

Misuse-Free Key-Recovery and Distinguishing Attacks on 7-Round Ascon

NIST LWC 2022

Raghvendra Rohit, Kai Hu, Sumanta Sarkar & Siwei Sun

1. Ascon

- 2. Misuse-Free Attacks
- 3. Key-Recovery Attacks on 7-Round
- 4. New Distinguishers

Ascon

- Designed by Dobraunig, Eichlseder, Mendel, and Schläffer (2014)
- One of the winners of the CAESAR competition (the Competition for Authenticated Encryption: Security, Applicability, and Robustness) in lightweight applications category
- Finalist (out of 10) of the ongoing NIST lightweight cryptography standardization competition

- Designed by Dobraunig, Eichlseder, Mendel, and Schläffer (2014)
- One of the winners of the CAESAR competition (the Competition for Authenticated Encryption: Security, Applicability, and Robustness) in lightweight applications category
- Finalist (out of 10) of the ongoing NIST lightweight cryptography standardization competition

Ascon AEAD: Mode of operation

Table 1: Ascon variants and their recommended parameters

Name	State size	Rate r		Size of		Rou	nds
			Key	Nonce	Tag	p^a	p^b
Ascon-128 Ascon-128a	$320 \\ 320$	$\begin{array}{c} 64 \\ 128 \end{array}$	$\begin{array}{c} 128 \\ 128 \end{array}$	$\begin{array}{c} 128 \\ 128 \end{array}$	$\begin{array}{c} 128 \\ 128 \end{array}$	$\begin{array}{c} 12 \\ 12 \end{array}$	$\frac{6}{8}$

Ascon figures adapted from [DEMS14]; Sponge duplex [BDPA12]; Monkey duplex [Dae12]

Ascon: Round function (*p*)

• $p := p_L \circ p_S \circ p_C$

<u>Ascon:</u> Round function (p)

Sbox algebraic normal form

$$\begin{cases} y_0 = x_4x_1 + x_3 + x_2x_1 + x_2 + x_1x_0 + x_1 + x_0 \\ y_1 = x_4 + x_3x_2 + x_3x_1 + x_3 + x_2x_1 + x_2 + x_1 + x_0 \\ y_2 = x_4x_3 + x_4 + x_2 + x_1 + 1 \\ y_3 = x_4x_0 + x_4 + x_3x_0 + x_3 + x_2 + x_1 + x_0 \\ y_4 = x_4x_1 + x_4 + x_3 + x_1x_0 + x_1 \end{cases}$$

• Linear layer in equations

$$\begin{cases} X_0 \leftarrow \Sigma_0(Y_0) = Y_0 + (Y_0 \gg 19) + (Y_0 \gg 28) \\ X_1 \leftarrow \Sigma_1(Y_1) = Y_1 + (Y_1 \gg 61) + (Y_1 \gg 39) \\ X_2 \leftarrow \Sigma_2(Y_2) = Y_2 + (Y_2 \gg 1) + (Y_2 \gg 6) \\ X_3 \leftarrow \Sigma_3(Y_3) = Y_3 + (Y_3 \gg 10) + (Y_3 \gg 17) \\ X_4 \leftarrow \Sigma_4(Y_4) = Y_4 + (Y_4 \gg 7) + (Y_4 \gg 41) \end{cases}$$

Misuse-Free Attacks

For 128-bit security:

"The number of processed plaintext and associated data blocks protected by the encryption algorithm is limited to a total of 2^{64} blocks per key \cdots "

"In order to fulfill the security claims ..., implementations must ensure that the nonce (public message number) is never repeated for two encryptions under the same key \cdots "

- How many rounds a (out of 12) can be attacked in the nonce-respecting setting?
- Key recovery and/or distinguishing attacks?
- Data complexity $\leq 2^{64}$ (Misuse-Free) or $> 2^{64}$.

