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Abstract. The higher-order differential-linear (HDL) attack was stud-
ied for the first time by Biham, Dunkelman and Keller at FSE 2005,
where a linear approximation is appended to a higher-order differential
(HD) transition. It is a natural generalization of the differential-linear
(DL) attack, but there are two main obstacles for its practical usage: (a)
there is no known method to trace probabilistic HD trails; (b) the bias of
a HDL approximation is estimated as 22

l−1pq2
l , where l, p are the order

and probability of the HD and q the bias of the appended linear approxi-
mation. Therefore, the bias can become exponentially small when |q| ̸= 1

2

and l ≫ 1. As a result, the HDL cryptanalysis has attracted much less
attention compared to its DL counterpart since its proposal. Inspired by
the algebraic perspective on DL attacks recently proposed at CRYPTO
2021, in this paper we show that the HDL attack can be made much
more practical with a similar algebraic treatment. The bias of an l-th
order HDL approximation is thus related to the bias of the superpoly of
a cube for a so-called l-th order differential supporting function (DSF).
In addition, although the cryptography community has known that HD,
integral and cube attacks have close relationships, there has been no
explicit formula to describe their exact transformation thus far. This
new algebraic perspective applied to the HD attack gives precisely such
a simple and direct formula.
Unsurprisingly, HD/HDL attacks have the potential to be more effective
than their simpler Differential/DL counterpart. We provide three new
methods to detect possible HD/HDL distinguishers, including: (a) an es-
timation of the algebraic degree of the DSF; (b) the so-called higher-order
algebraic transitional form (HATF); (c) experimental methods based on
cube testers. With these methods, we present HD distinguishers for 7
and 8 rounds of the Ascon permutation in the black-box model with
223 and 246 data/time complexity respectively, zero-sum distinguisher
for full 12-round Ascon permutation with 255 date/time complexity,
(almost) deterministic HDL approximations for 4 and 5 rounds of the
Ascon initialization, and new key-recovery attacks on 5 and 6 rounds of
the Ascon AEAD. All these results greatly improve over the best-known
attacks on reduced Ascon. Note these attacks in this paper are appli-
cable to both Ascon-128 and Ascon-128A. We also give a conditional
HD approximation for 130-round Grain v1 (5 more rounds than the
previous best conditional differential approximation) and new 4-round
deterministic HDL distinguishers for the permutation Xoodoo with only



4 chosen-plaintexts. Finally, we further applied our strategy to the ARX-
based cipher ChaCha, obtaining 3.5-, 4- and 4.5-round distinguishers and
again improving over the state-of-the-art.

Keywords: Higher-Order Differential, Higher-Order Differential-Linear,
Ascon, Xoodoo, Grain v1, ChaCha

1 Introduction

1.1 Differential and Linear Cryptanalysis

Differential cryptanalysis was proposed in [BS90] as an approach to analyze the
security of DES-like cryptosystems. In a differential attack, the attacker seeks a
fixed input difference ∆I that propagates through the target cipher to a fixed
output difference ∆O with a high probability. The so-called differential is denoted
by ∆I

p−→ ∆O, where p is the probability Pr[C ⊕ C ′ = ∆O|P ⊕ P ′ = ∆I ] and
C/C ′ being the ciphertexts corresponding to the plaintexts P/P ′ respectively.
If p is significantly larger than 2n−1, where n is the block size of the cipher, the
differential can be used for distinguishing it from a random permutation.

Linear cryptanalysis [Mat93] was also originally proposed to attack the DES
cipher. In a linear cryptanalysis, the attacker studies the bias of the approxima-
tion between the parity of some plaintext and ciphertext bits. The bias q with
the input and output masks (λI , λO) can be computed with Pr[P ·λI = C ·λO] =
1
2 +q, where a ·b =

⊕n−1
i=0 a[i]b[i] for a, b ∈ Fn

2 . Such a linear approximation is de-
noted by λI

q−→ λO. If |q| is significantly larger than 0, it is possible to distinguish
the cipher from a random permutation.

1.2 Differential-Linear Cryptanalysis

Differential or linear cryptanalysis have been the fundamental methods for eval-
uating the security of a cipher. Nowadays, all new schemes are requested to claim
resistance against these two attacks, e.g., [DR02,BJK+16]. However, resistance
against the plain differential and linear cryptanalysis does not necessarily lead
to a resistance against variants of these two attacks. For example, despite its
security proof against differential attacks, the cipher Coconut98 [Vau98] has
been shown to be vulnerable to boomerang and differential-linear DL cryptanal-
ysis [Wag99,BDK02] which are two variants of the differential and linear attacks,
leveraging a combined strategy.

Differential-Linear cryptanalysis was first proposed by Langford and Hellman
in 1994 [LH94] and it remains the best-known attack on many ciphers, e.g., AES
competition finalist Serpent [BAK98]. For a difference-mask pair (∆I , λO), the
bias q′ of a DL approximation can be derived from the following equation

Pr[λO · (C ⊕ C ′) = 0|P ⊕ P ′ = ∆I ] =
1

2
+ q′.

Similar to the case of linear cryptanalysis, if |q′| is significantly larger than 0, we
can distinguish the cipher from a random permutation.
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There are mainly two types of methods to estimate q′ in the literature. In
the classical DL cryptanalysis [LH94,BDK02], a cipher E is decomposed into two
sub-ciphers as E = E1 ◦E0, where there is a differential ∆I

p−→ ∆O for E0 and a
linear approximation λI

q−→ λO for E1. The DL bias q′ can be analyzed as follows.
Let (P, P ′) be the chosen plaintext pair with difference ∆I , (X,X ′) and (C,C ′)
be the corresponding intermediate state pair (between E0 and E1) and ciphertext
pair. The DL approximation for E then combines three approximations: the
values of λO ·C and λO ·C ′ are correlated to λI ·X and λI ·X ′, respectively, by
λI

q−→ λO for E1; the values λI · X and λI · X ′ are correlated, as consequences
of ∆I

p−→ ∆O for E0. Under two assumptions: (a) E0 and E1 are independent;
(b) When X ⊕ X ′ ̸= ∆O, λO · C and λO · C ′ are correlated to λI · X and
λI ·X ′ with probability 1

2 respectively, the overall bias q′ can be computed with
q′ = (−1)∆O·λI2pq2 with the well-known pilling-up lemma [Mat93].

As pointed in [BDK02], these two assumptions may fail sometimes, so ex-
periments are required to verify the estimated bias when possible. There are
two main refined methods to avoid the assumptions issue. One is from Blondeau
et al. [BLN17], where an accurate formula for q′ is given under only the first
assumption. The other, proposed by Bar-On et al. [BDKW19] at EUROCRYPT
2019, is called the differential-linear connectivity table (DLCT) technique which
overcomes the independence problem between E0 and E1. The drawback of the
first method is that it is computationally impossible to apply the formula for
practical use-cases, while the second method only works when a large-enough
DLCT can be built efficiently.

A new method to estimate q′ from an algebraic perspective has been proposed
by Liu et al. [LLL21] at CRYPTO 2021. If we define a Boolean function according
to λO as fλO

: Fn
2 → F2, f(u) = λO ·u and let f = fλO

◦E, the bias of λO ·(C⊕C ′)
is equivalent to the bias of the following Boolean function

D∆I
f(P ) = f(P )⊕ f(P ⊕∆I). (1)

Then, they introduced another function with an auxiliary variable x ∈ F2 as

f∆I
(P, x) = f(P ⊕ x∆I), (2)

where x∆I ∈ Fn
2 means that x is multiplied with each coordinate of ∆I , i.e.,

x∆I = (∆I [0]×x, . . . ,∆I [n−1]×x). Given a Boolean function g(a0, a1, . . . , an−1)
with n variables and for a certain variable ai, we can write g as g = g′′ai ⊕ g′

with g′ and g′′ being independent of ai, where the partial derivative of g with
respect to ai is the polynomial g′′, denoted by Dai

g. Liu et al. gave the following
intuitive observation linking Equation (1) and (2),

f ′′ = Dxf∆I
= D∆I

f. (3)

That is to say, considering Equations (1,2,3), in order to evaluate the bias of
λO · (C ⊕C ′), we only need to evaluate the bias of the Boolean function Dxf∆I

.
This estimation from the algebraic perspective does not require any assumption
in theory. However, it is extremely difficult to derive Dxf∆I

or evaluate its
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bias. To overcome this obstacle, Liu et al. introduced the so-called algebraic
transitional forms (ATF)1 technique to construct a transitional expression of
Dxf∆I

. Then, the bias is estimated from this transitional expression. We will
give a formal description of the ATF technique in Section 2.

1.3 Higher-Order Differential(-Linear) Cryptanalysis

Inspired by the boomerang and DL cryptanalysis, other combined attacks were
studied by Biham et al. [BDK05]. These combined attacks include the differential-
bilinear, higher-order differential-linear (HDL), boomerang-linear attack, etc.

The higher-order differential (HD) was for the first time introduced by Lai in
1994 [Lai94] and later studied by Knudsen [Knu94]. It is a natural generalization
of the differential attack that takes advantage of having access to more plaintexts.
Given an l-th order difference ∆I = (∆0,∆1, . . . , ∆l−1) where ∆0,∆1, . . . , ∆l−1

are linearly independent, the l-th order differential of a (partial) cipher E studies
the probability

p = Pr

 ⊕
x∈X⊕L(∆I)

E(x) = ∆O

 ,

where L(∆I) is the linear span of (∆0,∆1, . . . , ∆l−1), the affine space X⊕L(∆)
is called the input set with respect to ∆, and ∆O is called the output difference.
In [Tie17], Tiessen pointed that a HD is a cluster of so-called d-differences from
polytopic cryptanalysis [Tie16]. However, since the number of d-differences is
exponential and every single d-difference has an extremely low probability, it is
computationally impossible to calculate the probability of a HD or even some
useful lower bounds in a differential-like way. Therefore, in practice usually only
the deterministic property from the algebraic degree of a cipher [BCC11], or the
integral attack [KW02] are considered in previous HD cryptanalysis.

As the name higher-order differential-linear suggests, HDL cryptanalysis [BDK05]
studies the bias with respect to an l-th order input difference ∆I and an out-
put mask λO. The bias ε of a HDL approximation is derived from the following
formulation:

Pr

λO ·

 ⊕
x∈X⊕L(∆I)

E(x)

 = 0

 =
1

2
+ ε.

Akin to the first kind of method to evaluate the bias in DL cryptanalysis, Biham
et al. [BDK05] gave an analysis based on viewing E as two sub-ciphers E =
E1 ◦ E0. Suppose that we know an l-th order differential with probability p for
E0 and that E1 has a linear approximation with bias q, then the overall bias ε

is estimated as ε = 22
l−1pq2

l

. However, as we mentioned, there is no effective
method to trace the propagation of a HD or calculate its probability yet. Thus,
1 In [LLL21], there is another terminology DATF when ATF is used to construct

transitional expressions for f∆. In this paper, we directly use ATF for all kinds of
Boolean functions no matter whether we target f or f∆.
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Biham et al. had to restrain themselves to the integral property for E0, which
leads to p = 1. The integral property usually requires a large l in order to attack
an interesting number of rounds, but if |q| ̸= 1

2 , ε will become extremely close to
zero. As a result, we can only get an interesting HDL distinguisher when there
is a linear approximation with bias ± 1

2 for E1. In practice, some ciphers such as
IDEA [LM90] allow weak-key linear approximations with bias 1

2 , which makes
them vulnerable to HDL attacks [BDK05,BDK07].

Interestingly, the ideas of HDL have been already used in the context of
cryptanalysis of Salsa [Ber08b] and ChaCha [Ber08a] although no one explic-
itly called it HDL cryptanalysis. In [SZFW12], Shi et al. provided several 2nd
order differentials with one active output bit for 4-round Salsa and 3-round
ChaCha based on experiments. As pointed in [BLN17,LLL21], differentials with
one active output bit are actually DL distinguishers with unit output masks, the
observation works for the HD as well. Thus, Shi et al.’s distinguishers are also
HDL distinguishers. In [CM16], Choudhuri and Maitra extended Shi et al.’s HD
by appending a linear approximation, which is the typical case of HDL (note
that they did not call it HDL nor gave much discussions on this topic).

We remind the readers that in this paper generally we do not strictly dis-
tinguish between HD and HDL cryptanalysis. From an algebraic perspective we
are always applying HD cryptanalysis to one or more Boolean functions, i.e.,
both cryptanalysis share the same underlying principle, which will be clearer in
Section 3.

1.4 Motivation and Contributions

Considering that DL attacks are efficient for many important primitives, such as
Ascon [DEMS21] and Salsa/ChaCha [Ber08b,Ber08a], we are naturally inter-
ested in whether the HDL attack could achieve an even better performance. It is
fair to remark that since its proposal HDL cryptanalysis has attracted much less
attention compared to DL cryptanalysis. One of the main reasons is likely that
there are not enough tools to study the probabilistic HD transitions. Simultane-
ously, the integral and cube attacks, which are very close to HD cryptanalysis,
have been studied extensively. Many powerful tools such as the division prop-
erty [Tod15,TM16] are available. One can naturally wonder what is the exact
relationship between the HD, integral and cube attacks. Are those methods de-
signed for cube and integral attacks also applicable to HD attacks? Recently,
the algebraic perspective on DL attacks [LLL21] opened up a new road to study
the DL-like attack and achieved better precision for some important instances
such as Ascon [DEMS21]. We naturally would like to know if such an algebraic
treatment also works for the HDL attack. In this paper, we give positive answers
to these questions.
Our contributions. Our results range from theory to applications, so our con-
tributions are generally two-fold. In the theoretical part, we revisit HD cryptanal-
ysis of a Boolean function from an algebraic perspective and show it is equivalent
to an integral or cube cryptanalysis of a closely related Boolean function called
its differential supporting functionn (DSF). On the applications side, we give
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three methods for HD/HDL cryptanalysis based on the study of the DSF. We
obtain improvements over the state-of-the-art for several primitives.
1. We start by giving a rigorous proof for Liu et al.’s algebraic perspective on

the differential attack since they only proposed it based on an intuitive ob-
servation. From this proof, the underlying rational behind Equation (3) and
the reason for introducing the auxiliary variable x in Equation (2) become
clearer. More importantly, we can naturally extend the algebraic perspec-
tive on differential attacks to the higher-order case. We explicitly show that
any HD attack for a Boolean function is equivalent to the cube or integral
attack on this Boolean function’s DSF (which is a related Boolean function)
with the input set being a linear space Fl

2, where l is the order of the HD.
Therefore, all tools available for integral and cube cryptanalysis can now be
applied to HD attacks as well. This greatly deepens our general understand-
ing of the relationship between these three techniques.

