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Abstract. Side-channel resistance is one of the primary criteria identified by NIST for
use in evaluating candidates in the Lightweight Cryptography (LWC) Standardization
process. In Rounds 1 and 2 of this process, when the number of candidates was still
substantial (56 and 32, respectively), evaluating this feature was close to impossible.
With ten finalists remaining, side-channel resistance and its effect on the performance
and cost of practical implementations become of utmost importance. In this paper, we
propose a general framework for evaluating side-channel resistance of LWC candidates
using resources, experience, and general practices of the cryptographic engineering
community developed over the last two decades. The primary features of our approach
are a) self-identification and self-characterization of side-channel security evaluation
labs, b) distributed development of protected software and hardware implementations,
matching certain high-level requirements and deliverable formats, and c) dynamic
and transparent matching of evaluators with implementers in order to achieve the
most meaningful and fair evaluation reports.
Keywords: Lightweight Cryptography · authenticated ciphers · hash functions ·
hardware · software · benchmarking

1 Introduction
NIST has specified resistance to Side-Channel Analysis (SCA) as one of the primary
criteria for evaluating candidates in the Lightweight Cryptography (LWC) Standardization
Process [1]. To assist NIST in evaluating finalists in this process, we have developed the
following three calls:

1. Call for Side-Channel Security Validation Labs

2. Call for Protected Hardware Implementations, targeting low-cost modern FPGAs

3. Call for Protected Software Implementations, targeting low-cost modern embedded
processors.

The general idea is that no single group is likely to have resources and expertise to
develop and evaluate SCA-protected implementations of all 10 finalists. Additionally,
self-evaluation by developers may be insufficient and/or error-prone. Therefore, it is the
collective responsibility of the cryptographic engineering community to contribute to the
evaluation process and make it as transparent and fair as possible. Contributions by
multiple groups will make:

• each group’s workload more manageable;
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• coverage of implementation platforms more complete;

• results more credible.

These contributions are strongly encouraged and justified by at least the following
factors:

• The new LWC standard is likely to be used for decades. The development and
evaluation of protected implementations are scheduled to last about six months.
Choosing the right algorithm can save the community countless man-hours necessary
to secure implementations of a hard-to-protect standard or start a new standardization
process from scratch.

• It is a joint project that all experts in the field can focus on in the limited amount
of time devoted to analysis. Most implementations will be, by nature, open-source.
Most evaluations will be very transparent and reproducible. This process is likely to
reveal and highlight some implementation and evaluation methods that rarely get
fully disclosed and published. The community can benefit tremendously by saving
thousands of man-hours spent on rediscovering previously-known tricks.

• Automated insertion of countermeasures is highly desirable (especially considering
the very short period reserved for developing protected implementations). Any
insights gained through these developments may lead to tremendous progress in the
field of Computer-Aided Design (CAD) tools for SCA.

• The developed protected implementations can become benchmarks for new attacks
and leakage assessment methods that can be discovered and published in years to
come.

• Research on NIST standards is highly visible. Participants are rewarded with
recognition by the cryptographic community that may translate to new collaboration,
funding, and publication opportunities.

• The project is very suitable for a Master’s Thesis or a part of a Ph.D. thesis. All
results should be easily publishable. Student participants may be rewarded with
attractive job offers.

• The project is a source of excellent topics for individualized projects in various
cryptographic engineering, digital system design, and programming courses.

• Some members of each participating group may decide to commercialize their contri-
butions, and the project’s high visibility may help attract investors and collaborators.

2 Side-Channel Security Evaluation Labs
2.1 General Idea
We called for groups capable and willing to serve as side-channel security evaluation labs
to identify their capabilities and contribute to the evaluation process. Our draft call was
sent for comments to lwc-forum in December 2021. The final version of this call was
published on January 18, 2022. The deadline for submitting lab specifications was initially
set to February 28, 2022, and then extended to March 15, 2022, for groups that expressed
initial interest.