Existing Results and Our Contributions

Туре	#Rounds	Time	Method	Validity	Ref.
	4/12	2^{18}	Differential-linear	1	[DEMS15]
	5/12	2^{36}	Differential-linear	1	[DEMS15]
	5/12	2^{35}	Cube-like	1	[DEMS15]
	5/12	2^{24}	Conditional cube	1	[LDW17]
	6/12	2^{66}	Cube-like	1	[DEMS15]
Key recovery	6/12	2^{40}	Cube-like	1	[DEMS15]
	7/12	$2^{103.9}$	Conditional cube	×	[LDW17]
	7/12	2^{77}	Conditional cube [‡]	×	[LDW17]
	7/12	2^{97}	Cube-like	×	[LZWW17]
	7/12	2^{97}	Cube tester	×	[LZWW17]

Existing Results and Our Contributions

Туре	#Rounds	Time	Method	Validity	Ref.
	4/12	2^{18}	Differential-linear	1	[DEMS15]
	5/12	2^{36}	Differential-linear	1	[DEMS15]
	5/12	2^{35}	Cube-like	1	[DEMS15]
	5/12	2^{24}	Conditional cube	1	[LDW17]
	6/12	2^{66}	Cube-like	1	[DEMS15]
Key recovery	6/12	2^{40}	Cube-like	1	[DEMS15]
	7/12	$2^{103.9}$	Conditional cube	×	[LDW17]
	7/12	2^{77}	Conditional $cube^{\ddagger}$	×	[LDW17]
	7/12	2^{97}	Cube-like	×	[LZWW17]
	7/12	2^{97}	Cube tester	×	[LZWW17]
	7/12	2^{123}	Cube	1	Ours
	4/12	2^{9}	Degree	1	[DEMS15]
	5/12	2^{17}	Degree	1	[DEMS15]
	6/12	2^{33}	Degree	1	[DEMS15]

Distinguishers

 $\ddagger: \mathsf{Weak} \ \mathsf{key} \ \mathsf{setting}$

Existing Results and Our Contributions

Туре	#Rounds	Time	Method	Validity	Ref.
	4/12	2^{18}	Differential-linear	1	[DEMS15]
	5/12	2^{36}	Differential-linear	1	[DEMS15]
	5/12	2^{35}	Cube-like	1	[DEMS15]
	5/12	2^{24}	Conditional cube	1	[LDW17]
	6/12	2^{66}	Cube-like	1	[DEMS15]
Key recovery	6/12	2^{40}	Cube-like	1	[DEMS15]
	7/12	$2^{103.9}$	Conditional cube	×	[LDW17]
	7/12	2^{77}	Conditional cube [‡]	×	[LDW17]
	7/12	2^{97}	Cube-like	X	[LZWW17]
	7/12	2^{97}	Cube tester	×	[LZWW17]
	7/12	2^{123}	Cube	1	Ours
	4/12	2^{9}	Degree	1	[DEMS15]
	5/12	2^{17}	Degree	1	[DEMS15]
	6/12	2^{33}	Degree	1	[DEMS15]
Distinguishers	4/12	2^{5}	Division Property	1	Ours
	5/12	2^{16}	Division Property	1	Ours
	6/12	2^{31}	Division Property	1	Ours
	7/12	2^{60}	Division Property	1	Ours

‡ : Weak key setting

Key-Recovery Attacks on 7-Round

Cube attacks [Vie07, DS09]

• Consider a boolean function f in 6 variables

 $f(k_0, k_1, k_2, v_0, v_1, v_2) = v_0 k_1 + v_1 k_0 + v_0 v_1 (k_0 + k_2 + 1) + v_2$

where k_0, k_1, k_2 are secret variables and v_0, v_1, v_2 are public variables

 \blacktriangleright Taking 2-order derivative wrt to v_0 and v_1

$$f(k_0, k_1, k_1, 0, 0, v_2) + f(k_0, k_1, k_1, 0, 1, v_2) + f(k_0, k_1, k_1, 1, 0, v_2) + f(k_0, k_1, k_1, 1, 1, v_2)$$

= $k_0 + k_2 + 1$

Cube attacks [Vie07, DS09]

• Consider a boolean function f in 6 variables

 $f(k_0, k_1, k_2, v_0, v_1, v_2) = v_0 k_1 + v_1 k_0 + v_0 v_1 (k_0 + k_2 + 1) + v_2$

where k_0, k_1, k_2 are secret variables and v_0, v_1, v_2 are public variables

• Taking 2-order derivative wrt to v_0 and v_1

 $f(k_0, k_1, k_1, 0, 0, v_2) + f(k_0, k_1, k_1, 0, 1, v_2) + f(k_0, k_1, k_1, 1, 0, v_2) + f(k_0, k_1, k_1, 1, 1, v_2) = k_0 + k_2 + 1$

- v_0v_1 : 2-dimensional cube; v_2 : non-cube variable
- $k_0 + k_2 + 1$: superpoly of cube v_0v_1

• A superpoly can give partial information about key bits. Recovering the superpoly of a given cube is not easy.