2. We provide three methods to mount HD attacks on a Boolean function f by
analyzing its DSF (which can be used to mount HDL attacks on concrete in-
stances as well). All HDL approximations for various primitives we obtained
in this paper (as well as their previous DL approximations) are summarized
in Table 1.
(a) Instead of using the degree evaluation on f so as to derive HD distin-

guishers, we can evaluate the algebraic degree or find integral distin-
guishers for its DSF. As we will see, the DSF is a related Boolean func-
tion parameterized by the input value and the (higher-order) difference.
Thus, a proper choice of the parameters could significantly simplify the
DSF such as reducing its algebraic degree. Therefore, we have a greater
chance of detecting an integral distinguisher for the DSF. After that, we
conveniently transform it into a HD distinguisher for f . With this tech-
nique, we significantly improve the best-known distinguishing attacks on
round-reduced Ascon permutation [DEMS21]. A 46th order differential
will lead to a zero output difference (in 64 bits) for 8 rounds, i.e., 246
plaintexts are enough to distinguish 8-round Ascon permutation from a
random permutation (the previous best distinguisher requires 2130 com-
putations [Tod15]). This is the first distinguisher with complexity being
lower than 264 for 8-round Ascon permutation. With a similar method
applied on the inverse Ascon permutation, we constructed a zero-sum
distinguisher for full 12-round Ascon permutation requiring only 255

calls while the previous best zero-sum distinguisher costs 2130 calls. We
also give a 2nd order HDL distinguisher for 4 rounds of the Ascon
initialization with bias 1

2 . This is the first deterministic DL-like distin-
guisher for 4 rounds of Ascon AEAD. Interestingly, we also found one
deterministic 2nd order HDL approximation for the encryption phase
of Ascon. In other word, with only 4 repeated nonces, we can use 4
messages to distinguish the 4-round reduced Ascon encryption. These
distinguishers are demonstrated in the distinguisher part of Table 2.

(b) We propose the higher-order algebraic transitional form (HATF) to es-
timate the bias of a HDL approximation. With HATF, we can construct
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efficiently an transitional expression of the DSF and then evaluate its
bias. We detected a conditional HDL approximation with bias only 2−2

for 5-round initialization of Ascon AEAD. By analyzing the conditions
in this distinguisher, we could obtain the best key-recovery attack on
5-round Ascon with time/data complexity 223, which is 8 times faster
than its DL counterpart. We also found a HDL approximation with 2−30

bias for 6-round Ascon initialization that is outside the scope of DL
cryptanalysis. With some reasonable assumptions, we could mount a
key-recovery attack on 6-round Ascon initialization. This is the second
type of attack that works for more than 5 rounds besides the cube-
like attacks [LDW17,RHSS21]. A summary of the key-recovery attacks
on Ascon AEAD is given in the key-recovery part of Table 2. Note
these attacks are applicable to both Ascon-128 and Ascon-128A. To
further illustrate the powerfulness of the HATF, we applied it to Grain
v1 [HJM07] to get a conditional HD approximation for 130 rounds, which
is 5 rounds longer than the previous best conditional DL approxima-
tion [LLL21].

(c) Finally, we applied the cube tester to the DSF. This is actually an ex-
perimental method that was used in the scope of DL cryptanalysis in
many previous works. This method works for all kinds of primitives.
We first applied cube testers to the initialization of the Ascon AEAD,
and found more highly-biased HDL approximations. For example, we
detected an 8th order HDL with bias only 2−2.46 for 5 rounds and thus
we can use about 213 data/time complexity to distinguish 5 rounds of
the Ascon initialization (the previous best one requires 216 [RHSS21]).
If we impose 16 conditions on the key, the bias can even improve to 1

2 ,
i.e., for 2112 keys, 5-round Ascon initialization could be distinguished
with 28 data/time complexities. By analyzing the nonlinear operations
of Xoodoo [DHAK18], we choose some specific forms of the input val-
ues and differences. An exhaustive search within a small space returned
a deterministic HDL distinguisher for 4-round Xoodoo (the bias is 1

2 ).
For ChaCha [Ber08a], we first searched for some efficient HDL distin-
guishers for 2-, 2.5 and 3-round ChaCha permutation, then appended a
1.5-round linear approximation with bias 1

2 to extend the distinguishers
to 3.5, 4 and 4.5 rounds. The biases of these three HDL approximations
are significantly higher than DL approximations. A summary of these
results are provided in Table 1.

The source codes of this work are provided in the anonymous git repository
https://anonymous.4open.science/r/HDL-CC85. This can be seen as an extra
practical contribution, as the team of [LLL21] did not make their code public.
Outline. In Section 2, we briefly recall the main concepts of the HD and the
algebraic perspective on the differential attack. We also give a description of the
ATF technique. In Section 3, a formal proof for the algebraic perspective on dif-
ferential cryptanalysis is provided. Based on the idea of the proof, we generalize
it to the higher-order case and give a simple and direct formula for the trans-
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Table 1: Approximation Biases of the differential, DL and HDL for ciphers con-
sidered in this paper. Cond. is short for Conditional and means that we impose
some conditions on the key bits.

Primitive Round Bias (− log) Type Reference

Ascon Init.

4 2 DL [DEMS15]
1 2nd order HDL Section 4.4

5

9 DL [DEMS15]
4.54 Con. DL [LLL21]
2.46 8th order HDL Section 6.1

2 Con. 2nd order HDL Section 5.2
1.04 11th order HDL Section 6.1

1 Con. 8th order HDL Section 6.1
6 30 Con. 2nd order HDL Sup.Mat. C

Grain v1
120 12.8 Cond. diff. [LG19]
125 17.4 Cond. diff. [LLL21]
130 30.18 Cond. 2nd order diff. Sup.Mat. D

Xoodoo 4 1 Rotational DL [LSL21]
1 2nd order HDL Sup.Mat. E.1

ChaCha

3.5 1.00 2nd order HDL Sup.Mat. E.2

4
3.33 DL [CM16]
2.21 2nd order HDL [CM16]
1.19 2nd order HDL Sup.Mat. E.2

4.5 6.14 DL [CM16]
4.81 2nd order HDL Sup.Mat. E.2

formation between HD/HDL and cube/integral cryptanalysis. The definition of
the DSF is also introduced in this section. In the following Sections 4, 5 and 6,
three novel techniques are provided to detect possible HD/HDL distinguishers
based on analyzing the DSF. In Section 7, we do some discussions and conclude
this paper.

2 Preliminaries
2.1 Notations
We use italic lower-case letters (sometimes with subscripts) such as x/xi to
represent elements in Fn

2 . The i-th bit of x is denoted by x[i], 0 ≤ i < n where
x[0] is the most significant (the leftmost) bit. The vectors of m elements in Fn

2

are denoted by x = (x0, x1, . . . , xm−1) ∈ (Fn
2 )

m, thus the i-th element of x
is xi. A special case is when x ∈ (F2)

m which is sometimes interchangeably
used with x ∈ Fm

2 . In formulas such as
⊕

x∈Fm
2
f(x), we will use x ∈ Fm

2 , in
other cases, we use x = (x0, . . . , xm−1) ∈ (F2)

m to stress that elements in
x = (x0, . . . , xn−1) are treated as symbolic variables. Given x ∈ F2 and ∆ ∈
Fn
2 , x∆ = (∆[0]x,∆[1]x, . . . ,∆[n − 1]x). For a, b ∈ Fn

2 , a||b ∈ F2n
2 represents

the concatenation of a and b, a · b stands for the inner production as a · b =⊕
0≤i<n a[i]b[i].

2.2 Boolean Function
An n-variable Boolean function is a mapping from Fn

2 to F2, which can be
uniquely written as its algebraic normal form (ANF) as a multivariate poly-
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Table 2: Summary of results on the permutation (black-box mode) (labelled by
), permutation (non-black-box mode) (labelled by ), initialization (labelled

by ) and encryption (labelled by ) of reduced-round Ascon. Time complex-
ities are expressed in number of primitive calls while the data complexities are
measured by the nonces, i.e., 128-bit blocks. Our distinguishers up to 7 rounds
have been verified experimentally.

Type Round Data (log) Time (log) Method Reference

Distinguisher

4

108 108 Differential [DEMS21]
101 101 Linear [DEMS21]
16 16 Rectangle [GPT21]
8 8 Limited-birthday [GPT21]
5 5 Integral [RHSS21]
5 5 DL [DEMS15]
3 3 HD Section 4.2
2 2 HDL Section 4.4

5

108 108 Truncated Diff. [Tez16]
191 191 Differential [DEMS21]
189 189 Linear [DEMS21]
80 80 Rectangle [GPT21]
65 65 Limited-birthday [GPT21]
18 18 Integral [Tod15]
18 18 DL [DEMS15]
16 16 Integral [RHSS21]
13 13 HDL Section 6.1
6 6 HD Section 4.2

6
35 35 Integral [Tod15]
31 31 Integral [RHSS21]
12 12 HD Section 4.2

7
65 65 Integral [Tod15]
60 60 Integral [RHSS21]
23 23 HD Section 4.2

8 130 130 Integral [Tod15]
46 46 HD Section 4.2

12 130 130 Zero-Sum [DEMS15]
55 55 Zero-Sum Section 4.3

Key-Recovery

5

36 36 DL [DEMS15]
26 26 Cond. DL [LLL21]
24 24 Cond. Cube [LDW17]
23 23 Cond. HDL Section 5.2

6 40 40 Conditional Cube [LDW17]
74 74 Cond. HDL Section 5.2

7 77 103 Cond. Cube [LDW17]
64 123 Cube [RHSS21]

nomial over F2 as

f(x) = f(x0, x1, . . . , xn−1) =
⊕
u∈Fn

2

auπu(x) =
⊕
u∈Fn

2

au

n−1∏
i=0

x
u[i]
i , au ∈ F2
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The algebraic degree of f , denoted by deg(f) is defined as maxau ̸=0{wt(u)}
for all u ∈ Fn

2 in the above formula. The monomial x0x1 · · ·xn−1 is called the
maxterm of f , denoted by π(x). The coefficient of a monomial πu(x) of f is
denoted by Coe (f, πu(x)). Each output bit of a cryptographic primitive can be
written as a Boolean function of its public variables (such as plaintexts, initial
values (IV) or nonces) and secret variables such as the key bits. Therefore, in
this paper we usually explain our theories with Boolean functions rather than
concrete primitive instances.

The bias and correlation are two ways measuring the non-randomness of an
n-variable Boolean function f . The bias ε is defined as ε = 1

2n |{f(x) = 0}|− 1
2 =

Pr[f = 0] − 1
2 while the correlation c = 1

2n

∑
x∈Fn

2
(−1)f(x). Actually, c = 2ε.

In some papers such as [LLL21], the bias is taken while in other papers such
as [AFK+08] the correlation is used. In this paper, we will only use the bias ε
to measure the non-randomness.

2.3 Higher-Order Differential, Integral and Cube Attack

HD cryptanalysis was proposed in 1994 by Lai [Lai94] as a generalization of the
differential attack. l linearly independent values ∆0,∆1, . . . , ∆i−1 are denoted
by a vector ∆I = (∆0, . . . , ∆l−1). Let L(∆I) be the linear span of ∆I , i.e., a
set containing all 2l linear combinations of ∆0, . . . , ∆l−1. Then, the l-th order
differential of a Boolean function f at X is

D∆I
f(X) =

⊕
x∈L(∆I)

f(X ⊕ x) = ∆O.

If deg(f) < l, any ∆I with l or larger dimension will lead to ∆O = 0. Therefore,
the common method of using HD in cryptanalysis is to evaluate the upper bound
on deg(f) then use a (deg(f) + 1)-st order difference ∆I to ensure ∆O = 0 (see
[BCC11]).

Integral cryptanalysis [KW02] originated from an analysis on the cipher
Square, so the attack was also called square attack [DKR97]. It studies several
specific properties of multisets as well as their transitions. Nowadays, division
properties [Tod15,TM16] proposed by Todo have been the dominant methods to
study the integral property. According to the state-of-the-art of division prop-
erties [HLLT20], for I ⊆ {0, 1, . . . , n − 1}, if the coefficient of

∏
i∈I xi in an

n-variable Boolean function f , denoted by Coe
(
f,
∏

i∈I xi

)
, is zero, we obtain

a balanced property such that
⊕

x∈CI
f = 0, where CI is a set with xi, i ∈ I

taking all possible values.
The cube attack was invented by Dinur and Shamir to analyze stream ci-

phers [DS09]. The idea is that an n-variable Boolean function f can be written
as f = p ×

∏
i∈I xi ⊕ q with I ⊆ {0, 1, . . . , n − 1} where at least one xi, i ∈ I

doesn’t appear in q. We have p =
⊕

x∈CI
f , where p is called the superpoly of

the cube CI (CI is defined as in the integral cryptanalysis). It is clear that the
integral cryptanalysis is a special case of the cube attack with the superpoly
being zero.

