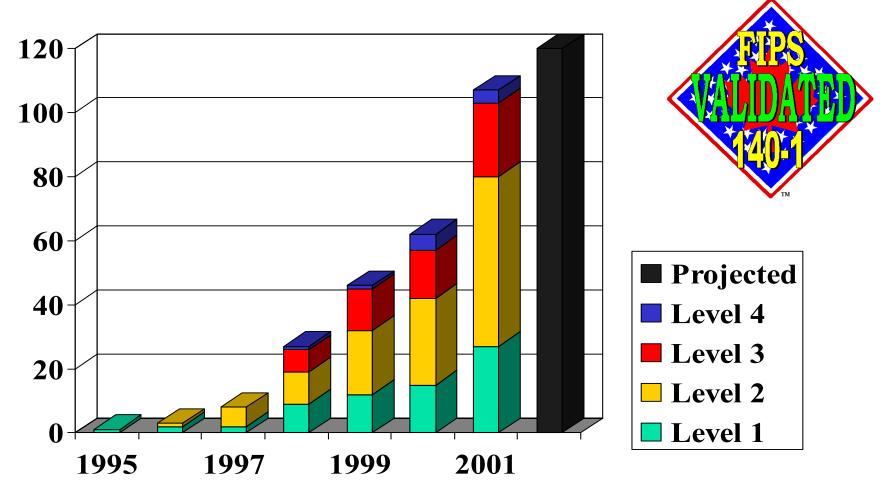
FIPS 140-2 Security Levels

Security Spectrum

- Level 1 is the lowest, Level 4 most stringent
- Requirements are primarily cumulative by level
- Overall rating is lowest rating in all sections

CMVP Status

(March 2002)



- Over 200 Validations representing nearly 250 modules
- All four security levels of FIPS 140-1 represented on the Validated Modules List

Over forty participating vendors

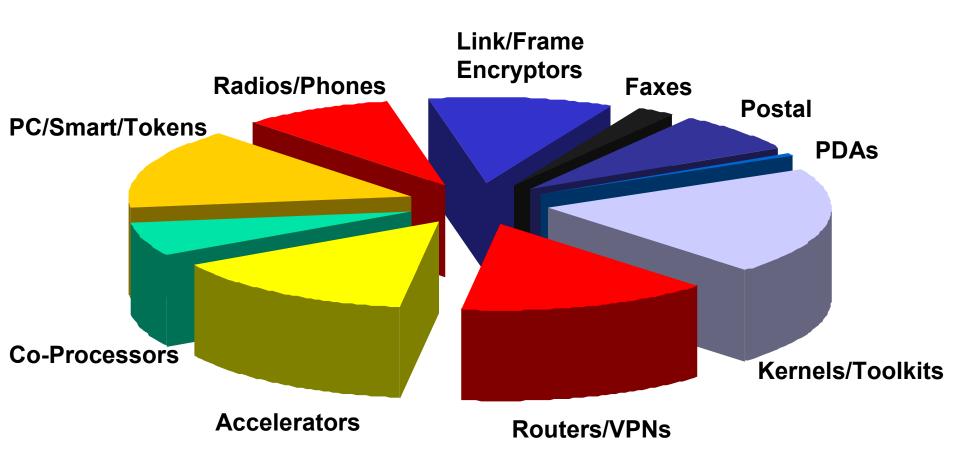
FIPS 140-1 and FIPS 140-2 Validations by Year and Level

(January 15, 2002)

2001 Validation Milestones

Certificate 200

December 18, 2001



- FIPS 140-2 Signed 05/25/01
- FIPS 140-2 DTR Available 11/15/01
- FIPS 140-2 Validations Accepted

Certificate 150

May 23, 2001

Validated Modules By Type

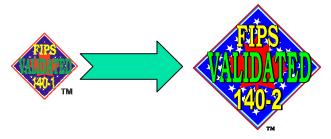
Pre-validation Status List

- Pre-validation phases
 - Implementation Under Test (IUT)
 - The crypto module and documentation are resident at the CMT lab
 - The vendor has a viable contract with the CMT lab
 - Validation Review Pending
 - Testing documentation submitted to NIST and CSE
 - Validation Review
 - Comments developed by NIST and CSE
 - Combined comments sent to CMT lab

Pre-validation Status List

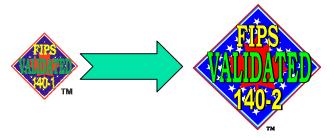
(concluded)

Pre-validation phases


- Validation Coordination (process may be iterative)
 - Testing documents revised
 - Additional documentation (if required)
 - Additional testing performed (if required)
 - Resubmission to NIST and CSE

Validation Finalization

- Final resolution of validation review comments
- Certificate number assigned
- Certificate printing and signature process initiated


15

FIPS 140-2 - Testing Begins

- FIPS 140-2 Testing officially began November 15, 2001
- FIPS 140-1 Testing ends May 25, 2002
- Testing laboratories may submit FIPS 140-1 validation test reports until May 25, 2002
- After May 25, 2002 all validations and revalidations must be done against FIPS 140-2

FIPS 140-2 - Testing Begins ...