Initial state configuration

	Initial	state	with	cube	variables	in	X_3^0)
--	---------	-------	------	------	-----------	----	---------	---

1	0	0	0	0	0	0	0	0	1	0	0	0	0	• • •	0	0	0	0	0	0	0	0	0	0	0	0	0	0	X_0^0
k_0	k_1	k_2	k_3	k_4	k_5	k_6	k_7	k_8	k_9	k_{10}	k_{11}	k_{12}	k_{13}		k_{50}	k_{51}	k_{52}	k_{53}	k_{54}	k_{55}	k_{56}	k_{57}	k_{58}	k_{59}	k_{60}	k_{61}	k_{62}	k_{63}	X_1^0
k_{64}	k_{65}	k_{66}	k_{67}	k_{68}	k_{69}	k_{70}	k_{71}	k_{72}	k_{73}	k_{74}	k_{75}	k_{76}	k_{77}		k_{114}	k_{115}	k_{116}	k_{117}	k_{118}	k_{119}	k_{120}	k_{121}	k_{122}	k_{123}	k_{124}	k_{125}	k_{126}	k_{127}	X_2^0
v_0	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8	v_9	v_{10}	v_{11}	v_{12}	v_{13}		v_{50}	v_{51}	v_{52}	v_{53}	v_{54}	v_{55}	v_{56}	v_{57}	v_{58}	v_{59}	v_{60}	v_{61}	v_{62}	v_{63}	X_3^0
0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	X_4^0

Initial state configuration

• Initial state with cube variables in X_3^0

1	0	0	0	0	0	0	0	0	1	0	0	0	0	 0	0	0	0	0	0	0	0	0	0	0	0	0	0	X_0^0
k_0	k_1	k_2	k_3	k_4	k_5	k_6	k_7	k_8	k_9	k_{10}	k_{11}	k_{12}	k_{13}	 k_{50}	k_{51}	k_{52}	k_{53}	k_{54}	k_{55}	k_{56}	k_{57}	k_{58}	k_{59}	k_{60}	k_{61}	k_{62}	k_{63}	X_1^0
k_{64}	k_{65}	k_{66}	k_{67}	k_{68}	k_{69}	k_{70}	k_{71}	k_{72}	k_{73}	k_{74}	k_{75}	k_{76}	k_{77}	 k_{114}	k_{115}	k_{116}	k_{117}	k_{118}	k_{119}	k_{120}	k_{121}	k_{122}	k ₁₂₃	k_{124}	k_{125}	k_{126}	k_{127}	X_2^0
v_0	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8	v_9	v_{10}	v_{11}	v_{12}	v_{13}	 v_{50}	v_{51}	v_{52}	v_{53}	v_{54}	v_{55}	v_{56}	v_{57}	v_{58}	v_{59}	v_{60}	v_{61}	v_{62}	v_{63}	X_3^0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	0	0	0	0	0	X_4^0

Observation

For $1 \leq r \leq 7$ and $I = \{i_0, i_1, \dots, i_{2^{r-1}-1}\} \subseteq \{0, 1, \dots, 63\}$, the coefficient of the monomial $\prod_{i \in I} v_i$ in $X_i^r[j]$ for any $i \in \{0, \dots, 4\}$ and $j \in \{0, \dots, 63\}$ can be fully determined by the 2^r equivalent key bits in $\{k_{i_0} + k_{i_0+64}, \dots, k_{i_{2^{r-1}-1}} + k_{i_{2^{r-1}-1}+64}\}$.

• The above observation was used in [DEMS15] to attack up to 6 rounds. Here, we use this observation with a different technique to attack 7 round.