The assumption was that submitters should have access to the equipment used for side-
channel leakage assessment and/or attacks, experience, and human resources necessary to
perform security analysis. Suggested devices used for evaluating hardware implementations
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were low-cost modern FPGAs, such as Artix-7 and Spartan-7 from Xilinx, Cyclone 10 LP
from Intel, and ECP5 from Lattice Semiconductor. Suggested embedded processors used for
evaluating software implementations were ARM Cortex-M4F, RISC-V (e.g., RV32IMAC),
Microchip 8-bit AVR, and TI MSP430. A particular lab could specialize in evaluating only
hardware implementations, only software implementations, or both.

2.2 Suggested Deliverables

Suggested deliverables included:

1. Equipment and Software Used

(a) General type of the evaluation platform, e.g., Rambus DPA Workstation, Riscure
Inspector, NewAE ChipWhisperer, SAKURA, SASEBO, FOBOS

(b) The exact names and versions of all FPGA or embedded processor boards used
to host the protected implementations (victim boards)

(c) The exact names and versions of all FPGA and embedded processor boards
used to support measurements

(d) Oscilloscope and its major characteristics (e.g., bandwidth)
(e) Current and electromagnetic probes
(f) Usage of bandwidth limiters, filters, amplifiers, etc. and their specification
(g) Information on whether sampling clock and design-under-evaluation clock are

synchronized
(h) Names and versions of programs used for evaluating side-channel resistance.

2. Supported Leakage Assessment Methods

(a) Type of the method, e.g., TVLA (Test Vector Leakage Assessment) a.k.a.
Welch’s t-test, Pearson’s χ2-test, deep learning leakage assessment (DL-LA),
etc.

(b) Approximate number of traces used in evaluations of authenticated ciphers
(c) Typical clock frequency of the device-under-evaluation
(d) Sampling frequency and resolution
(e) Graphical representation of results, e.g., TVLA graphs, χ2 graphs, etc.

3. Supported Attacks

(a) Types of Power Analyses, e.g., Simple Power Analysis (SPA), Differential Power
Analysis (DPA), Correlation Power Analysis (CPA), Template Attacks (TA),
Mutual Information Analysis (MIA), etc.

(b) Types of Electromagnetic Analyses
(c) Types of Fault Analyses, e.g., Differential Fault Analysis (DFA), Fault Sensitivity

Attack (FSA), Differential Fault Intensity Analysis (DFIA), and Fault Behavior
Analysis (FBA)

(d) Graphical representation of results, e.g., the minimum traces to disclosure
(MTD) graphs.

4. Ability to generate and publish raw measurements to be analyzed by other groups

5. Support for side-channel analysis as service, with the feedback provided to designers
of protected implementations during the development process
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Table 1: Side-Channel Security Evaluation Labs Targeting Hardware Implementations