10



The cryptography community has known that the three attacks have close
relationships. However, to the best of our knowledge, there has been no explicit
formula describing the exact transformation from the HD to the integral or cube
attack, nor vice-versa.

2.4 An Algebraic Perspective on DL and the ATF Technique

In this subsection, we briefly recall the idea of the algebraic perspective on the
differential attack presented by Liu et al. in [LLL21].

Recall Equation (1), the bias of a DL approximation is related to the differ-
ential bias of the Boolean function f = fλO

◦ E. Thus to study the DL attack,
it is enough to focus on the differential property of a sole Boolean function. As
explained in Section 1, Liu et al. proposed Equation (3) based on some intuitive
observations, but no proof nor motivation was given in their article.
Basic idea of algebraic transitional forms. Equation (3) tells us that if we
can (a) calculate out the ANF of Dxf∆, (b) evaluate the bias of Dxf∆, then we
can directly know the bias of the output difference. Unfortunately, both tasks
are computationally infeasible for modern cryptographic primitives. To overcome
these two obstacles, Liu et al. introduced the algebraic transitional forms (ATF)
as an transitional expression of the exact ANF of f∆, which is friendly to compute
the bias. The ATF of a Boolean function f is denoted by A(f). From A(f∆), we
hope to obtain a simple transitional expression of Dxf∆, say DxA(f∆). Finally,
the bias of DxA(f∆) will be regarded as an estimation of the real bias.
Construction of algebraic transitional forms. The core of the ATF tech-
nique is to substitute some parts of a Boolean function with new variables to
simplify its form. Since almost all symmetric-key primitives are iterated designs,
each of their output bits can be represented as a composite Boolean function
such as

f = fr−1 ◦ fr−2 ◦ · · · ◦ f0,

where f i : Fn
2 → Fn

2 for 0 ≤ i < r − 1 and fr−1 : Fn
2 → F2. Since we want to

construct a transitional expression for Dxf∆, we need to be careful not to bury
the variable x during the substitution operations. Therefore, we only substitute
the expressions in f which are independent of x. Following this principle, we
introduce the transitional variables αi, βi ∈ Fn

2 for F i = f i ◦ · · · ◦ f0(X ⊕ x∆)
for 0 ≤ i < r. For the j-th bit of the output of F i, which can be written as
F i[j] = (F i[j])′′x+ (F i[j])′, we let{

αi[j]
s
=Q (F i[j])′′

βi[j]
s
=Q (F i[j])′

, 0 ≤ j < n

where “ s
=Q” means that we substitute (F i[j])′′ and (F i[j])′ with new variables

αi[j] and βi[j], respectively, and store the key-value pairs {αi[j] : (F i[j])′′} and
{βi[j] : (F i[j])′} into a substitution dictionary Q, for all j. Since the goal of
the substitution is to simplify the ANF of f , we apply it only when (F i[j])′′ or
(F i[j])′ contains at least two different variables (no need to enforce substitutions
if the expressions are simple enough).

11



After the substitution, the ANF of each coordinate of F i is simplified to
F i[j] = αi[j]x ⊕ βi[j]. For readability, we ignore their indexes and write them
as F i = αix⊕βi, for all 0 ≤ j < n, and this is called the ATF of F i, denoted by
A(F i). From A(F i), we calculate A(F i+1) similarly. Finally, A(f) can be com-
puted from A(F r−2) as f = fr−1(αr−2x⊕βr−2). The algorithm for constructing
A(f∆) is given in [LLL21, Algorithm 1].
Evaluating the bias of A(f∆). The expression of A(f∆) is a transitional
expression of f∆ where some part of f∆ is substituted by transitional variables,
thus the transitional expression of Dxf∆ is DxA(f∆) (since we do substitutions
for expressions independent of x). The bias of Dxf∆ is estimated from DxA(f∆).
Suppose DxA(f∆) = pn⊕ pl where pl is the XOR of linearly isolated monomials
and pn is the remaining part. The bias of pn, denoted by Bias(pn), is calculated
directly from the definition of the bias by counting the number of inputs leading
to a zero output although there may be transitional variables in pn. If pl contains
any transitional variables, we expand it with the corresponding expressions in Q.
We repeat the estimation for this new expression until there are no transitional
variables in the linearly isolated part. The biases obtained along the way are
used with the pilling-up lemma to calculate the bias of DxA(f∆). The algorithm
for computing this bias is given in [LLL21, Algorithm 2]. Since part of our work
directly utilizes this method to estimate the bias of the HDL approximation,
to make this paper self-contained we borrow this algorithm and present it in
Algorithm 4 in Section A of Supplementary Material.

There is an improved version of the estimation where the distributions of
transitional variables are calculated and the final bias of DxA(f∆) also considers
these distributions. The improved version is illustrated in [LLL21, Algorithm 3].
This method is more accurate but also more time-consuming. We only consider
the primary Algorithm 4 in this work.

3 HD/HDL Cryptanalysis from an Algebraic Perspective
In this section, we first give a formal proof for Equation (3). Our proof clearly
states the underlying rationale of Equation (3) including the reason for intro-
ducing the auxiliary variable x. Based on this proof, we show that it is natural
to generalize this algebraic perspective to HD and HDL cryptanalysis.

3.1 Proof of Equation (3)

When calculating the output difference of a Boolean function f with respect
to the input difference ∆, we compute D∆f(X) = f(X) ⊕ f(X ⊕ ∆). Note
that here we are operating on a one-dimensional affine space A = {X,X ⊕∆}.
Considering any other one-dimensional affine space A′ = {Y, Y ′}, we can always
find a corresponding bijective mapping M that sends A′ to A, i.e., X =M(Y )
and X ⊕∆ =M(Y ′). Therefore,⊕

a∈A

f(a) =
⊕
a′∈A′

f(M(a′)) =
⊕
a′∈A′

f ◦M(a′).

12



That is to say, the output difference of f with respect to the input pair {X,X ⊕
∆} is equivalent to the output difference of another Boolean function f ◦ M
with input pair A′ = {M−1(X),M−1(X ⊕ ∆)}. It is possible to choose some
specificM or {M−1(X),M−1(X⊕∆)} to simplify the evaluation of the output
difference of f (we can’t choose both, as choosing one will fix the other).

A natural idea is to choose A′ = {0, 1} = F2, as F2 is intuitively the simplest
one-dimensional affine space. Then, M should be a bijective mapping between
F2 and A = {X,X ⊕∆}. Note thatM is an affine mapping because it does not
change the dimension of F2 and A, so by a method of undermined coefficients,
the following M is one choice satisfying our requirements:

M : F2 → A = {X,X ⊕∆}
x 7→ X ⊕ x∆

. (4)

Now, we are ready to rigorously prove Equation (3).

Proposition 1 ([LLL21]). Given f and an input difference ∆, D∆f = Dxf∆.

Proof. With M as given in Equation (4), for any X we have

D∆f(X) =
⊕

a∈{X,X⊕∆}

f(a) =
⊕
x∈F2

f(M(x)) =
⊕
x∈F2

f(X ⊕ x∆).

From the perspective of cube attacks,
⊕

x∈F2
f(X ⊕ x∆) is just the coefficient

of x in f(X ⊕ x∆), i.e., Dxf∆. ⊓⊔

3.2 HD/HDL Cryptanalysis from an Algebraic Perspective

From the proof of Proposition 1, it is natural to generalize the algebraic per-
spective to HD/HDL cryptanalysis. Given a Boolean function f and an input
l-th order difference ∆ = (∆0,∆1, . . . , ∆l−1), the input set is X ⊕ L(∆). The
l-th order differential of f is calculated as

D∆f(X) =
⊕

a∈X⊕L(∆)

f(a).

Similarly, we are operating an l-dimensional affine space Al = X ⊕ L(∆) and
we can also link Al to another l-dimensional affine space (Al)′ by a bijective
mapping Ml that sends (Al)′ to Al. Again, we tend to choose the simplest l-
dimensional affine space, i.e., Fl

2. With a method of undetermined coefficients,
one choice of Ml can be

Ml : Fl
2 → Al

(x0, x1, . . . , xl−1) 7→ X ⊕ x0∆0 ⊕ x1∆1 ⊕ · · · ⊕ xn−1∆l−1 = X ⊕ x∆T
(5)

Let Dxf∆ represent the coefficient of the maxterm in f∆, i.e., Coe
(
f(X ⊕ x∆T ), π(x)

)
.

We have the following proposition as the generalization of Proposition 1.
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Proposition 2 (Algebraic-Perspective on HD/HDL). Given f and an l-th
order difference ∆, D∆f = Dxf∆.

Proof. With Ml as given in Equation (5), for any X we have

D∆f(X) =
⊕

a∈X⊕L(∆)

f(a) =
⊕
x∈Fl

2

f(M(x)) =
⊕
x∈Fl

2

f(X ⊕ x∆T ).

From the perspective of cube attacks,⊕
x∈Fl

2

f(X ⊕ x∆T ) = Coe
(
f(X ⊕ x∆T ), π(x)

)
= Dxf∆.

⊓⊔

Proposition 1 is a special case of Proposition 2 when l = 1. Therefore, in
the remaining part of this paper, we will useM to represent both the mappings
defined in Equations (4) and (5). With the two propositions, we know that the
l-th order differential of f is equivalent to the coefficient of the maxterm of
f ◦M. Obviously, f ◦M plays an important role in (higher-order) differential
cryptanalysis, thus we give it a formal definition:

Definition 1 (Differential Supporting Function). Given a Boolean func-
tion f and an l-th order difference ∆ = (∆0,∆1, . . . , ∆l−1), the composite
Boolean function

DSFl
f,X,∆(x) = f ◦M(x) = f(X ⊕ x∆T ),x = (x0, x1, . . . , xl−1)

is called the l-th order differential supporting function (DSF) of f with respect
to (X,∆). When the order l is clear in context, we will ignore it in the notation,
i.e., DSFf,X,∆(x).

We provide an example to illusrate the usage of the DSF in differential crypt-
analysis.

Example 1. Let f : F3
2 → F2 be f(a0, a1, a2) = a0a1a2 ⊕ a0a1 ⊕ a0a2 ⊕ a1a2,

∆ = (∆0,∆1) where ∆0 = (1, 0, 1) and ∆1 = (1, 1, 1), we consider the 2nd order
differential of f at a point X = (X0, X1, X2) ∈ (F2)

3. According to Equation (5),
M(x0, x1) = X ⊕ x0∆0 ⊕ x1∆1 = (X0 ⊕ x0 ⊕ x1, X1 ⊕ x1, X2 ⊕ x0 ⊕ x1). The
composite of f and M is then

DSFf,X,∆(x0, x1) = f ◦M(x0, x1) = f(X0 ⊕ x0 ⊕ x1, X1 ⊕ x1, X2 ⊕ x0 ⊕ x1)

= x0x1(X0 ⊕X2 ⊕ 1)⊕ x0X0X1 ⊕ x0X0 ⊕ x0X1X2 ⊕ x0X1

⊕ x0X2 ⊕ x0 ⊕ x1X0X1 ⊕ x1X0X2 ⊕ x1X0 ⊕ x1X1X2

⊕ x1X1 ⊕ x1X2 ⊕X0X1X2 ⊕X0X1 ⊕X0X2 ⊕X1X2

We can see that D∆f(X) = Coe (DSFf,X,∆, x0x1) = X0⊕X2⊕ 1. If we view X
as parameters, then note that when X0 = X2 ⊕ 1, the 2nd order differential of
f at X would be 0 with probability 1.
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The terminology of HD and HDL cryptanalysis in this paper. Assume
a cryptographic primitive E with n output bits (n > 1), which can be seen as a
set of n Boolean functions (f0, f1, . . . , fn−1). In this paper, HDL cryptanalysis
will refer to the HD properties of only one fi or the sum of several fi, while
HD cryptanalysis will refer to at least two different fi simultaneously. Typically,
HDL will consider the bias of a single Boolean expression equal to one fi or to
the sum of several fi, while HD will consider the probability that a certain set
of fi will each be equal to a certain Boolean value.

4 HD/HDL Cryptanalysis Based on Degree Estimation
of the DSF

In this section, we show how to obtain HD distinguishers for a Boolean function
by analyzing the algebraic degree of its DSF. Our first application is the crypt-
analysis of the NIST LWC2 finalist Ascon [DEMS21]. A brief description of the
Ascon AEAD and its permutation is provided in Section B of Supplementary
Material.

We first introduce some notations used for describing the state of Ascon.
For the Ascon permutation, the output state after r rounds is denoted by Sr =
Sr[0]∥Sr[1]∥Sr[2]∥Sr[3]∥Sr[4], where S0 is the input of the whole permutation.
The j-th bit of Sr[i] is denoted by Sr[i][j] where 0 ≤ i < 5, 0 ≤ j < 64. Sr[0][0]
is the leftmost bit of the first row of the state matrix Sr. Let pC , pS , pL represent
the operations of addition of constants, substitution layer, linear diffusion layer,
respectively. Then Sr = (pL ◦ pS ◦ pC)r(S0). We use Sr.5 to represent the state
pS ◦ pC(Sr). For example, S3.5 represents the state after pS of the round 3, i.e.,
4 rounds without the last pL. Note that there are two versions of Ascon-AEAD
that have different bits of rate, named as Ascon-128 and Ascon-128A. Our
attacks in this paper for Ascon are applicable to both the two versions.