How to recover the superpoly of the cube $v_0v_1\cdots v_{63}$ after 7-round for $X_0^7[j]$ for $0 \le j \le 63$ with time $< 2^{128}$ 7-round Ascon calls?

 \Downarrow

Enough to recover the superpoly of the cube $v_0v_1 \cdots v_{63}$ after the 6-round S-box layer, i.e., for $Y_0^6[j]$ for $0 \le j \le 63$ (invert the last linear layer)

How to recover the superpoly of the cube $v_0v_1\cdots v_{63}$ after 7-round for $X_0^7[j]$ for $0 \le j \le 63$ with time $< 2^{128}$ 7-round Ascon calls?

\Downarrow

Enough to recover the superpoly of the cube $v_0v_1 \cdots v_{63}$ after the 6-round S-box layer, i.e., for $Y_0^6[j]$ for $0 \le j \le 63$ (invert the last linear layer)

Our technique: Partial polynomial multiplication !!

Partial Polynomial Multiplication

Consider the ANF of first column after round 1

$X_{0}^{1}[0]$	$X_{1}^{1}[0]$	$X_{2}^{1}[0]$	$X_{3}^{1}[0]$	$X_{4}^{1}[0]$
1	1	k_{127}	1	v_{57}
v_{45}	$v_{25}(k_{25} + k_{89} + 1)$	k_{122}	v_{54}	v_{23}
v_{36}	$v_3(k_3 + k_{67} + 1)$	k_{64}	v_{47}	v_0
v_0	$v_0 \ (k_0 + k_{64} + 1)$	k_{63}	k_{118}	k_{57}
$k_{45}k_{109}$	$k_{25}k_{89}$	k_{58}	k_{111}	k_{23}
$k_{36}k_{100}$	$k_{3}k_{67}$	k_0	k_{64}	
$k_{0}k_{64}$	$k_0 k_{64}$		k_{54}	
k_{109}	k_{89}		k_{47}	
k_{100}	k_{67}		k_0	
k_{64}	k_{64}			
k_{45}	k_{25}			
k_{36}	k_3			
	k_0			

Partial Polynomial Multiplication

$X_{0}^{1}[0]$	$X_{1}^{1}[0]$	$X_{2}^{1}[0]$	$X_{3}^{1}[0]$	$X_{4}^{1}[0]$
v_{45}	$v_{25}(k_{25}+k_{89}+1)$		v_{54}	v_{57}
v_{36}	$v_3(k_3 + k_{67} + 1)$		v_{47}	v_{23}
v_0	$v_0 \ (k_0 + k_{64} + 1)$			v_0

- Multiplication by $X_2^1[0]$ will never contribute to a 2-dimensional cube
- Only product of specific partial polynomial will give 2-dimensional cubes. Example: v_0v_3 , v_0v_{25} , ...
- Apply to 7-round Ascon in two steps:
 - Enumerate all 32-dimensional cubes and their corresponding superpolies after 6 rounds
 - Multiply all partial polynomials to obtain the superpoly of 64-dimensional cube

- <u>Goal</u>: Recover the superpolies of cube $v_0v_1\cdots v_{63}$ for $Y_0^6[j]$ for $0 \le j \le 63$
- ${\ensuremath{\,{\rm \vee}}}$ We show the procedure for $Y_0^6[0]$ only

- <u>Goal</u>: Recover the superpolies of cube $v_0v_1\cdots v_{63}$ for $Y_0^6[j]$ for $0\leq j\leq 63$
- ${\ensuremath{\,{\rm \vee}}}$ We show the procedure for $Y_0^6[0]$ only

Only need to compute $X_1^6[0](X_4^6[0]+X_2^6[0]+X_0^6[0])$

• Example of a data structure

$X_{1}^{6}[0]$	$X_4^6[0] + X_2^6[0] + X_0^6[0]$
<code>0xfffffff00000000 [1, k_0, k_{64}, \cdots]</code>	<code>OxEFFFFFF10000000 [$k_1,k_{65},\cdot\cdot\cdot$]</code>
:	:
<code>OxAFFFFFF10000000 $[k_2,k_{66},\cdots]$</code>	0x0000000FFFFFFF [0]