No. Team Evaluation
Platform

Target
FPGA
Family

Target
Boards

Leakage
Assessment
Methods

Attacks

1 IAIK, TU Graz,
Austria NewAE ChipWhisperer Artix-7 NewAE CW305 t-test

2 Telecom Paris, France

Spartan-6,
Virtex-5,
Virtex-II Pro,
Stratix II

SASEBO-W,
SASEBO-GII,
SASEBO-G/
SASEBO-R,
SASEBO-B

NICV, t-test,
χ2-test, DL-LA

SPA, DPA, CPA,
MIA, TA, LRA;
SEMA, DEMA,
CEMA;
SFA, DFA, FSA,
DFIA, FBA

3
CCSL,
Shanghai Jiao Tong
University, China

Riscure Inspector,
NewAE ChipWhisperer,
SAKURA

Kintex-7,
Spartan-6

SAKURA-G,
SAKURA-X t-test, χ2-test, DL-LA CPA, TA, MIA,

DL-based methods

4
HSCP Lab,
Tsinghua University,
Beijing, China

SAKURA Kintex-7,
Spartan-6

SAKURA-G,
SAKURA-X NICV, t-test, χ2-test SPA, DPA, CPA,

MIA, TA, LRA,

5
CESCA Lab,
Radboud University,
the Netherlands

Riscure Inspector,
NewAE ChipWhisperer,
Jupyter notebook scripts

Artix-7,
Spartan-6

NewAE CW305,
SAKURA-G t-test, χ2-test, DL-LA

SPA, DPA, CPA,
TA; DEMA; DFA,
FI attacks

6 Secure-IC, France Secure-IC Analyzr,
SAKURA Spartan-6 SAKURA-G Tests specified in

ISO/IEC 17825:2016

7
CERG,
George Mason University,
USA

FOBOS3 Artix-7 NewAE CW305 t-test

8 Ruhr-Universitat Bochum,
Germany

SILVER and other
simulation-based
probing security
leakage-detection tools

simulation-based
probing security
evaluation



J.-P.K
aps,K

.G
aj,A

.A
bdulgadir,K

.M
ohajerani

5

Table 2: Side-Channel Security Evaluation Labs Targeting Software Implementations

No. Team Evaluation
Platform

Target
Processors

Leakage
Assessment
Methods

Attacks

1 IAIK, TU Graz,
Austria

NewAE
ChipWhisperer ARM Cortex-M4F t-test

2 Telecom Paris,
France

NewAE
ChipWhisperer

ARM Cortex-M0,
ARM Cortex-M4F,
ATxmega128D4

NICV, t-test, χ2-test,
DL-LA

SPA, DPA, CPA,
MIA, TA, LRA;
SEMA, DEMA, CEMA;
SFA, DFA, FSA,
DFIA, FBA

3
LSSS,
OTH Regensburg,
Germany

ATmega328P,
ARM Cortex-M3,
RISC-V GD32VF103CBT6,
ARM Cortex-M7,
Tensilica Xtensa LX6

t-test

4

CCSL,
Shanghai Jiao
Tong University,
China

Riscure Inspector,
NewAE
ChipWhisperer

ARM Cortex-M4F,
ATxmega128D4,
ATmega128A

t-test, χ2-test, DL-LA CPA, TA, MIA,
DL-based methods

5
HSCP Lab,
Tsinghua University,
Beijing, China

ARM Cortex-M4F,
ARM Cortex-M3 NICV, t-test, χ2-test SPA, DPA, CPA,

MIA, TA, LRA

6
CESCA Lab,
Radboud University,
the Netherlands

Riscure Inspector,
NewAE
ChipWhisperer,
Jupyter notebook
scripts

ARM Cortex-M4F,
ATxmega128D4 t-test, χ2-test, DL-LA

SPA, DPA, CPA
TA; DEMA;
DFA, FI attacks
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6. Short description of the personnel and its qualifications

7. Intended period of the lab operation

8. Contact information.

2.3 Lab Specifications
The summary of lab specifications submitted in response to our call by March 20, 2022, is
given in Tables 1 and 2. We have received a total of 9 submissions, specifying

• 5 labs that support both software and hardware implementations,

• 3 labs that support only hardware implementations, and

• 1 lab that supports only software implementations.

The detailed specifications are posted on our ATHENa Lightweight Cryptography web
page at https://cryptography.gmu.edu/athena/index.php?id=LWC.

In Table 1, we summarize major capabilities of the labs targeting hardware implemen-
tations in terms of the Evaluation Platform, Target FPGA Family, Target Board, Leakage
Assessment Methods, and Key Recovery Attacks.

The most popular Evaluation Platforms are NewAE ChipWhisper and SAKURA,
declared by 4 out of 8 specification submitters. Next comes Riscure Inspector, used by
two labs, followed by Secure-IC Analyzr, FOBOS3, and SILVER, used by one. SILVER
and related probing security leakage-detection tools are the only tools based entirely on
simulation.