4.1 Degree Matrix Transition of the Ascon Permutation

Before we introduce our core theory about the degree estimation of the DSF, we
first introduce an efficient way to trace the update of algebraic degrees of the
Ascon permutation state, i.e., given the degrees or the upper bounds of bits in
Sr, we can quickly calculate the degree upper bounds of bits in Sr+1. This will
be useful in our HD and HDL cryptanalysis of the Ascon permutation in the
remaining part of this section.

Definition 2 (Degree Matrix of Sr). The algebraic degrees of the bits in the
state Sr are called a degree matrix of Sr, denoted by

DM(Sr) = (deg(Sr[i][j]), 0 ≤ i < 5, 0 ≤ j < 64) .

Proposition 3 (Degree Matrix Transition over pS ). With the knowledge
of DM(S) = (di,j , 0 ≤ i < 5, 0 ≤ j < 64), we have DM(pS(S)) = (d′i,j , 0 ≤ i <

2 https://csrc.nist.gov/News/2021/lightweight-crypto-finalists-announced
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5, 0 ≤ j < 64), where d′i,j , 0 ≤ i < 5, 0 ≤ j < 64 are computed as

d′0,j = max(d4,j + d1,j , d3,j , d2,j + d1,j , d2,j , d2,j + d0,j , d1,j , d0,j)

d′1,j = max(d4,j , d3,j + d2,j , d3,j + d1,j , d3,j , d2,j + d1,j , d2,j , d1,j , d0,j)

d′2,j = max(d4,j + d3,j , d4,j , d2,j , d1,j , 0)

d′3,j = max(d4,j + d0,j , d4,j , d3,j + d0,j , d3,j , d2,j , d1,j , d0,j)

d′4,j = max(d4,j + d1,j , d4,j , d3,j , d1,j + d0,j , d1,j)

, 0 ≤ j < 64

Proposition 4 (Degree Matrix Transition over pL). With the knowledge
of DM(S) = (d′i,j , 0 ≤ i < 5, 0 ≤ j < 64), we have DM(pL(S)) = (d′′i,j , 0 ≤ i <
5, 0 ≤ j < 64), where d′′i,j , 0 ≤ i < 5, 0 ≤ j < 64 are computed as

d′′0,j = max(d′0,j+0, d
′
0,j−19 mod 64, d

′
0,j−28 mod 64)

d′′1,j = max(d′1,j+0, d
′
1,j−61 mod 64, d

′
1,j−39 mod 64)

d′′2,j = max(d′2,j+0, d
′
2,j− 1 mod 64, d

′
2,j− 6 mod 64)

d′′3,j = max(d′3,j+0, d
′
3,j−10 mod 64, d

′
3,j−17 mod 64)

d′′4,j = max(d′4,j+0, d
′
4,j− 7 mod 64, d

′
4,j−41 mod 64)

, 0 ≤ j < 64

These two propositions are derived directly from the ANFs of pS and pL, we
provide brief proofs for them in Section B.1 of Supplementary Material.

Suppose DM(Sr)[i][j] ≥ 1 for all i, j, then one can observe that pC will not
affect the degree matrix. In our applications, we always compute the ANF first
for a few rounds until deg(Sr[i][j]) ≥ 1 for all i, j. Then, we apply Propositions 3
and 4 to compute DM(Sr+r′) from DM(Sr) for r′ > 0. Although Propositions 3
and 4 are very simple, they achieve a quite precise estimation of the algebraic
degrees of the state bits when dealing with the Ascon permutation (which is
sometimes even as good as division properties [Tod15,TM16] according to our
experiments).

4.2 HD Distinguishers for the Ascon Permutation

Note that in the Definition 1, x are variables while X and ∆ are parameters.
Hence, different X and ∆ will lead to different DSF. Some combinations of
(X,∆) may make DSFf,X,∆ simpler. More specifically, deg(DSFf,X,∆) may be
reduced to some values smaller than l. In this case, we derive the integral prop-
erty for DSFf,X,∆. Applying the inverse of M, we immediately derive an l-th
order difference yielding the following property with probability 1

D∆f(X) =
⊕
x∈Fl

2

DSFf,X,∆(x) = 0.

Next, we show how to estimate the degree of a DSF. The Boolean functions
of symmetric-key primitives are always composite, so the DSF of them are also
composite Boolean functions. Therefore, we can write a DSF into two phase as
follows,

DSFf,X,∆(x) = f(X ⊕ x∆T ) = f1 ◦ f0(X ⊕ x∆T ).
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Different combinations of (X,∆) will lead to different f0(X ⊕ x∆T ) then af-
fecting the degree of DSFf,X,∆. If f0 is not too complicated, we can actually
compute out its ANFs as well as the exact degrees of the output of f0(X⊕x∆T ).
Therefore, given (X,∆), our degree estimation of DSFf,X,∆ consists of two steps.
In the first step, we compute the ANFs of f0(X ⊕x∆T ) and derive the degrees
of its output bits. In the second step, we update the obtained degrees by f1 to
get the degree upper bounds of the whole DSFf,X,∆. Note f1 is as the same as
the original cipher, so any degree estimation algorithm is also applicable to f1.

Regarding the r-round Ascon permutation, any output bit is a composite
Boolean function f . If we let f0 represent the first r0 rounds of the Ascon
permutation, then a larger r0 will make the estimation of deg(DSFf,X,∆) more
precise but more time-consuming to compute the ANFs of f0(X⊕x∆T ), while a
smaller r0 may undermine the precision. Therefore, we choose r0 = 2.5 for Ascon
to achieve a balance between efficiency and precision. The remaining (r − 2.5)-
round permutation is seen as f1, and the method introduced in Section 4.1 is
a suitable method for f1 to update the degrees of the output of f0. The only
challenge now is to find a desirable combination of (X,∆).

To find a proper (X,∆), a naive idea is to exhaust all possible values of
(X,∆), but the search space is clearly too large. Considering the first operation
of the Ascon permutation without pC (we can safely ignore the first pC oper-
ation since we target the permutation) is pS which consists of 64 parallel small
Sboxes. If we consider independent 1st order differentials for each Sbox S, in to-
tal we are considering a 64th order differential. To guarantee the independence,
here we restrict elements in ∆ = (∆0,∆1, . . . , ∆63) to be active in only one and
different Sboxes, so we can write pS(X ⊕ x∆T ) as follows:

pS(X ⊕ x∆T ) = S(X0 ⊕ x0∆
′
0)||S(X1 ⊕ x1∆

′
1)|| · · · ||S(X63 ⊕ x63∆

′
63),

where X = X0||X1|| · · · ||X63 and ∆i = 0|| · · · ||∆′
i|| · · · ||0 for 0 ≤ i < 64.

To further reduce the search space, we restrict the 64 Xi’s and 64 ∆′
i’s to

be equal respectively, i.e., (Xi,∆
′
i) = (X̄, ∆̄) for 0 ≤ i < 64. Therefore, we only

need to consider 25 possibilities for X̄ and 31 possibilities for ∆̄ (excluding the
trivial case ∆̄ = 0). The total search space is reduced to 32× 31 = 992 different
cases.

For each (X̄, ∆̄) ∈ F5
2×F5

2\{0}, we calculate the ANFs of f0(X⊕x∆T ), then
derive the degree matrix of its output. After that we use Propositions 3 and 4 to
update the degree matrix to calculate the degree matrix of Sr (for r ≥ 4) which
is the degree upper bound of the corresponding DSF. If the degree of a certain
DSF is smaller than 64, we find useful 64th order differential distinguishers for
r-round Ascon permutation. The process is illustrated by Algorithm 1.

Algorithm 1 is practical. We found dozens of useful HD distinguishers with
order lower than 64 for up to 8 rounds. Among them, there are 8 optimal com-
binations of (X̄, ∆̄) that make the algebraic degree of the third word of S8 be
only 45. They are

(X̄, ∆̄) ∈

{
(0x6, 0x13), (0xa, 0x13), (0xc, 0x17), (0xf, 0x18),

(0x15, 0x13), (0x17, 0x18), (0x19, 0x13), (0x1b, 0x17)

}
. (6)
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Algorithm 1 Detect HD Distinguishers (up to 64th order) for the Ascon per-
mutation
Input: r-round Ascon permutation, r ≥ 4
Output: (X̄, ∆̄) leading to HD distinguishers (up to 64th order) for r-round Ascon

permutation, the order of the HD
1: degree = 64, (X̄, ∆̄) = (−1,−1), DM∗

2: for X from 0 to 31 do ▷ for Ascon initialization, X from 0 to 3
3: for ∆ from 1 to 31 do ▷ for Ascon initialization, ∆ from 1 to 3
4: for i from 0 to 63 do
5: for j from 0 to 4 do
6: S0[j][i] = X[j]⊕ xi∆[j]

7: Compute the exact ANF of S2.5 and compute DM(S2.5)
8: Compute the degree matrix of Sr from S2.5 using Propositions 3 and 4
9: if min(DM(Sr)) < degree then

10: degree = min(DM(Sr))
11: (X̄, ∆̄) = (X,∆)
12: DM∗ = DM(Sr)

13: return (X̄, ∆̄,DM∗)

All combinations of (X̄, ∆̄) in Equation (6) lead to the same HD distinguishers
for the reduced Ascon permutation up to 8 rounds. In Table 3, we list the
upper bounds on degrees of the DSF of the r-round Ascon permutation with
respective to (X,∆) in Equation (6). As is seen, for 7 rounds, the degree upper
bound of S7[4] is only 22, so 223 chosen texts are enough to enforce the zero-
output difference in this word. We practically verified the algebraic degrees in
Table 3 for (X,∆) = (0x6, 0x13) up to 7 rounds. According to Propositions 3
and 4, the degree upper bounds in Table 3 for 8 rounds is also verified. Therefore,
246 chosen plaintexts are enough to distinguish the 8-round Ascon permutation
from a random permutation.

Table 3: Upper bounds on the algebraic degree of the DSF of the Ascon per-
mutation with (X,∆) in Equation (6). We experimentally verified all algebraic
degrees up to 7 rounds.

Round r
Upper bounds on the algebraic degree

Sr[0] Sr[1] Sr[2] Sr[3] Sr[4]

4 3 3 2 2 3
5 6 5 5 6 6
6 11 11 12 12 11
7 23 24 23 23 22
8 47 47 45 46 47
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4.3 Zero-Sum Distinguishers for Ascon Permutation

The zero-sum distinguisher was first proposed to study the non-ideal property
of the Keccak-f permutation [AM09,BC10,YLW+19], which was also used to
distinguish the (12-round) Ascon permutation by its designers [DEMS21]. Cur-
rently, the best result of the zero-sum distinguisher for the 12-round Ascon
permutation costs 2130 calls [DEMS21]. In this subsection, we show how to use
our HD distinguisher to build a zero-sum distinguisher for 12-round Ascon per-
mutation with only 255 calls.

The zero-sum distinguisher studies the following question. Given a permuta-
tion P : Fn

2 → Fn
2 , can we create a set of inputs, I, such that

⊕
x∈I

x =
⊕
x∈I

P (x) = 0?

Note that the idea of degree matrix transition method introduced in Sec-
tion 4.1 is also applicable to the inverse operation of the Ascon permutation if
we substitute their transitional rules by those of the inverse operations. Thereby
we can give two corollaries of Porpositions 3 and 4.

Corollary 1 (Degree Matrix Transition over p−1
S ). With the knowledge

of DM(S) = (di,j , 0 ≤ i < 5, 0 ≤ j < 64), we have DM(p−1
S (S)) = (d′i,j , 0 ≤ i <

5, 0 ≤ j < 64), where d′i,j , 0 ≤ i < 5, 0 ≤ j < 64 are computed as

d′0,j = max(d4,j + d3,j + d2,j , d4,j + d3,j + d1,j , d4,j + d3,j + d0,j , d3,j + d2,j + d0,j ,

d3,j + d2,j , d3,j , d2,j , d1,j + d0,j , d1,j , 0)

d′1,j = max(d4,j + d2,j + d0,j , d4,j , d3,j + d2,j , d2,j + d0,j , d1,j , d0,j)

d′2,j = max(d4,j + d3,j + d1,j , d4,j + d3,j , d4,j + d2,j + d1,j , d4,j + d2,j + d0,j ,

d4,j + d2,j , d4,j , d3,j + d2,j , d3,j + d1,j + d0,j , d3,j + d1,j , d2,j + d1,j + d0,j ,

d2,j + d1,j , d2,j + d0,j , d1,j , d0,j , 0)

d′3,j = max(d4,j + d2,j + d1,j , d4,j + d2,j + d0,j , d4,j + d2,j , d4,j + d1,j , d4,j , d3,j ,

d2,j + d1,j , d2,j + d0,j , d1,j)

d′4,j = max(d4,j + d3,j + d2,j , d4,j + d2,j + d1,j , d4,j + d2,j + d0,j , d4,j + d2,j ,

d3,j + d2,j + d0,j , d3,j + d2,j , d3,j , d2,j + d1,j , d2,j + d0,j , d1,j + d0,j)

The ANF of p−1
L is a little complicated, so we introduce a simpler version of

the degree matrix transition for p−1
L .