• Memory: $\binom{64}{32}\times 2^{32}\times 320\approx 2^{101}$

Offline phase (2)

- Time (worst cases)
 - Step 1 : Finding cubes + superpolies of 6-round

- Step 2: Memory accesses for partial polynomial multiplication

> Step 2 can be computed in a parallel fashion

- Generating the comparison tables for key candidates
- Define a vectorial Boolean function $F : \mathbb{F}_2^{64} \to \mathbb{F}_2^{64}$ mapping $(\kappa_0, \kappa_1, \ldots, \kappa_{63})$ to $(\operatorname{Coe}_{Y_0^6[0]}(\prod_{i=0}^{63} v_i), \ldots, \operatorname{Coe}_{Y_0^6[63]}(\prod_{i=0}^{63} v_i))$ where $\kappa_j = k_j + k_{j+64}$
- Store each $(\kappa_0, \kappa_1, \ldots, \kappa_{63}) \in \mathbb{F}_2^{64}$ into a hash table \mathbb{H} at address $F(\kappa_0, \kappa_1, \ldots, \kappa_{63})$, which requires about $2^{64} \times 64 = 2^{70}$ bits of memory

- ▶ Denote the cube sum as (z₀, z₁,..., z₆₃). Then the equivalent key candidates are just obtained from ℍ[(z₀, z₁,..., z₆₃)]. On average, one key candidate is obtained.
- ▶ Perform an exhaustive search over the 64-bit key space $\{k_0, k_1, \ldots, k_{63}\}$. For each guess of $\{k_0, k_1, \ldots, k_{63}\}$, we first compute $k_{64+i} = k_i + \kappa_i$ for $i \in \{0, 1, \ldots, 63\}$ and then determine the right key by testing a plaintext and ciphertext pair.
- Time : 2^{64} 7-round Ascon

Overall Attack Complexities

- ▶ Data: 2⁶⁴
- Memory: $2^{101} + 2^{70}$ (discard 2^{101} memory after superpolies are recovered)
- Time: 2^{123} 7-round Ascon calls

- Offline phase done only once for all keys
- Other initial state configurations and some optimizations tricks to reduce the complexities given in our paper
- Worst case assumptions on:
 - number of 32-dimensional cubes
 - number of monomials in superpoly
 - number of partial polynomial multiplications

New Distinguishers

Basic idea of distinguishers [Lai94]

• Consider a boolean function f in 6 variables

 $f(k_0, k_1, k_2, v_0, v_1, v_2) = v_0 k_1 + v_1 k_0 + v_0 v_1 (k_0 + k_2 + 1) + v_2$

Algebraic degree of f in public variables (v_0, v_1, v_2) is 2, thus the third order derivative of f wrt (v_0, v_1, v_2) is zero

Basic idea of distinguishers [Lai94]

• Consider a boolean function f in 6 variables

 $f(k_0, k_1, k_2, v_0, v_1, v_2) = v_0 k_1 + v_1 k_0 + v_0 v_1 (k_0 + k_2 + 1) + v_2$

• Algebraic degree of f in public variables (v_0,v_1,v_2) is 2, thus the third order derivative of f wrt (v_0,v_1,v_2) is zero

Ascon-128 initial state

1	0	0	0	0	0	0	0	0	1	0	0	0	0	 0	0	0	0	0	0	0	0	0	0	0	0	0	0	X_0^0
k_0	k_1	k_2	k_3	k_4	k_5	k_6	k_7	k_8	k_9	k_{10}	k_{11}	k_{12}	k_{13}	 k_{50}	k_{51}	k_{52}	k_{53}	k_{54}	k_{55}	k_{56}	k_{57}	k_{58}	k_{59}	k_{60}	k_{61}	k_{62}	k_{63}	X_1^0
k_{64}	k_{65}	k_{66}	k_{67}	k_{68}	k_{69}	k_{70}	k_{71}	k_{72}	k_{73}	k_{74}	k_{75}	k_{76}	k_{77}	 k_{114}	k_{115}	k_{116}	k_{117}	k_{118}	k_{119}	k_{120}	k_{121}	k_{122}	k_{123}	k_{124}	k_{125}	k_{126}	k_{127}	X_2^0
v_0	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8	v_9	v_{10}	v_{11}	v_{12}	v_{13}	 v_{50}	v_{51}	v_{52}	v_{53}	v_{54}	v_{55}	v_{56}	v_{57}	v_{58}	v_{59}	v_{60}	v_{61}	v_{62}	v_{63}	X_3^0
v_{64}	v_{65}	v_{66}	v_{67}	v_{68}	v_{69}	v_{70}	v_{71}	v_{72}	v_{73}	v_{74}	v_{75}	v_{76}	v77	 v_{114}	v_{115}	v_{116}	v_{117}	v_{118}	v_{119}	v_{120}	v_{121}	v_{122}	v123	v_{124}	v_{125}	v_{126}	v_{127}	X_4^0