Most of the labs support Xilinx 7 Series FPGA families, such as Artix-7 and Kintex-7.
Two labs support only Spartan-6 and earlier FPGA families based on four-input Look-Up
Tables (LUTs). Among the Target Boards, the most popular are SAKURA boards and
NewAE CW305.

The most widely supported Leakage Assessment Method is Welch’s t-test a.k.a. TVLA
(Test Vector Leakage Assessment) [2]–[7]. Four labs support a newer and supplementary
Pearson’s χ2-test introduced in [8]. The team representing Secure-IC uses tests specified
in ISO/IEC 17825:2016. These tests are described and critically analyzed in [9]. Two
labs declare support for NICV: Normalized Inter-Class Variance for Detection of Side-
Channel Leakage [10], [11]. Three labs list among their methods DL-LA: Deep Learning
Leakage Assessment, defined in [12]. The team from Ruhr-Universitat Bochum relies on the
simulation-based SILVER (introduced in [13] and available at [14]) and other, unpublished
probing security leakage-detection tools.

Four labs support attacks. Out of them, two limit attacks to power-based methods,
such as Simple Power Analysis (SPA), Differential Power Analysis (DPA), Correlation
Power Analysis (CPA), Template Attacks (TA), Mutual Information Analysis (MIA), and
Deep Learning (DL)-based methods [15]. The remaining two support also several types
of Electromagnetic Analysis (e.g., Simple Electromagnetic Analysis - SEMA, Differential
Electromagnetic Analysis - DEMA, Correlation Electromagnetic Analysis - CEMA) and
Fault Analysis (e.g., Differential Fault Analysis - DFA, Fault Sensitivity Attack - FSA,
Differential Fault Intensity Analysis - DFIA, and Fault Behavior Analysis - FBA).

In Table 2, we summarize major capabilities of the labs targeting software implementa-
tions in terms of the Evaluation Platform, Target Processors, Leakage Assessment Methods,
and Key Recovery Attacks.

Four out of six labs rely on the NewAE ChipWhisperer platform. The most supported
target processor is ARM Cortex-M4F, listed by 5 out of 6 labs. Three labs support
ATxmega128D4, and two ARM Cortex-M0. The Laboratory for Safe and Secure Systems

https://cryptography.gmu.edu/athena/index.php?id=LWC
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(LSSS) at OTH Regensburg, Germany, has listed five different target processors but is
tentatively planning to support only two.

In terms of the Leakage Assessment Methods, all labs support t-test, and 4 out of 6
also χ2-test. The third most popular test is Deep Learning Leakage Assessment (DL-LA),
supported by half of the current labs.

The support for attacks is exactly the same as in the case of hardware implementations,
as all labs supporting attacks target both software and hardware implementations.

3 Protected Hardware Implementations

3.1 Introduction
We submitted a draft version of the Call for Protected Hardware Implementations to
lwc-forum on December 13, 2021. After analyzing all received comments and incorporating
the best-received suggestions, we have posted a final version of this call on the GMU
Lightweight Cryptography website on January 18, 2022. According to the call, the
submitted designs should demonstrate strong resistance against side-channel attacks
when implemented on low-cost modern FPGAs, such as Artix-7 and Spartan-7 from
Xilinx, Cyclone 10 LP from Intel, and ECP5 from Lattice Semiconductor. A potential
for porting the designs to ASIC (Application-Specific Integrated Circuit) technology and
demonstrating their resistance in this environment has been highly desirable. All submitted
implementations will be investigated by one or more Side-Channel Security Evaluation
Labs.

3.2 Requirements
Protected hardware implementations should follow the LWC Hardware API v1.1 or later.
In this extended API, we assume that inputs and outputs are split into shares, as shown
in Fig. 1. Input that is not shared (e.g., an instruction or a segment header) should be put
into share 1, with the remaining shares being set to zeros. The updated interface is shown
in Fig. 2. In unprotected implementations, the public data input PDI accepts data of size
w. For protected implementations, we modified this input to accept pn shares of size w in
parallel. The same holds for the data output DO, which now provides pn shares of size w.
The number of shares on the secret data input SDI is denoted as sn, as it can differ from
the number of shares on PDI.