Corollary 2 (Simplified Degree Matrix Transition over p−1
L ). With the

knowledge of DM(S) = (d′i,j , 0 ≤ i < 5, 0 ≤ j < 64), we have DM(p−1
L (S)) =
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(d′′i,j , 0 ≤ i < 5, 0 ≤ j < 64), where d′′i,j , 0 ≤ i < 5, 0 ≤ j < 64 are computed as

d′′0,j = max
0≤k<64

(d′0,k)

d′′1,j = max
0≤k<64

(d′1,k)

d′′2,j = max
0≤k<64

(d′2,k)

d′′3,j = max
0≤k<64

(d′3,k)

d′′4,j = max
0≤k<64

(d′4,k)

, 0 ≤ j < 64

It is easy to verify that Corollary 1 and 2 give an upper bound on the degree of
output bits of p−1

S and p−1
L . Thus, we can replay the calculation of Section 4.2

to the inverse Ascon permutation.
Considering that with (X,∆) in Equation (6), the upper bounds on the

degree of the five words of the output after 8 rounds are (47, 47, 45, 47, 47),
we only test the (X,∆) for the 4-round inverse Ascon permutation. Note that
in the forward direction, we did not include the first pC , thus we add it to
the backward calculation. In other words, the four rounds of inverse Ascon
permutation is

Pb = (pC ◦ p−1
S ◦ p

−1
L )4 ◦ pC .

We first calculate the exact ANFs of the output of p−1
L ◦ pC ◦ p

−1
S ◦ p

−1
L ◦ pC(X ⊕

x∆T ), then apply Corollary 1 and 2 to calculate the degree upper bounds
for 4 rounds of inverse Ascon permutation, i.e., Pb. Finally, with (X,∆) ∈
{(0xf, 0x18), (0x17, 0x18)}, the degree upper bounds are shown in Table 4.

Table 4: Upper bounds on the algebraic degree of the DSF of the inverse As-
con permutation with (X,∆) ∈ {(0xf, 0x18), (0x17, 0x18)}. We experimentally
verified the upper bounds on degrees up to 3 inverse rounds.

Round r
Upper bounds on the algebraic degree

S[0] S[1] S[2] S[3] S[4]

1 2 1 2 0 2
2 4 6 6 6 6
3 18 16 18 18 18
4 54 54 54 54 54

Thus, we choose 55 positions from {0, 1, . . . , 63}, traverse the variables, and
keep the remaining 64 − 55 = 9 positions as constants for the state after pC of
the fifth round of the 12-round Ascon permutation. The corresponding plaintext
and ciphertext sets are zero-sum. Thus we obtain a zero-sum distinguisher for
12-round Ascon permutation, with complexity of 255. Similarly, with 7 forward
rounds and 3 backward rounds, we can construct a zero-sum distinguisher for 10
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rounds with 225 complexity; with 8 forward rounds and 3 backward rounds, we
can construct a zero-sum distinguisher for 11 rounds with 248 complexity. We
experimentally verified the 7-round zero-sum distinguisher.
The impact of the distinguisher. Although these zero-sum distinguishers
require very low complexities, their actual impact on the security of the Ascon
AEAD and Hash are very likely non-existent or at best not clear. In [DEMS15],
the designers gave the zero-sum distinguisher for 12 rounds with complexity 2130

and noted: “The non-ideal properties of the permutation do not seem to affect
the security of Ascon. In particular, the complexity of 2130 is above the cipher’s
claimed security level.” Yet, we emphasize that our 12-round distinguisher re-
quires a much lower complexity than the cipher’s claimed security level (2128).

In addition, as discussed in [WGR18,GPT21], the advantage of the zero-sum
distinguisher for Ascon permutation and a perfect permutation is very small,
usually falling under a factor of 2 (our zero-sum approach follows the same
philosophy).

Yet, zero-sum distinguishers still represent some non-ideal property of the
target permutation. We can mention that the Keccak team decided to increase
the number of rounds of Keccak-f (e.g., for Keccak-f [1600] from 18 to 24
rounds) in round 2 of the SHA-3 competition, even though they judged as very
unlikely that the zero-sum distinguishers on the full Keccak-f permutation can
result in actual attacks against the global Keccak scheme.
4.4 HDL Distinguisher for Ascon Initialization and Encryption
Algorithm 1 can be adapted to detect HD or HDL distinguishers for the ini-
tialization of Ascon. We remind the readers that when we consider only one
output bit or the sum of several output bits, we refer to HDL cryptanalysis,
while when we consider at least two outputs simultaneously, we refer to HD
cryptanalysis. When targeting the initialization, we are only allowed to access
the fourth and fifth words of the state and observe the first word of the output.
The first, second and third words of input are filled with IV and key variables.
The first pC should also be included in the computation. This means that X is
limited to {0, 1, 2, 3} while ∆ is limited to {1, 2, 3} in Algorithm 1. We observe
that the distinguishers found in [RHSS21] based on division properties are the
optimal under our settings when (X,∆) = (0, 3).

Next, we focus on the 2nd order HDL. In other words, in line 4 of Algorithm 1,
we do not fill all 64 positions, instead, we only choose 2 different positions (i0, i1)
to impose differences and let the other positions be filled with free variables. We
found many different index pairs (i0, i1) and (X̄, ∆̄) that make the algebraic
degrees of some bits after 3.5-round initialization to only 1. For example, when
(i0, i1) = (0, 60) and (X̄, ∆̄) = (0, 3), deg(S3.5[50]) ≤ 1. Thus, we obtain a
deterministic 2nd order HDL approximation for 4-round Ascon. One sample is
enough to distinguish 4-round Ascon initialization from a random permutation
(the Ascon initialization will never be judged as a random permutation). One
sample contains 4 texts, so the data and time complexity is 4. The previous best
DL distinguisher has a bias 2−2, so it requires about 24 samples to achieve a
similar success rate, i.e., the data and time complexity are 32.
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We would like to mention that one can also adapt Algorithm 1 to check the
encryption phase of Ascon where we can access the first word of the input
(other four words are filled with free variables) and observe the first word of the
output. For 4 rounds of encryption, when we impose differences into positions
of (0, 22) and (X̄, ∆̄) = (0x0, 0x10), the degree of S3.5[0][22] is 1. Thus, we can
distinguish 4 rounds of the Ascon encryption with one sample, i.e., 4 messages,
under the nonce-misuse setting. Although Ascon strictly prohibits the nonce-
misuse case, it may be somehow a practical scenario if we require only 4 times
a reuse of the nonce. All the HD or HDL distinguishers obtained in this section
have been listed in Table 2 in Section 1.

5 Probabilistic HDL Cryptanalysis Based on HATF
In Section 4, we exhibited deterministic distinguishers. In this section, we give a
strategy to measure an HDL approximation based on the higher-order algebraic
transitional form (HATF) of the output bits.

5.1 Higher-Order ATF Technique
According to Definition 1, to evaluate the bias of a HDL approximation of a
Boolean function f , we need to evaluate the bias of the coefficient of the max-
term of its DSF. Recall that the ATF technique [LLL21] gives an transitional
expression of Coe (f∆, x) for the 1st order DL. We can adapt the ATF technique
to the l-th order situation, i.e., we try to construct an transitional expression for
Coe (DSFf,X,∆(x), π(x)). After that, we can estimate the bias of the transitional
expression using Algorithm 4.
Constructing the HATF of a composite Boolean function. Consider a
composite Boolean function f : Fn

2 → F2 represented as

f = fr−1 ◦ fr−2 ◦ · · · ◦ f0, f i : Fn
2 → Fn

2 , 0 ≤ i < r − 1, fr−1 : Fn
2 → F2.

Since we need a transitional expression of Coe (f, π(x)), we need to retain the
variables in x. Therefore, we introduce 2l transitional variables, i.e., αi =

(αi
0, α

i
1, . . . , α

i
2l−1) ∈ (Fn

2 )
2l , to substitute all the coefficients of monomials πu(x) =∏

0≤i<l x
u[i]
i for u ∈ Fl

2 in F i = f i ◦ f i−1 ◦ · · · ◦ f0(x) as follows:
The ANF of the j-th bit of the output of F i can be written as

F i[j] =
⊕
u∈Fl

2

Coe
(
F i[j], πu(x)

)
πu(x),

We use the transitional variable aiu to substitute the coefficient of the monomial
πu(x) as follows,

αi
u[j]

s
=Q Coe

(
F i[j], πu(x)

)
, 1 ≤ j ≤ n

Again, “ s
=Q” means we use a new variable to substitute an expression, and store

the key-value pair into a dictionary Q. After that, the HATF of F i[j] is

F i[j] =
⊕
u∈Fl

2

αi
u[j] πu(x).

22



Similarly to the ATF, we do the variable substitution only when the number
of variables in Coe

(
F i[j], πu(x)

)
is at least 2 (when Coe

(
F i[j], πu(x)

)
contains

only one variable, it is simple enough and there is no need to introduce new
transitional variables to simplify it). For readability, we ignore their indexes and
write them as F i =

⊕
u∈Fl

2
αi
uπu(x), for all 0 ≤ j < n, and this is called the

higher-order ATF (HATF) of F i. We also denote the HATF of f by A(f) since
the ATF [LLL21] is only a special case of the HATF when l = 1. From A(F i),
we calculate A(F i+1) similarly. Finally, A(f) can be computed from A(F r−2)
as

f = fr−1

⊕
u∈Fl

2

αr−2
u πu(x)

 .

The process of evaluating A(f) is illustrated in Algorithm 2, which can be seen
as a generalized version of [LLL21, Algorithm 1] to the case of higher-order.

Algorithm 2 Higher-Order Algebraic Transitional From (HATF)
Input: An l-variable composite Boolean function f = fr−1 ◦ fr−2 ◦ · · · ◦ f0

Output: Expression of A(f) and the variable-substitution dictionary Q
1: Initialize the variable-substitution dictionary Q = ∅
2: Compute Y 1 = f0(x) according to the ANF of f0

3: for i from 1 to r − 1 do
4: αi−1

u
s
=Q Coe

(
Y i, πu(x)

)
, for u ∈ Fl

2 ▷ Substitution and add the key-value pair
{αi−1

u : Coe
(
Y i, πu(x)

)
} into Q

5: Compute the HATF of the next round, Y i+1 = f i
(⊕

u∈Fn2
αi−1
u πu(x)

)
6: return A(f) = Y r, Q

In HDL cryptanalysis, we apply Algorithm 2 to DSFf,X,∆ to get A(f(X ⊕
x∆T )). After that, we compute DxA(f(X⊕x∆T )) as an transitional expression
of the HDL expression of f with respect to ∆. The bias of DxA(f(X ⊕ x∆T ))
is evaluated by Algorithm 4.

5.2 Application to 5-Round Ascon Initialization
To apply Algorithm 2 to the initialization of Ascon, we divide the Sbox of
Ascon into two parts, pSL

and pSN
, as done in [LLL21]. The first part of the

Sbox, pSL
, is a linear operation

x0 = x0 ⊕ x4; x4 = x4 ⊕ x3; x2 = x2 ⊕ x1;

where (x0, x1, x2, x3, x4) is the input of pSL
. The round function of the Ascon

permutation is then divided into two parts, pA = pSL
◦ pPC

and pB = pL ◦ pSN
.

In Algorithm 2, we let f0 = pA, and f i = pA ◦ pB for 1 ≤ i < r − 1, and
fr−1 = pSN

. Thus r-round Ascon (note that we ignore the last diffusion layer)
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is represented as

pSN
◦ (pA ◦ pB)r−2 ◦ pA = fr−1 ◦ fr−1 ◦ fr−2 ◦ · · · ◦ f1 ◦ f0

The 128-bit key and 128-bit nonce are set to 256 binary variables, the IV is set
to the constant specified in [DEMS21].

Considering the efficiency, we only search for 2nd order input differences
like ∆ = (∆0,∆1) and unit output mask λ in this section. The previous DL
attacks [DEMS15,LLL21] have shown that when the input difference is active
simultaneously in both the third and fourth words, the bias of the output dif-
ference tends to be higher. Therefore, we restrict ∆0 and ∆1 to be active in
the third and forth words of different Sboxes. To improve the bias of the HDL
approximation, we could impose some conditions I to the first r0 rounds. Then
in each computation of the ANFs or ATFs we reduce the polynomials over the
ideal of I, denoted by “mod I”. With the conditions in I, we obtain a set of
expressions QI by substituting the transitional variables with the original ex-
pressions with the help of the dictionary Q. After that, a system of equations
S = {f = 0|f ∈ QI} is derived, i.e., we will get a HDL distinguisher with a
specific bias ε when the equations in S are satisfied. This technique has been
used in [LLL21], ours follows a similar process. The procedure is illustrated in
Algorithm 3.