- Agencies may continue to purchase, retain and use FIPS 140-1 validated products after May 25, 2002
- NIST has provided common algorithmic testing tool to Accredited Laboratories:
 - Includes DES, Triple-DES and AES
 - DSA and SHA-1 to be integrated
 - ECDSA available as separate tool to be integrated
 - RSA, SHA-{256,384,512}, DH, MQV future

CMVP Status

(continued)

 End of FIPS 140-1 testing and beginning of FIPS 140-2 testing and validations with new implementations of FIPS 197 (AES) expected to cause unparalleled growth

 Increasing international recognition of the CMVP and FIPS 140-2

CMVP Status

(concluded)

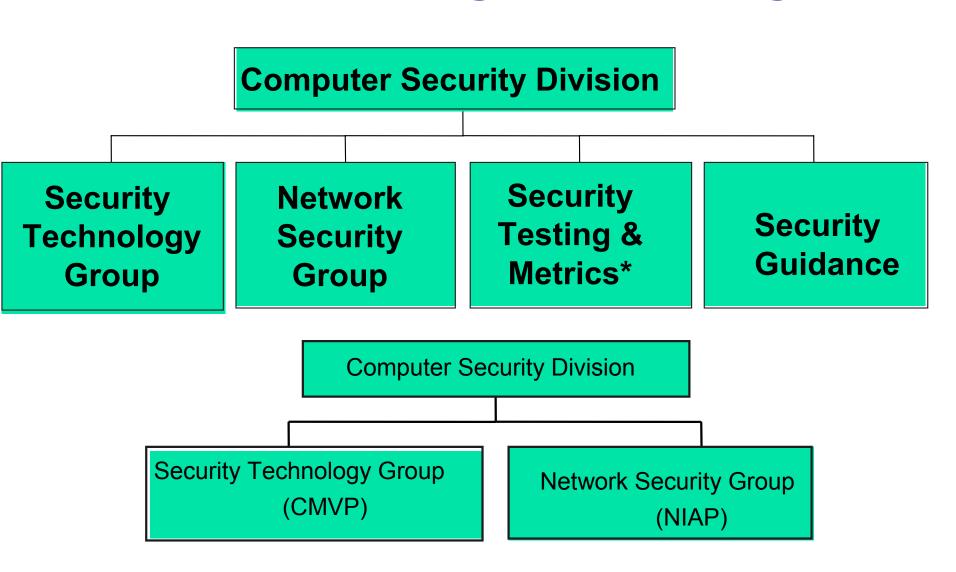
- CMVP web-site
 - January 2002 through March 2002
 - Approximately 80,000 hits per month
 - November 2001
 - Over 125,000 hits

... Making a Difference

164 Cryptographic Modules Surveyed (during testing)

- 80 (48.8%) Security Flaws discovered
- 158 (96.3%) FIPS Interpretation and Documentation Errors
- 332 Algorithm Validations (during testing)
 (DES, Triple-DES, DSA and SHA-1)
 - 88 (26.5%) Security Flaws
 - 216 (65.1%) FIPS Interpretation and Documentation Errors

Areas of Greatest Difficulty


- Physical Security
- Self Tests
- Random Number Generation
- Key Management

Program Efficiency:

- 107 Modules Validated in calendar year 2001 by 2.5 FTE
- 42.8 modules per FTE

Computer Security Division Restructuring for Testing

Crypto Modules to Products

- Very difficult for User's to correlate list of crypto modules to vendor products
- Ideas?
 - Vendor Web Link
 - Product List by type
 - Different Vendor contact?

Participating Vendors

(March 2002)

Alcatel

Algorithmic Research, Ltd.

Ascom Hasler Mailing Systems

Attachmate Corp.

Avaya, Inc.

Baltimore Technologies (UK)

Ltd.

Blue Ridge Networks

Certicom Corp.

Chrysalis-ITS Inc.

Cisco Systems, Inc.

Cryptek Security

Communications, LLC

CTAM, Inc.

Cylink Corporation

Dallas Semiconductor, Inc.

Datakey, Inc.

Ensuredmail, Inc.

Entrust Technologies Limited

Eracom Technologies Group, Eracom Technologies

Australia, Pty. Ltd.

F-Secure Corporation

Fortress Technologies

Francotyp-Postalia

GTE Internetworking

IBM

Intel Network Systems, Inc.

IRE, Inc.

Kasten Chase Applied Research

L-3 Communication Systems

Litronic, Inc.

M/A Com Wireless Systems

Microsoft Corporation.

Motorola, Inc.

Mykotronx. Inc

National Semiconductor Corp.

nCipher Corporation Ltd.

Neopost

Neopost Industrie

Neopost Ltd.

Neopost Online

Netscape Communications Corp.

NetScreen Technologies, Inc.

Network Associates, Inc.

Nortel Networks

Novell, Inc.

Oracle Corporation

Pitney Bowes, Inc.

PrivyLink Pte Ltd

PSI Systems, Inc.

Rainbow Technologies

RedCreek Communications

Research In Motion

RSA Data Security, Inc.

SchlumbergerSema

Spyrus, Inc.

Stamps.com

Technical Communications Corp.

Thales e-Security

TimeStep Corporation

Transcrypt International

Tumbleweed Communications

Corp.

V-ONE Corporation, Inc.

FIPS 140-1 Product Display

- Annabelle Lee annabelle.lee@nist.gov
- Randy Easter randall.easter@nist.gov
- Nelson Hastings nelson.hastings@nist.gov
- Ray Snouffer ray.snouffer@nist.gov

Conformance through Testing

National Institute of Standards and Technology

Technology Administration U.S. Department of Commerce

http://www.nist.gov/cmvp

- FIPS 140-1 and FIPS 140-2
- Derived Test Requirements (DTR)
- Annexes to FIPS 140-2
- Implementation Guidance
- Points of Contact
- Laboratory Information
- Validated Modules List
- Special Publication 800-23