A majority of common side-channel countermeasures require the consumption of
randomness during cipher operations. Any randomness an LWC implementation needs
can be provided by the random data input RDI, which is of size rw. This port, just like
all the others, follows a simple FIFO protocol. Each read will provide rw bits. The value
of rw can be arbitrary up to 2048 bits. Note that independent of how many random bits
are actually used, our testbench assumes that all rw bits are used with each read.

Share 2 Share 1

Share 2 Share 1

Share 2 Share 1Share pn

Share pn

Share pn

LSBMSB

Shares of word m−1

Shares of word 1

Shares of word 0

pn*w−bit

Figure 1: Pre-Shared Data
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PDI
Public Data Input

Ports

SDI
Secret Data Input

Ports

RDI
Random Data Input

Ports

LWC

rdi_data

sdi_data

sdi_valid

sdi_ready

pdi_ready

pdi_valid

pdi_data

rdi_valid

rdi_ready

do_data

do_valid

do_ready

do_last

Data Output
Ports

DO

rw

pn*w pn*w

clk

clk rst

rst

sn*sw

Figure 2: LWC API extended with Random Data Input (RDI)

We also assume that a deterministic random bit generator (DRBG) used as a source of
fresh randomness is located outside of the protected LWC core. The important advantages
of this approach include:

• ability to share DBRG with other units (e.g., for the generation of nonces, protection
of other units, e.g., those implementing public-key cryptography, etc.)

• ease of replacing the type of DBRG (e.g., due to compliance with other standards,
validation requirements, evolving understanding of how cryptographically strong the
DBRG used for refreshing randomness must be, etc.)

• we are interested in evaluating/benchmarking LWC candidates and not DBRGs. The
final NIST LWC selection itself could become the basis of future lightweight DBRGs.

• Concurrent operation of the DBRG circuit could introduce additional noise in the
measurements and make leakage detection more difficult. There is no guarantee that
this type of noise by itself could hinder an actual attack scenario, but it is likely
to make the leakage evaluation more difficult (more traces, more computations, or
more expensive measurement equipment).

Our testbench will count how many random bits were consumed by the protected
implementation during its operation, and we will use this information, together with the
width of the rdi_data bus, to differentiate between various protected designs. Specifically,
the total number of consumed fresh random bits will be one of the primary items on
the list of reported evaluation metrics. In principle, we do not mind allowing designers
to improve this metric by placing the source of some or all random bits inside of their
implementations. At the same time, designs using significantly different assumptions may
be quite challenging to rank.

We propose the following constraints on a first-order protected implementation of an
LWC candidate: 8000 LUTs, 0 Block RAMs, and 0 DSP units of Artix-7 FPGAs. The
number of LUTs corresponds to the smallest device of the Artix-7 family of FPGAs. This
number is also consistent with the Round 2 limit on the number of LUTs, set to 2000
LUTs. Additionally, the first-order protected hardware implementations typically take
3-4x more hardware resources than the corresponding unprotected implementations.
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Table 3: Proposed constraints on resource utilization

Type of Implementation #LUTs #BRAMs #DSP units
Unprotected ≤ 2000 0 0
1st Order Protected ≤ 8000 0 0

3.3 Suggested Deliverables
To simplify benchmarking, security analysis, and further optimizations of protected hard-
ware implementations, we proposed a uniform way of publishing them on the web and
submitting them to the benchmarking and security evaluation labs.

All protected implementations of a given candidate developed by a particular group
are expected to be stored in the same folder. This folder can either

1. become a basis of an online repository (e.g., a GitHub repository), in which case the
submission consists of the repository URL including branch name, tag, or commit
hash, or

2. be submitted as a single archive file (e.g., .zip) to the selected benchmarking and
security evaluation labs.