Algorithm 3 Evaluate Conditions HDL Bias for A Boolean Function
Input: An l-variable composite Boolean function f = fr−1 ◦ fr−2 ◦ · · · ◦ f0, a round

r0 before which we impose conditions
Output: Expression of A(f), the variable-substitution dictionary Q and a set condi-

tions QI

1: Initialize the variable-substitution dictionary Q = ∅
2: Compute Y 1 = f0(x) according to the ANF of f0

3: for i from 1 to r − 1 do
4: if i ≤ r0 then
5: for u ∈ Fl

2 do ▷ For coefficient of any πu(x), u ̸= 0
6: if Coe

(
Y i, πu(x)

)
/∈ {0, 1} then

7: Add Coe
(
Y i, πu(x)

)
to I

8: Y i = Y i mod I
9: αi−1

u
s
=Q Coe

(
Y i, πu(x)

)
, for u ∈ Fl

2 ▷ Substitution and add the key-value pair
{αi−1

u : Coe
(
Y i−1, πu(x)

)
} into Q

10: Compute the HATF of the next round, Y i+1 = f i
(⊕

u∈Fn2
αi−1
u πu(x)

)
11: Dealing with I and obtain a set of expressions in input bits, denoted by QI

12: return A(f) = Y i+1, Q,QI

Conditional 2nd order HDL distinguishers. With an exhaustive search
using Algorithm 3 with r0 = 2 (we choose r0 = 2 for a balance of the high
bias and simple conditions) for all the possible positions (i0, i1) for input and
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positions for output bits, there are many combinations of the input difference
and output mask (∆0,∆1, λ) leading to a high bias. When i0 = 0, we found four
combinations whose biases are 2−2:

1. ∆0 is active in (S0[3][0], S0[4][0]), ∆1 is active in (S0[3][7], S0[4][7]) and λ is
active in S4.5[0][25];

2. ∆0 is active in (S0[3][0], S0[4][0]), ∆1 is active in (S0[3][14], S0[4][14]) and λ
is active in S4.5[0][51];

3. ∆0 is active in (S0[3][0], S0[4][0]), ∆1 is active in (S0[3][51], S0[4][51]) and λ
is active in S4.5[0][18];

4. ∆0 is active in (S0[3][0], S0[4][0]), ∆1 is active in (S0[3][57], S0[4][57]) and λ
is active in S4.5[0][18];

We used 226 random data to test each of these biases and observed that they
are extremely precise.
Recovering key bits from the conditions. We take the first case above
as an example to describe our key-recovery attack on 5-round Ascon AEAD.
From Algorithm 3, the bias is 2−2 when 18 conditions in QI are satisfied. Since
some conditions are related to secret key bits, we could observe the bias of the
HDL distinguisher to guess some key bits. These conditions can be categorized
into three types as introduced in [LM12] (for simplicity, we use u0, . . . , u127 to
represent the 128 bits of nonce S0[3][0], . . . , S0[4][63] and k0, . . . , k127 to represent
the 128 bits of key S0[1][0], . . . , S0[2][63]):

– 2 Type-0 conditions involving only nonce bits: u0 = u64, u7 = u71.
– 12 Type-1 conditions involving bits of nonce and key. We performed some

measurements for all 212 cases of the 12 conditions with 222 samples each,
and found that 9 conditions seem to be largely redundant: whether they
hold or not does not affect the bias significantly. To optimize the data and
time complexity, we remove these conditions and retain only the three most
significant ones.

u16 = u19 ⊕ u49 ⊕ u80 ⊕ u83k19 ⊕ u83 ⊕ u90k26 ⊕ u113k49 ⊕ u113

⊕ k9 ⊕ k16 ⊕ k19 ⊕ k49 ⊕ k73 ⊕ k80 ⊕ k90

u67 = u3k3 ⊕ u3k67 ⊕ u3 ⊕ u25k25 ⊕ u25k89 ⊕ u25 ⊕ u89 ⊕ k3k67

⊕ k3 ⊕ k25k89 ⊕ k25 ⊕ k67 ⊕ k89 ⊕ 1

u74 = u10k10 ⊕ u10k74 ⊕ u10 ⊕ u32k32 ⊕ u32k96 ⊕ u32 ⊕ u96 ⊕ k10k74

⊕ k10 ⊕ k32k96 ⊕ k32 ⊕ k74 ⊕ k96

– 4 Type-2 conditions involving only bits of key: k0 = 0, k64 = 0, k7 = 0, k71 =
0.

Considering the removal of the 9 conditions, the overall bias changes a bit. By
experimenting with 226 data, we observe that when all 9 above conditions are
satisfied the bias would be 2−3.19. However, when at least one does not hold, the
bias is at most 2−4.47.
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The 2 Type-0 conditions can be satisfied for free. However, we cannot control
the type-2 conditions. To continue, let’s first assume the Type-0 and Type-2
conditions have been satisfied, we then only need to distinguish the right case
where all these 3 Type-1 conditions are satisfied from the other 7 wrong cases
when (u16, u67, u74) varies over all possible values.

To distinguish the right case from the wrong cases, we perform a statistical
test. Suppose we encrypt N samples, the frequency of the parity bit being 0,
denoted by T , obeys the binary distribution B(N, 1

2 + ε), where ε is the bias
of the parity. According to the law of large numbers, T obeys approximately a
normal distribution

T ∼ N
(
N(

1

2
+ ε), N(

1

4
− ε2)

)
(7)

Since the right and wrong cases lead to different biases, T of the right and
wrong cases follow different normal distributions. Distinguishing the right case
from wrong cases is related to distinguishing two different normal distributions.
This question has actually been studied extensively in linear-like attacks. We
here adapt it for the DL or HDL cases.
Distinguishing two normal distributions with statistical testing. Sup-
pose that we have known a statistics T obeys either N (µ0, σ

2
0) or N (µ1, σ

2
1) and

w.l.o.g. u0 < u1, we want to judge which one T really follows. The method is to
find a threshold µ0 < τ < u1 such that when T < τ we judge T ∼ N (µ0, σ

2
0),

otherwise T ∼ N (µ1, σ
2
1), enduring the risks of two types of errors:

1. α0: the probability that T ∼ N (µ0, σ
2
0) but we judge it as T ∼ N (µ1, σ

2
1);

2. α1: the probability that T ∼ N (µ1, σ
2
1) but we judge it as T ∼ N (µ0, σ

2
0);

The relationship between µ0, µ1, τ, α0 and α1 is illustrated in Figure 2 in Sec-
tion F of Supplementary Material. Let Φ be the cumulative distribution functions
of the standard normal distribution. According to Figure 2 we have{

τ = µ0 + Φ−1(1− α0)σ0 = µ1 − Φ−1(1− α1)σ1

µ1 − µ0 = Φ−1(1− α0)σ0 + Φ−1(1− α1)σ1

(8)

In Equation (7), the number of samples is the only parameter influencing the
mean µ and variance σ2 of the normal distribution (with known bias). Let ε0
and ε1 represent the bias of wrong and right cases, respectively. Substituting
the µ0, µ1, σ

2
0 , σ

2
1 with N × ( 12 + ε0), N × ( 12 + ε1), N × ( 14 − ε20), N × ( 14 − ε21),

respectively, we can get the formula to compute the necessary simple amount
with predefined probabilities of errors α0 and α1 as

N =


√

1
4 − ε20 Φ−1(1− α0) +

√
1
4 − ε21 Φ−1(1− α1)

ε1 − ε0

2

. (9)

We set α1 = 0.05, that is the right case would be judged as wrong cases
with probability 0.05 at worst. We set α0 to make sure that the probability
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that at least one wrong case among m wrong cases is identified as the right
case is no larger than 0.05, therefore from 1 − (1 − α0)

m = 0.05 we derive
α0 = 1− 2

log(1−0.05)
m . In terms of our HDL cryptanalysis, we have 7 wrong cases,

so m = 7. The bias of the right case is ε1 = 2−3.19 while the bias for wrong
cases is at most ε0 = 2−4.47. Thus, 29.94 samples are enough to identify the
right case according to Equation (9) and the threshold is τ = 572 according to
Equation (8).

Once we find the right case, we obtain some equations about the key by
flipping some nonce bits following [LLL21]. We take an example to demonstrate
how to get these equations. Note that in the first Type-1 condition, the coefficient
of u83 is k19 ⊕ 1. Then, if know a set of nonce values that satisfy all Type-1
conditions, we can flip u83 to see whether the conditions are still satisfied by the
aforementioned statistical testing. If the conditions still hold, we know k19⊕1 = 0
since the flipping of u83 does not change anything, otherwise k19 ⊕ 1 = 1. With
this strategy, we can get several key equations, that is, k19 = c0, k26 = c1, k49 =
c2, k9⊕k16⊕k19⊕k49⊕k73⊕k80⊕k90 = c3, k3⊕k67 = c4, k25⊕k89 = c5, k10⊕k74 =
c6, k32 ⊕ k96 = c7. When c0, . . . , c7 are known by flipping the corresponding
nonce bits, we can get two more quadratic equations as c8 = k3k67⊕ k25k89 and
c9 = k10k74 ⊕ k32k96. Since we know k3 ⊕ k67 = c4 and k25 ⊕ k89 = c5, we can
linearize the first quadratic equation to c8 = k3(1⊕ c4)⊕ k25(1⊕ c5). Similarly,
the second quadratic equation can be linearized to c9 = k10(1⊕c6)⊕k32(1⊕c7).
Together with the four equations of Type-2, we can recover 14 key bits totally.
The rotation-invariance assumption of Ascon. Until now our cryptanaly-
sis assumes that the four Type-2 conditions have been satisfied. In other words,
this is a weak-key key-recovery attack. In [LLL21], Liu et al.’s DL attack on
5-round Ascon contains 2 Type-2 conditions. They assumed that because of
the rotation-invariance of Ascon permutation, there are 64 opportunities to
find approximately 16 offsets to make their 2 Type-2 conditions hold. However,
we found that for different offsets the biases and the corresponding conditions
may be slightly different due to the IV and constant bits of the Ascon permu-
tation, so a more precise one by one analysis of the conditions is needed. Yet,
to roughly estimate the full complexity to recover all key bits, we assume that
the complexities for different offsets are similar3. In our case, we have 4 Type-2
conditions. By exhausting all 64 possible offsets for all the four aforementioned
2nd order difference-mask pairs with bias 2−2, our experiments show that we
can obtain at least 8 combinations where the Type-2 conditions hold with prob-
ability larger than 78% (with experiments on 230 random keys). Then, we could
collect 14×8 = 112 linear equations, which is enough to recover all key bits (the
remaining 16 bits of the key can be brute-forced). The data and time complexi-

3 Unfortunately, we could not make the verification process automatic, so we have to
verify the conditions by hand. In total we need to analyze 4 × 64 = 256 different
cases. We verified several among them and found that although the conditions have
slight differences, we can always find 3 conditions to make the bias approximately
23.1. Therefore, we believe this assumption is reasonable. We notice that this issue
also appeared in the DL attack of [LLL21].
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ties are thus 22 × (4× 64× 29.94+3 +8× 8× 29.94) ≈ 223, which is 8 times faster
than the 1st order DL attack that requires 226 [LLL21].
HDL cryptanalysis of the 6-round Ascon initialization. With the HATF,
we detected two HDL approximations with bias −2−30 and two with −2−37 for
6-round Ascon. In [LLL21], Liu et al. remarked that they made a lot of efforts
but could not find any DL approximation with bias larger than 2−64, which
demonstrate well the advantage of the HDL cryptanalysis. Based on these four
HDL approximations, we can mount a key-recovery attack on 6-round Ascon
and we provide the details of this attack in Section C of Supplementary Material.
Conditional HD approximation of 130-round Grain v1. In [LLL21], Liu
et al. found a 125-round conditional differential with bias 2−20.77 (experimen-
tally 2−17.4) on Grain v1. To further compare the effects of differential and HD,
we used HATF and detected a conditional HD with bias 2−30.18 for 130-round
Grain v1, which is five rounds longer than the conditional differential counter-
part. More details are presented in Section D of Supplementary Material.

6 Practical HDL Distinguishers Based on Cube Testers
In this section, we show how to construct practical HDL distinguishers based
on cube testers. The cube tester technique was originally proposed at FSE 2009
as a general method to test the non-randomness of the superpoly for stream
ciphers [ADMS09]. We have seen that the HDL attack on a Boolean function
is equivalent to the cube attack on its DSF, so we can also apply cube testers
to its DSF function then convert them back to HDL attacks on the original
Boolean function. Actually, the experimental methods which have been exten-
sively used in previous DL works, e.g., [DEMS15,AFK+08], can also be viewed
as cube testers. When applied to the DSF, an advantage is that we can take
different X and ∆ to simplify the DSFX,∆,f . In this section and in Section E
of Supplementary Material, we use the cube tester to construct practical HDL
distinguishers for the reduced-round Ascon permutation, Xoodoo [DHAK18]
and ChaCha [Ber08a].

6.1 More HDL distinguishers for Ascon Initialization
In [DEMS15], the designers experimentally found a DL distinguisher with bias
2−9 for 5 rounds of the Ascon initialization. In this subsection, we provide more
HDL distinguishers for this variant. From the previous study, when elements in
an l-th order difference ∆ = (∆0,∆1, . . . , ∆l−1) are active both in the third
and fourth words and the output bit is active in a single bit, the bias could be
higher. Naturally, in our experiments, we always let the difference to be active
in these two words and consider only one bit of output. Therefore, we need to
choose l positions from 0, 1, . . . , 63 to incorporate the differences. Recall that in
the key-recovery attack on 5-round Ascon, we could impose some conditions
to enhance the bias. For simplicity, we only consider the Type-0 and Type-
2 conditions. Note if some type-2 conditions are imposed, the corresponding
HDL approximation is conditional on the key, which we cannot access. When
l is not large, e.g., l ≤ 4, we can exhaust all combinations of input differences
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Table 5: Some HDL approximations obtained using experiments for 5-round
Ascon initialization. Type-0 means we impose Type-0 conditions into the cube
while Type-0/2 means both Type-0 and Type-2 conditions are imposed. Since
Type-2 conditions are related to the key, the corresponding HDL are considered
as conditional HDL.