• Goal: Find conditions on v_i 's such that upper bound in the algebraic degree in terms of v_i 's is at most 63 after $r \ge 1$ rounds

Existing distinguishers [DEMS15]

 \blacktriangleright After 0.5 round, for $0 \leq j \leq 63,$ the ANF is given by

 $\begin{cases} Y_0[j] \leftarrow X_4[j]X_1[j] + X_3[j] + X_2[j]X_1[j] + X_2[j] + X_1[j]X_0[j] + X_1[j] + X_0[j] \\ Y_1[j] \leftarrow X_4[j] + X_3[j]X_2[j] + X_3[j]X_1[j] + X_3[j] + X_2[j]X_1[j] + X_2[j] + X_1[j] + X_0[j] \\ Y_2[j] \leftarrow X_4[j]X_3[j] + X_4[j] + X_2[j] + X_1[j] + 1 \\ Y_3[j] \leftarrow X_4[j]X_0[j] + X_4[j] + X_3[j]X_0[j] + X_3[j] + X_2[j] + X_1[j] + X_0[j] \\ Y_4[j] \leftarrow X_4[j]X_1[j] + X_4[j] + X_3[j] + X_1[j]X_0[j] + X_1[j] \end{cases}$

Existing distinguishers [DEMS15]

 \blacktriangleright After 0.5 round, for $0\leq j\leq 63,$ the ANF is given by

 $\begin{cases} Y_0[j] \leftarrow X_4[j]X_1[j] + X_3[j] + X_2[j]X_1[j] + X_2[j] + X_1[j]X_0[j] + X_1[j] + X_0[j] \\ Y_1[j] \leftarrow X_4[j] + X_3[j]X_2[j] + X_3[j]X_1[j] + X_3[j] + X_2[j]X_1[j] + X_2[j] + X_1[j] + X_0[j] \\ Y_2[j] \leftarrow X_4[j]X_3[j] + X_4[j] + X_2[j] + X_1[j] + 1 \\ Y_3[j] \leftarrow X_4[j]X_0[j] + X_4[j] + X_3[j]X_0[j] + X_3[j] + X_2[j] + X_1[j] + X_0[j] \\ Y_4[j] \leftarrow X_4[j]X_1[j] + X_4[j] + X_3[j] + X_1[j]X_0[j] + X_1[j] \end{cases}$

 \blacktriangleright Setting either of $X_3[j]$ or $X_4[j]$ as a fixed constant ensures that cube variables are linear after round 1

1	0	0	0	0	0	0	0	0	1	0	0	0	0	•••	0	0	0	0	0	0	0	0	0	0	0	0	0	0	X_0^0
k_0	k_1	k_2	k_3	k_4	k_5	k_6	k_7	k_8	k_9	k_{10}	k_{11}	k_{12}	k_{13}	•••	k_{50}	k_{51}	k_{52}	k_{53}	k_{54}	k_{55}	k_{56}	k_{57}	k_{58}	k_{59}	k_{60}	k_{61}	k_{62}	k_{63}	X_1^0
k_{64}	k_{65}	k_{66}	k_{67}	k_{68}	k_{69}	k_{70}	k_{71}	k_{72}	k_{73}	k_{74}	k_{75}	k_{76}	k_{77}		k_{114}	k_{115}	k_{116}	$_{5k_{117}}$	k_{118}	k_{119}	k_{120}	k_{121}	k_{122}	k_{123}	k_{124}	k_{125}	k_{126}	k_{127}	X_2^0
v_0	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8	v_9	v_{10}	v_{11}	v_{12}	v_{13}		v_{50}	v_{51}	v_{52}	v_{53}	v_{54}	v_{55}	v_{56}	v_{57}	v_{58}	v_{59}	v_{60}	v_{61}	v_{62}	v_{63}	X_3^0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	•••	0	0	0	0	0	0	0	0	0	0	0	0	0	0	X_4^0