This folder should be named using the following convention:
<LWC_Candidate_Name>_<Group_Name>.
Within this folder, the submitters should create the structure of files and second-level
folders shown in Fig. 3.

LICENSE.txt should include any licensing and copyright information that applies to
the code. <variant_name>.toml is expected to include information fully characterizing
a particular variant, encoded using the TOML (Tom’s Obvious Minimal Language) file
format1. This file should capture attributes of an LWC hardware implementation to enable
automated benchmarking and evaluation. We define variants of the design as different
versions of the design that correspond to

• different algorithms of the same family

• different sizes of keys, nonces, tags, etc.

• different parameters of the interface, such as w and sw

• different hardware architectures (e.g., basic iterative, unrolled, folded, pipelined,
etc.),

• different protection methods against side-channel attacks,

• different orders of protection against side-channel attacks.

src_rtl is a folder that should contain all synthesizable source files, and src_tb
a folder containing testbenches developed or modified by a given submitter and any
non-synthesizable source files used by these testbenches.

The KAT folder should include subfolders named after the variant names corresponding
to the unique identifiers of variants. Each respective subfolder is expected to contain test
vector files used to verify the implementation of a particular variant.

1https://toml.io/en/
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<Candidate_Name>_<Group_Name>

LICENSE.md # or LICENSE.txt

README.md # or README.txt

<variant_name_1>.toml # TOML variant description file(s)

<variant_name_2>.toml
...

src_rtl

LWC # common RTL sources

<variant_name_1> # sources specific to variant_1

design_pkg.vhd

LWC_config.vhd

CryptoCore.vhd
...

<variant_name_2> # sources specific to variant_2

...

src_tb

LWC_TB.vhd
...

KAT # Test vectors

<variant_name_1>

pdi_shared_2.txt

sdi_shared_2.txt

do_shared_2.txt
...

<variant_name_2>
...

...

cref # C reference software implementation
...

docs # Additional documentation
...

Figure 3: Recommended format of deliverables for protected hardware implementation
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The docs folder should include one or more PDF files describing:

1. Protection Method

2. Results of the Preliminary Security Evaluation, including at least

(a) Attack/leakage assessment type
(b) Number of traces used
(c) Experimental setup
(d) Attack/leakage assessment characteristics
(e) Attack-specific characteristics
(f) Documentation of results.

4 Protected Software Implementations
4.1 Introduction
We have called for software implementations of finalists resistant against side-channel
attacks such as power and electromagnetic analysis, using the same timeline as in the case
of hardware implementations. The focus of our call is on the use of platform-independent
algorithmic countermeasures. The submitted code should demonstrate strong resistance
against side-channel attacks when executed on low-cost modern embedded processors, such
as ARM Cortex M4F, RISC-V (e.g., RV32IMAC), Microchip 8-bit AVR, and TI MSP430.
This code can contain assembly language instructions specific to a given Instruction Set
Architecture (ISA).

4.2 Requirements
Protected software implementations should use the standard NIST API defined in Submis-
sion Requirements and Evaluation Criteria for the Lightweight Cryptography Standardiza-
tion Process, published in August 20182. Protected implementations should not use nsec,
beyond specifying it as an argument of
crypto_aead_encrypt() and crypto_aead_decrypt() set to NULL.

Considering the short amount of time devoted to analyzing protected implementations
by the Side-Channel Security Evaluation Labs, it is important that all submissions can
be evaluated using the Test Vector Leakage Assessment (TVLA) method, a.k.a., Welch’s
t-test. To make it possible, we have suggested that at least one variant of the protected
implementation is designed to accommodate this test.

To simplify power correlation evaluation via Welch’s t-test without spurious correlation
from sharing and un-sharing operations, we proposed the clear division of the protected
implementation into three functions:
generate_shares_encrypt(), crypto_aead_encrypt_shared(), and
combine_shares_encrypt(), for encryption, and
generate_shares_decrypt(), crypto_aead_decrypt_shared(), and
combine_shares_decrypt(), for decryption.