Order Input Diff. /
Output Mask

Bias(− log)
Type-0

Bias(− log)
Type-0/2

3 (0,24,33)/51 6.52 3.56
4 (0,9,15,41)/27 6.44 2.14
5 (0,9,24,51,55)/18 5.31 2.02
6 (1,12,18,22,21,52)/49 4.88 1.89
7 (10,13,21,31,49,55,61)/28 4.03 1
8 (0,3,10,11,26,28,31,55)/60 2.46 1
9 (8,13,14,16,21,25,39,42,46)/12 1.76 1
10 (4,14,23,27,35,39,41,49,51,55)/0 1.09 1
11 (19,24,33,35,36,48,54,57,59,62,63)/27 1.04 1

and output masks in the aforementioned form. When l is large, e.g., l ≥ 5,
it is costly to exhaust all possibilities of the l-th order differences. Thus, we
choose randomly the positions of l-th order differences and the output bit. For
each combination of the differences and masks, we compute their bias with 215

samples. After we detect some biases that are significantly larger than 2−7, we
use 226 samples to confirm these biases. Some l-th order HDL approximations
are shown in Table 5. If we take the 8th order HDL with bias is 2−2.46 (with
Type-0 conditions being imposed) to distinguish 5-round Ascon initialization,
we need about 24.92 samples, i.e., 24.92+8 = 212.92 data/time complexity. The
previous best distinguisher for 5 rounds is the integral distinguisher proposed
in [RHSS21] requiring 216 data/time complexity. We also provide in Section E
of Supplementary Material improved HDL approximations for Xoodoo and
ChaCha.

7 Discussions, Open Questions and Conclusion
In this section, we continue the discussion on HD cryptanalysis, identify some
open problems and finally conclude this paper.

7.1 Relationship between Differential, HD and Cube/Integral
Cryptanalysis

1st order differential cryptanalysis was proposed as a statistical attack and the
statistical methods can usually predict well the probability of a 1st order dif-
ference transition. Since HD cryptanalysis has been seen as a generalization
of differential cryptanalysis, we could see some papers attempting to solve the
probabilistic HD transition using statistical methods such as [Tie17], but they
did not succeed.
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Our algebraic perspective on this question provides better insights about the
relation between the HD of a Boolean function and the superpoly of its DSF. The
past years we have witnessed a great progress on the integral and cube attacks,
especially in cryptanalysis of stream ciphers where even exact superpolies can
sometimes be recovered. Many powerful variants of cube attacks such as the
dynamic cube, conditional cube and correlation cube can now be applied to HD
cryptanalysis. We expect that this algebraic perspective on HD will bring some
breakthrough for HD cryptanalysis.

7.2 Precision of the HATF
How to evaluate the bias of DL-like approximations has been a long-standing
open problem. Various works based on the traditional two-phase strategy were
proposed to estimate the real bias including the theoretical formula in [BLN17]
and the DLCT technique [BDKW19]. However, with the existence of differential
clustering and linear hull, the two methods are either impractical or impre-
cise. Liu et al.’s algebraic perspective on the DL cryptanalysis provided another
method and for some primitives such as Ascon, their ATF technique is more
precise. However, the ATF technique relies on some other assumptions such as
the transitional variables in the ATF being independent. The validity of these
assumptions will need time to be tested on various primitives. As the HDL biases
approximations in this paper are estimated by a higher-order version of ATF,
they suffer from the same problem. however, to alleviate the worries about the
precision of our results, we performed many experiments to verify the biases
we obtained, up to computational feasibility. For example, the bias 2−2 for the
conditional HDL on 5-round of the Ascon initialization has been fully verified.
However, it is of course too costly to verify the extremely small bias for 6-round
Ascon or 130-round Grain v1. We encourage more studies on the precision of
the ATF and HATF in the future.

7.3 Conclusion
In this paper, we revisited the HD/HDL cryptanalysis from an algebraic per-
spective: the HD/HDL approximation is equivalent to that of the superpoly of
the maxterm in the DSF. Our work provides better insights on the HD and
HDL cryptanalysis. By analyzing the DSF, we provided three methods to detect
possible HD/HDL distinguishers. The first one is to estimate an upper bound on
the algebraic degree of the DSF. Since the DSF is parameterized by the input
value and difference, we can choose some specific values to simplify it and obtain
useful HDL distinguishers more easily. The second method is called HATF by
which we construct an transitional expression of the DSF and then use it to
estimate the bias of the HDL approximation. The third method is based on the
cube tester to experimentally obtain some useful practical HDL distinguishers.
By these new methods, we greatly improved the best distinguishing attacks on
the Ascon permutation and key-recovery attacks on 5 rounds of the Ascon ini-
tialization. We also obtained better approximations for some other high-profile
primitives such as Grain v1, Xoodoo and ChaCha. We believe that the HDL
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cryptanalysis has more potential than expected, and deserves more attention
from the cryptographic community.

Acknowledgments. We are grateful to the anonymous referees for their com-
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Supplementary Material

A Algorithm for Evaluating the Bias of an ATF

Algorithm 4 Estimation of the Differential-Linear Bias [LLL21]
Input: The ATF A(f) of a Boolean function f , and the substitution dictionary Q
Output: A bias ε
1: Calculate e = DxA(f), set ε = 1

2

2: while e ̸= 0 do
3: Selected the isolated variables in e, and sum them to el
4: Compute the bias of e⋆ = e− el by ε⋆ = Bias(e⋆), and calculate ε = 2 · ε⋆ · ε
5: Substitute the expressions Q into el, and update e with this new polynomial

▷ For some complicated case such as Grain v1, we will substitute only
one monomial in el every time. Then, the final bias of el will be estimated by the
pilling lemma with bias of all monomials in el

6: return ε
7: procedure Bias (f)
8: (f1, f2, . . . , fm−1)← Separate(f)
9: ε← 1

2

10: for i from 1 to m do
11: if the number of variables in the expression of fi is small then
12: Compute the bias εi of fi according to its Hamming weight
13: else
14: Select a variable v minimizing the maximum cardinality of the variable

sets of the polynomial in Separate(fi|v=0) and Separate(fi|v=1)
15: Compute the bias of fi by εi =

1
2
Bias(fi|v=0) +

1
2
Bias(fi|v=1)

16: ε← 2 · ε · εi
17: if ε = 0 then
18: break
19: return ε
20: procedure Separate(f)
21: Separate the Boolean polynomial f as a sum of m polynomials fi whose variable

sets are mutually disjoint, and sort f1, f2, . . . , fm in ascending order according to
the number of terms in their ANFs

22: return (f1, f1, . . . , fm)

B Brief Specification of ASCON

Ascon, designed by Dobraunig, Eichlseder, Mendel, and Schläffer, is a family of
AEAD and hash algorithms. At a high level, the Ascon AEAD takes as input
a nonce N , a secret key K, an associated data A and a plaintext or message M ,
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and produces a ciphertext C and a tag T . The authenticity of the associated
data and message can be verified against the tag T . Table 6 lists the variants of
Ascon AEAD along with the recommended parameter sets.

Table 6: Ascon variants and their recommended parameters

Name State size Rate r
Size of Rounds

Key Nonce Tag pa pb

Ascon-128 320 64 128 128 128 12 6
Ascon-128a 320 128 128 128 128 12 8

Ascon adopts a MonkeyDuplex [BDPVA12] mode with a stronger keyed
initialization and keyed finalization phases as illustrated in Figure 1. The un-
derlying permutations pa and pb are iterative designs, whose round function p
is based on the substitution permutation network design paradigm and consists
of three simple steps pC , pS , and pL. We now describe the round function p and
each step in detail.

The round function p = pL ◦ pS ◦ pC operates on a 320-bit state arranged
into five 64-bit words. The input state to the round function at r-th round is
denoted by Sr = Sr[0]∥Sr[1]∥Sr[2]∥Sr[3]∥Sr[4], the j-th bit of Sr[i] is denoted
by Sr[i][j] where 0 ≤ i < 5, 0 ≤ j < 64. We use Sr.5 to represent the state after
pS of the r-th round, r ≥ 0.

IV‖K0‖K1‖N0‖N1
320

pa

⊕

0∗‖K

c

⊕r

A1

pb
⊕

As

c
pb

⊕

0∗‖1

c

⊕r

P1 C1

pb
c

⊕

Pt−1 Ct−1

pb
⊕

Pt Ct

r

⊕

K‖0∗

c

pa

⊕

K

k
T

Initialization Associated Data Plaintext Finalization

Fig. 1: The encryption algorithm of Ascon

Addition of constants (pC). An 8-bit constant is XORed to the bit positions
56, · · · , 63 of the 64-bit word Sr[2] at each round.
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Substitution layer (pS). Update each slice of the 320-bit state by applying the
5-bit Sbox S : F5

2 → F5
2 defined by the following algebraic normal forms:

y0 = x4x1 + x3 + x2x1 + x2 + x1x0 + x1 + x0

y1 = x4 + x3x2 + x3x1 + x3 + x2x1 + x2 + x1 + x0

y2 = x4x3 + x4 + x2 + x1 + 1

y3 = x4x0 + x4 + x3x0 + x3 + x2 + x1 + x0

y4 = x4x1 + x4 + x3 + x1x0 + x1

(10)

The ANF of the inverse of the Sbox is as follows,

y0 = x4x3x2 + x4x3x1 + x4x3x0 + x3x2x0 + x3x2 + x3 + x2 + x1x0 + x1 + 1

y1 = x4x2x0 + x4 + x3x2 + x2x0 + x1 + x0

y2 = x4x3x1 + x4x3 + x4x2x1 + x4x2x0 + x4x2 + x4 + x3x2 + x3x1x0

+x3x1 + x2x1x0 + x2x1 + x2x0 + x2 + x1 + x0 + 1

y3 = x4x2x1 + x4x2x0 + x4x2 + x4x1 + x4 + x3 + x2x1 + x2x0 + x1

y4 = x4x3x2 + x4x2x1 + x4x2x0 + x4x2 + x3x2x0 + x3x2 + x3 + x2x1 + x2x0 + x1x0

(11)
Linear diffusion layer (pL). Apply a linear transformation Σi to each 64-bit word
Sr.5[i] with 0 ≤ i < 5, where Σi is defined as

y0 ← Σ0(x0) = x0 + (x0 ≫ 19) + (x0 ≫ 28)

y1 ← Σ1(x1) = x1 + (x1 ≫ 61) + (x1 ≫ 39)

y2 ← Σ2(x2) = x2 + (x2 ≫ 1) + (x2 ≫ 6)

y3 ← Σ3(x3) = x3 + (x3 ≫ 10) + (x3 ≫ 17)

y4 ← Σ4(x4) = x4 + (x4 ≫ 7) + (x4 ≫ 41)

(12)

In this paper, when we attack r rounds of the Ascon permutation, we can
operate all 320 input bits S0 and observe all 320 output bits of Sr or Sr.5. When
we attack r rounds of the Ascon initialization, we can operate only S0[3] and
S0[4] and observe Sr[0].

B.1 Proofs for Proposition 3 and 4

Proof. It is clear that if y = x0 ⊕ x1, deg(y) ≤ max(x0, x1); if y = x0x1,
deg(y) ≤ deg(x0) + deg(x1). Then from the ANFs of pS (Equation (10)) and
pL (Equation (12)), we directly derive the formula in Proposition 3 and Propo-
sition 4.

C Application to 6-Round Ascon Initialization

We perform here a 2nd order HDL cryptanalysis of 6-round of the initialization
of Ascon. With an exhaustive search using Algorithm 3 for all the possible posi-
tions (0, i1 > 0) for input and positions for output, there are four combinations
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of the input difference and output mask (∆0,∆1, λ) leading to a significantly
high bias:

1. ∆0 is active in (S0[3][0], S0[4][0]) and ∆1 is active in (S0[3][5], S0[4][5]), λ is
active in S5.5[0][37]. The bias is −2−30.

2. ∆0 is active in (S0[3][0], S0[4][0]) and ∆1 is active in (S0[3][59], S0[4][59]), λ
is active in S5.5[0][32]. The bias is −2−30.

3. ∆0 is active in (S0[3][0], S0[4][0]) and ∆1 is active in (S0[3][28], S0[4][28]), λ
is active in S5.5[0][4]. The bias is −2−37.

4. ∆0 is active in (S0[3][0], S0[4][0]) and ∆1 is active in (S0[3][51], S0[4][51]), λ
is active in S5.5[0][55]. The bias is −2−37.

We take the first two 2nd order HDL approximations to mount the key re-
covery attacks. Since we obtain conditions from the first two rounds, which is
the same as the 5-round case, we expect a similar situation except that we will
need more samples for the statistical testing to distinguish the right case. Sup-
pose that there are also three Type-1 conditions after removing some redundant
conditions, the sample amount is approximately calculated as N ≈ 262.06. Af-
ter exhausting all 64 positions, we have 2 opportunities to do the key recovery
attacks, thus the approximate data and time complexities are

4× 2× 64× 262.06+3 + 4× 2× 2× 8× 262.06 ≈ 274.10.

Note that because of the extremely small bias, we cannot perform a more de-
tailed analysis based on experiments as we did for the 5 rounds, thus the above
complexities are rough estimations. However, there is no doubt that the HDL
attacks on 6-round Ascon are possible since the biases are much greater than
2−64. We emphasize that in [LLL21] Liu et al. remarked that they made a lot
of efforts but could not find any DL approximation with bias larger than 2−64.
This demonstrates well the advantage of the HDL cryptanalysis. We note that
this is the second type of attack applicable to 6 rounds of Ascon initialization
besides the cube-like attacks [LDW17,DEMS15,RHSS21,LZWW17].

D HD Cryptanalysis of Grain v1

Grain v1 is a stream cipher proposed by Hell et al. [HJM07] which has been
selected in the eSTREAM hardware profile. Grain v1 uses an 80-bit secret key
K = (k0, k1, . . . , k79) and a 64-bit initial value V = (v0, v1, . . . , v63). It consists of
three main building blocks: an 80-bit linear feedback shift register (LFSR), an 80-
bit non-linear feedback shift register (NFSR) and a non-linear output function.
In [LLL21], Liu et al. proposed the conditional differential attacks (for stream
ciphers whose output is one bit, the DL and differential attacks are identical) on
the 125-round Grain v1 initialization with a theoretical bias 2−20.77.