Algebraic degree is at most 8, 16, 32 after 4, 5, and 6 rounds, respectively

Our observation

• For $0 \leq j \leq 63$, set $X_4[j] = X_3[j]$

 $\begin{cases} Y_0[j] \leftarrow X_3[j]X_1[j] + X_3[j] + X_2[j]X_1[j] + X_2[j] + X_1[j]X_0[j] + X_1[j] + X_0[j] \\ Y_1[j] \leftarrow X_3[j]X_2[j] + X_3[j]X_1[j] + X_2[j]X_1[j] + X_2[j] + X_1[j] + X_0[j] \\ Y_2[j] \leftarrow X_2[j] + X_1[j] + 1 \\ Y_3[j] \leftarrow X_2[j] + X_1[j] + X_0[j] \\ Y_4[j] \leftarrow X_3[j]X_1[j] + X_1[j]X_0[j] + X_1[j] \end{cases}$

Initial state

1	0	0	0	0	0	0	0	0	1	0	0	0	0	 0	0	0	0	0	0	0	0	0	0	0	0	0	0	X_0^0
k_0	k_1	k_2	k_3	k_4	k_5	k_6	k_7	k_8	k_9	k_{10}	k_{11}	k_{12}	k_{13}	 k_{50}	k_{51}	k_{52}	k_{53}	k_{54}	k_{55}	k_{56}	k_{57}	k_{58}	k_{59}	k_{60}	k_{61}	k_{62}	k_{63}	X_1^0
k_{64}	k_{65}	k_{66}	k_{67}	k_{68}	k_{69}	k_{70}	k_{71}	k_{72}	k_{73}	k_{74}	k_{75}	k_{76}	k_{77}	 k_{114}	k_{115}	k_{116}	k_{117}	k_{118}	k_{119}	k_{120}	k_{121}	k_{122}	k_{123}	k_{124}	k_{125}	k_{126}	k_{127}	X_2^0
v_0	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8	v_9	v_{10}	v_{11}	v_{12}	v_{13}	 v_{50}	v_{51}	v_{52}	v_{53}	v_{54}	v_{55}	v_{56}	v_{57}	v_{58}	v_{59}	v_{60}	v_{61}	v_{62}	v_{63}	X_3^0
v_0	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8	v_9	v_{10}	v_{11}	v_{12}	v_{13}	 v_{50}	v_{51}	v_{52}	v_{53}	v_{54}	v_{55}	v_{56}	v_{57}	v_{58}	v_{59}	v_{60}	v_{61}	v_{62}	v_{63}	X_4^0

Upper bounds of degree

• Upper bounds on the algebraic degree of Ascon in cube variables using 3 subset bit based division property [HLM+20]

Round r	Bits in word										
riound /	X_0^r	X_1^r	X_2^r	X_3^r	X_4^r						
2	2	1	1	2	2						
3	3	3	4	4	3						
4	7	8	7	7	6						
5	15	15	13	14	15						
6	30	29	29	30	30						
7	59	59	60	60	58						

• Cube variables $\{v_i, v_{i+8}, v_{i+16}, v_{i+17}, v_{i+34}, v_{i+63}\}$ do not multiply with each other after round 2. Choosing any 5 out of 6 gives a distinguisher with 32 nonces for 4 rounds.

- Key-recovery attacks on 7-round Ascon without violating the data limit of the design
- First 7-round distinguisher in AEAD setting, and improved distinguishers for 4, 5, and 6 rounds
- Lots of room for improvements as our attacks are based on worst case scenarios

Full paper available at https://tosc.iacr.org/index.php/ToSC/article/view/8835