Only crypto_aead_encrypt_shared() for encryption and
crypto_aead_decrypt_shared() for decryption should be used for leakage assessment.

The generate_shares_encrypt() function should allow the division of all inputs to
encryption into Boolean shares. The generate_shares_decrypt() function should allow
the division of all inputs to decryption into Boolean shares. This function should first pad

2https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/
final-lwc-submission-requirements-august2018.pdf

https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
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the last word of the ciphertext (not including the tag) with zeros. The tag should then
follow, starting on a boundary of a 32-bit word. Only after this initial preprocessing the
ciphertext and tag should be masked. The number of shares may be different for each
input, as defined in api.h.

4.3 Suggested Deliverables
To simplify benchmarking, security analysis, and further optimizations of protected software
implementations of LWC algorithms, we have proposed a uniform way of publishing them
on the web and submitting them to the benchmarking and security evaluation labs.

All protected implementations of a given candidate developed by a particular group
should be stored in the same folder. The contents of this folder should follow the guidance of
the NIST LWC specification3 section 3.5.1 (AEAD) and 3.5.2 (Hash). Per this specification,
in addition to the protected implementation, submissions should include a reference
implementation (ref) and Known-answer-test file (KAT) to allow existing tools to verify
implementation correctness.

Source code for protected implementations should be provided as C99 standard C
suitable for compilation, linkage, and assembly using standard tooling (e.g., GCC) for the
target architecture(s). Architecture specific optimizations (e.g., assembly language) may
additionally be provided to demonstrate performance enhancement. If the use of assembly
language is intended to enhance resistance against side-channel attacks, then this should
be stated explicitly in the supporting documentation.

Submissions for side-channel evaluation should not depend on any external headers or
libraries, including cryptographic libraries (e.g., OpenSSL), outside of the C99 standard,
with the exception of the randombytes.h header from SUPERCOP, which may be used
for masking or sharing.

To ensure deterministic results, the implementation of the function randombytes()
should be provided by the test harness (not the submission) and initialized prior to
execution of the cryptographic algorithm. Implementations should use the call to this
function directly, rather than including a DRBG (based on AES, ChaCha, SHAKE, etc.)
within the implementation.

The structure of a compliant submission is shown in Fig. 4.
The <Candidate_and_Variant_Name> is a single name incorporating the name of the

candidate and its specific variant. Different variants correspond to

• different algorithms of the same family

• different parameter sets, such as sizes of keys, nonces, tags, etc.

The following optional metadata files may be included alongside source code within a
3rd-level folder:

1. goal_powersca_1st - When present, this file4 indicates the implementation has
been protected against 1st order Power Analysis Side-Channel attacks.

2. goal_powersca_2nd - When present, this file4 indicates the implementation has
been protected against 2nd order Power Analysis Side-Channel attacks.

3. goal_emsca - When present, this file4 indicates the implementation has been pro-
tected against Electromagentic Side-Channel attacks.

4. architectures - File with one target microcontroller/microprocessor architecture.
Contents described in the Architectures section below.

3https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/
final-lwc-submission-requirements-august2018.pdf

4This file may be empty, or contain human readable text briefly describing the mitigation

https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
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<Candidate_Name>_<Group_Name>

Documents

changelog.pdf # optional

coversheet.pdf

documentation.pdf

Implementations

crypto_aead

<Candidate_and_Variant_Name>

designers

LWC_AEAD_KAT_<CRYPTO_KEYBYTES*8>_<CRYPTO_NPUBBYTES*8>.txt

protected_<implementation_name>

api.h

aead.c

other.h

other.c

other.S # assembly is acceptable

goal_powersca_1st # 1st order protection against power analysis

goal_powersca_2nd # 2nd order protection against power analysis

goal_emsca # protection against electromagnetic analysis

architectures # one target arch per line

implementers # one implementer per line

... # additional implementations

ref

api.h

encrypt.c

other.c

implementers

Figure 4: Recommended format of deliverables for protected software implementation
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5. implementers - File with one name per line indicating the authors of the protected
implementation source code

For uniformity, a standard set of values for use within the architectures file are
defined in Table 4.