To give a comparison between the effects of the 2nd and 1st order differential
attacks, we tested the 2nd order differential on Grain v1 based on HATF to
see whether we could reach more rounds. In [LLL21], the authors used an input
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difference ∆0 which is active in the 21th and 46th bits of the IV. We set it as
one component of our 2nd order difference, say ∆0, and use another component
∆1 which is active in the 19th and 44th bits of the IV. Therefore, our 2nd order
difference is ∆ = (∆0,∆1). We apply Algorithm 3 with ∆ as input to 130-round
Grain v1, and set r1 as 50 (conditions are imposed for the first 50 rounds, the
same setting as [LLL21]). The HATF of the first output bit is calculated and
the bias is estimated by Algorithm 4. Since the difference expression is very
complicated, to make the computation feasible, we substitute only one linearly
isolated term using Q every time, and finally use the pilling lemma to estimate
the overall bias with all the biases we get from all terms in el (see Line 5 in
Algorithm 4). Finally, our experiment shows that the output 2nd order difference
of 130-round Grain v1 has a bias approximately 2−30.18. This conditional HD
is 5 rounds longer than the previous best conditional differential distinguisher.
Unfortunately, the bias is too small to verify it experimentally, as we would need
about 260.36 data. Considering that some freedom degrees of the IV bits are used
to meet the conditions we impose in the first 50 rounds, this HD approximation
cannot be used in key-recovery attacks. Therefore, this approximation shows
some non-randomness property of Grain v1 and we present it for a comparison
with its 1st order conditional differential counterpart.

E Practical HDL Distinguishers Based on Cube Testers
for Xoodoo and ChaCha

E.1 4-Round Deterministic HDL Distinguisher for Xoodoo

Xoodoo [DHAK18] is an efficient 384-bit permutation designed by the Keccak
Team4. The state of Xoodoo is arranged into a 4 × 3 × 32 cube and a state
bit is denoted by S[x][y][z]. One round of Xoodoo consists of the following
operations.

S[x][y][z] = S[x][y][z]⊕
⊕
y

S[x− 1][y][z − 5]⊕
⊕
y

S[x− 1][y][z − 14]

S[x][1][z] = S[x− 1][1][z], S[x][2][z] = S[x][2][z − 11]

S[0][0] = S[0][0]⊕RCi

S[x][y][z] = S[x][y][z]⊕ ((S[x][y + 1][z]⊕ 1) · S[x][y + 2][z])

S[x][1][z] = S[x][1][z − 1], S[x][2][z] = S[x− 1][2][z − 8]

The total number of rounds in Xoodoo is 12, but in some modes the core
permutation calls a 6-round Xoodoo permutation. More details of Xoodoo
including the constants RCi can be found in its specification [DHAK18].
4 https://keccak.team
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In our cryptanalysis of Xoodoo, we do not consider the linear layers before
and after the nonlinear operations in the first and last round. Since Xoodoo is a
permutation, such an assumption is reasonable. Before applying the cube tester
to Xoodoo, we first analyze its nonlinear operation S[x][y][z] = S[x][y][z] ⊕
((S[x][y + 1][z] ⊕ 1) · S[x][y + 2][z]). Intuitively, if we let S[x][y + 1][z] = 0 and
S[x][y][z] = a[x][y + 2][z] and set the difference active in both S[x][y][z] and
S[x][y+2][z], the nonlinear operation will be simplified. This way, the difference
in S[x][y][z] after the nonlinear operation will be canceled. We apply this setting
to the 96 bits represented by S[0] as follows:

1. Let S[0][0][z] = S[0][2][z] and S[0][1][z] = 0,
2. Exhaust all 2nd order differences ∆ = (∆0,∆1) where ∆0 and ∆1 are both

active in S[0][0][z] and S[0][2][z] but ∆0 ̸= ∆1.

We observe that with these settings many output bits after 4 rounds are highly
biased. For example, if ∆0 is active in S[0][0][0] and S[0][2][0], ∆1 is active in
S[0][0][20] and S[0][2][20], the bias of S[0][0][0] after 4 rounds would be 1

2 , i.e., we
found a deterministic 2nd DL distinguisher for 4-round Xoodoo. We note that
before our work there was another deterministic rotational-differential-linear dis-
tinguisher found for 4-round Xoodoo [LSL21]. However, no DL distinguisher
has been reported for 4-round Xoodoo until now. Unfortunately, with the same
method, we did not find useful 2nd order HDL for 5 rounds of Xoodoo.

E.2 3-, 4- and 4.5-Round HDL Distinguisher for ChaCha

ChaCha is a variant of Salsa which are both designed by Bernstein [Ber08a,Ber08b].
Because of its high software efficiency, ChaCha has been adopted by the TLS
protocol [LCM+16].

The state of ChaCha is of size 64 bytes or 512 bits, which is divided into 16
words, each of 32 bits. These words are framed of a 4× 4 matrix. In the initial
matrix denoted by X0, the 1st row consists of 4 constants c0 = 0x61707865,
c1 = 0x3320646e, c2 = 0x79622d32 and c3 = 0x6b206574. The second and
third row consist of 8 key words k0, k1, . . . , k7 and the fourth row consists of the
two 32-bit nonces v0, v1 and two 32-bit counters t0, t1. The nonces and counters
are usually considered as IVs, which we can control. The state X0 is illustrated
as follows,

X0 =


X0

0 X0
1 X0

2 X0
3

X0
4 X0

5 X0
6 X0

7

X0
8 X0

9 X0
10 X0

11

X0
12 X0

13 X0
14 X0

15

 =


c0 c1 c2 c3
k0 k1 k2 k3
k4 k5 k6 k7
t0 t1 v0 v1

 .

The round function of ChaCha is based on an operation called quarter-round
(QR) which operates on a 4 tuple (a, b, c, d) and updates it as follows,

a′ = a+ b, d′ = (d⊕ a′) ≫ 16, c′ = c+ d′, b′ = (b⊕ c′) ≫ 12,

a′′ = a′ + b′, d′′ = (d′ ⊕ a′′) ≫ 8, c′′ = c′ + d′′, b′′ = (b′ ⊕ c′′) ≫ 7.
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i.e., QR(a, b, c, d) (a′,b′,c′,d′)−−−−−−−→ (a′′, b′′, c′′, d′′).
QR is applied on the 4 words of each column in the odd rounds and each

diagonal in the even rounds. The state after r rounds is denoted by

X0 =


Xr

0 Xr
1 Xr

2 Xr
3

Xr
4 Xr

5 Xr
6 Xr

7

Xr
8 Xr

9 Xr
10 Xr

11

Xr
12 Xr

13 Xr
14 Xr

15


The output key-stream block Z is executed as Z = X0 +XR for ChaCha/R. A
half-round represents the update of (a, b, c, d) to (a′, b′, c′, d′) in the QR opera-
tion. Thus, ChaCha/R.5 means a R full and a half round function. We continue
to use X[i] to represent the i-th bit of the word X, but only within this sub-
section, X[0] stands for the least significant bit. This is for consistency with
previous work related to ChaCha.

Currently, the most efficient methods for analyzing ChaCha have been differential-
linear cryptanalysis [AFK+08,SZFW12,CM16,BLT20,CN21]. Interestingly, we
notice that the HDL idea has been partially used in the previous cryptanalysis
on ChaCha but the terminology higher-order differential-linear attack was not
used. In [SZFW12], Shi et al. proposed some higher biased truncated 2nd or-
der differentials whose outputs are one bit for ChaCha/3, which had been better
than the 1st order truncated differentials. In the appendix of [CM16], Choudhuri
et al. gave several truncated 2nd order differential differentials whose outputs are
multiple bits for 4-round ChaCha by appending one-round linear approximations
to the distinguishers from [SZFW12]. However, in general the HDL cryptanal-
ysis has not considered extensively for ChaCha. In this subsection, we give the
best distinguishers based on HDL for ChaCha/3.5, ChaCha/4 and ChaCha/4.5,
which shows that the HDL cryptanalysis has a larger potential than expected
and probably deserves more attention from the cryptography community.

To establish these distinguishers, we first use experiments to find high bi-
ased 2nd order HDL whose output is active in one bit, and secondly append
it with a 1.5-round deterministic linear approximation. Since the round func-
tions of ChaCha are different for odd and even rounds, these 1.5-round linear
approximations we use are also different. Yet, all of them are similar to the 1.5-
round linear approximation proposed in [CM16, Section 3.1.3] and can be built
similarly.
3.5-round 2nd order HDL with bias close to 1

2 . The input is the 2nd
order difference (∆0,∆1) where ∆0 is active in X0

12[0] and ∆1 is active in X0
14[0],

the output is the difference active in X2
8 [0]. The bias of this 2nd order HDL is

approximately 1
2 since among 230 samples, only 131 led to a nonzero difference.

The 1.5-round linear approximation with bias 1
2 is

X2
8 [0] = X3.5

0 [0]⊕X3.5
0 [8]⊕X3.5

3 [0]⊕X3.5
4 [12]⊕X3.5

9 [0]⊕X3.5
11 [0]⊕X3.5

12 [0]⊕X3.5
15 [16]⊕X3.5

15 [24].

We connect the first 2-round 2nd order HDL approximation with the 1.5-round linear
approximation to get a 3.5-round 2nd order HDL distinguisher whose bias is almost
1
2
.
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4-round 2nd order HDL with bias approximately 2−1.19. The input is
the 2nd order difference (∆0,∆1) where ∆0 is active in X0

13[16] and ∆1 is active
in X0

14[0], the output is active in X2
8 [0]. The bias of this 2nd order HDL is

approximately 0.4386 ≈ 2−1.19, which is close to a deterministic distinguisher.
The 1.5-round linear approximation with bias 1

2 is

X2.5
8 [0] = X4

1 [0]⊕X4
1 [16]⊕X4

2 [0]⊕X4
6 [7]⊕X4

8 [0]⊕X4
11[0]⊕X4

12[24]⊕X4
13[0]⊕X4

13[8].

We connect the first 2.5-round 2nd order HDL approximation with the 1.5-round
linear approximation to get a 4-round 2nd order HDL distinguisher whose bias
is about 2−1.19.
4.5-round 2nd order HDL with bias approximately 2−4.81. The input is
the 2nd order difference (∆0,∆1) where ∆0 is active in X0

14[12] and ∆1 is active
in X0

15[15], the output is active in X2
8 [0]. The bias of this 2nd order HDL is

approximately 0.0357 ≈ 2−4.81. The 1.5-round linear approximation with bias 1
2

is

X3
8 [0] = X4.5

0 [0]⊕X4.5
0 [8]⊕X4.5

1 [0]⊕X4.5
5 [12]⊕X4.5

9 [0]⊕X4.5
11 [0]⊕X4.5

12 [16]⊕X4.5
12 [24]⊕X4.5

15 [0].

We connect the first 3-round 2nd order HDL approximation with the 1.5-round linear
approximation to get the 4-round 2nd order HDL distinguisher whose bias is about
2−4.81.

The biases of these three 2nd order HDL distinguishers are significantly
higher than all previous DL distinguishers, a detailed comparison has been given
in Table 1. With these higher biased approximations, the distinguishing attacks
on ChaCha/3.5, ChaCha/4 and ChaCha/4.5 can be improved. With a conven-
tional method where we need ε−2 samples to distinguish the cipher from a ran-
dom permutation, we need about 22, 22.38 ≈ 11 and 29.62 ≈ 787 samples for the
three variants of ChaCha. Considering that each sample contains 4 texts, the
complexity is then 24 = 16, 24.38 ≈ 44 and 211.61 ≈ 3184 respectively. On the
same scale, the previous best DL distinguishers for 4 and 4.5 rounds required
2× 26.66 ≈ 202 and 2 × 212.28 ≈ 9947 chosen texts. The HDL achieves a better
performance.

We also tried to construct 2nd order HDL for ChaCha/5. However, we did not
find advantageous approximations compared to the existing DL approximations.
Firstly, no 2nd order HDL for the first 3.5-round ChaCha was found in our
experiments, so we have to construct a 5-round approximation with a 3-round
2nd order HDL and a 2-round linear approximation. We reuse the 2nd order
HDL which has been introduced for ChaCha/4.5, i.e., the input is the 2nd order
difference (∆0,∆1) where ∆0 is active in X0

14[12] and ∆1 is active in X0
15[15], the

output is active in X2
8 [0]. The probability of this 2nd order HDL is approximately

2−4.81. In this case, the bias for the optimal linear approximation with the input
mask being active in X2[8][0] is 2−2, one of such approximations can also be
constructed by the method in [CM16] as follows,

X3
8 [0] =X4.5

0 [0]⊕X4.5
0 [8]⊕X4.5

1 [0]⊕X4.5
5 [12]⊕X4.5

9 [0]⊕X4.5
11 [0]⊕X4.5

12 [16]

⊕X4.5
12 [24]⊕X4.5

15 [0]
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Thus, the overall bias of the approximation for ChaCha/5 is 2−1×2−3.81×2−4 ≈
2−8.81. While the previous best DL has a bias of 2−8.2. Therefore, for ChaCha/5
we found that 2nd order HDL is not better than DL. It implies that when we
need to append linear approximations to a higher-order HDL to extend the
rounds, the overall bias of the approximations would decrease faster than its DL
counterpart.

F The Illustration of Relationships between u0, u1, τ, α0

and α1

N (u0, σ
2
0) N (u1, σ

2
1)

Φ−1(1− α0)σ0

Φ−1(1− α1)σ1

µ0 τ µ1

α0α1

Fig. 2: The relationship among u0, u1, τ, α0 and α1

43


	Revisiting Higher-Order Differential(-Linear) Attacks from an Algebraic Perspective