Table 4: A standard set of values used within the architectures file

Value ISA Example Targets Compiler
arm ARM STM32F arm-none-eabi-gcc

-mcpu=cortex-m4 -mthumb
avr AVR ATMega2560 avr-gcc
riscv32 RISC-V FE310 riscv64-unknown-elf-gcc

-march=rv32imac
msp430 MSP-430 MSP430FR5969 msp430-elf-gcc

Each submission should include a KAT produced by genkat_aead.c available from
NIST 5 in the second-level folder (common to all implementations of a particular algo-
rithm). Implementations which support hashing should also include a KAT produced by
genkat_hash.c

Our understanding is that there is only one reference software implementation per
candidate - the unprotected one, included in the given candidate’s submission package.

Even assuming identical randomness values ("consumed" by the protected implementa-
tion during its operation), each protected implementation can generate different values
of output shares for the ciphertext and tag during authenticated encryption. There is no
golden standard for how the protected implementation should work other than the XOR
of all ciphertext shares should give the ciphertext, and the XOR of all tag shares should
give the tag, as calculated by the unprotected reference implementation.

5 Matching implementations with the labs
Our team will be in constant communication with the evaluation labs and the implemen-
tation submitters aiming at the best match between both groups. The general idea of a
match will be based on the concept of bidding, combined with the detailed analysis of pros
and cons of each assignment.

The evaluations by the majority of labs are likely to start from leakage assessments. In
the case of selected labs, an attempt at various key recovery attacks is likely to be made
as well.

Independently, each lab may freely choose from all implementations placed in the public
domain. Additionally, protected implementations may be submitted to the labs directly
by their developers in a format consistent with the respective calls. Finally, labs may
also ask implementers for their deliverables. The developers may require a lab to keep
the distribution of the source code limited to the lab personnel but may not prevent the
publication of the obtained results.

Eventually, after all implementations are divided into classes with a comparable
security level, the GMU team will benchmark and rank these implementations in terms
of Throughput, Area/Memory Usage, Power, Energy per bit, Maximum amount of fresh
randomness per clock cycle, and the number of random bits per each byte of AD and
plaintext. Similar contributions by other benchmarking labs are very welcome.

5https://csrc.nist.gov/Projects/Lightweight-Cryptography
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Our team will publish the record of evaluations in progress and reports from the
completed evaluations on our website (subject to the explicit permissions by the respective
implementers and evaluators).

6 Status and Proposed Timeline
At the time of the paper submission, the authors were aware of the following submissions:

• protected software implementations submitted by two groups, covering Ascon, GIFT-
COFB, and Romulus (i.e., 3 out of 10 finalists)

• protected hardware implementations submitted by three groups, covering Ascon,
Elephant, GIFT-COFB, ISAP, TinyJAMBU, and Xoodyak (i.e., 6 out of 10 finalists).

Other protected implementations are still under development. All protected implemen-
tation submitted before the end of the evaluation period (tentatively scheduled for June 30,
2022) will be recommended for evaluation by the Side-Channel Security Evaluation Labs.

The preliminary timeline for the remaining steps of the evaluation process is as follows:

• 30 Apr 2022: Preliminary reports of the Side-Channel Security Evaluation Labs and
the Benchmarking Labs (covering only implementations submitted by April 15).

• Jun 30 2022: Final reports of the Side-Channel Security Evaluation Labs.

• Jul 31 2022: Final reports of the Benchmarking Labs with performance/cost rankings
applied only to implementations with a comparable side-channel resistance.

However, if the implementers or the evaluation labs will need more time, we are open
to possible extensions, subject to approval by NIST.
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