Root-cause Analysis of Power-based
Side-channel Leakage in Lightweight
Cryptography Candidates

Zhenyuan Liu and Patrick Schaumont[0000—0002—4586—5476]

Worcester Polytechnic Institute, Worcester MA 01609, USA

Abstract. We present a detailed analysis of the root cause of power-
based side-channel leakage in candidates of the NIST lightweight cryp-
tography competition. We perform gate-level power simulation, and rank
the contribution of individual cells to the overall side-channel leakage.
The proposed leaky-gate selection proceeds in two steps. For a selected
set of test vector stimuli, we first identify leaky points, which indicate the
time stamps of maximum data-dependent variation in the power traces.
Next, we rank the side-channel leakage of each individual cell accord-
ing to their power-based standard deviation at the selected leaky points.
We analyze the distribution of side-channel leakage over different cell
types. We highlight the root causes of side-channel leakage at the gate
level for selected NIST lightweight cryptographic candidates including
a block cipher (GIFT-COFB), a sponge-based cipher (Xoodyak) and a
stream cipher (Grain-128). We compare these findings to a traditional
AES implementation.

Keywords: Power-based Side-channel Leakage - Gate-level Simulation
- Pre-silicon Side-channel Leakage Analysis

1 Introduction

Pre-silicon side-channel leakage assessment refers to the use of electronic design
automation to determine the side-channel leakage properties of a hardware de-
sign before manufacturing. In the past few years, this area has enjoyed significant
interest and a wealth of tools and techniques have been proposed to tackle the
challenge [BBYS21]. A straightforward application of pre-silicon side-channel
leakage assessment is to demonstrate the presence of side-channel leakage from
a design description. Pre-silicon side-channel leakage assessment requires the
simulation of a cipher’s implementation in terms of power (for power-based side-
channel leakage) and /or execution time (for timing-based side-channel leakage).
Next, the estimated power or timing are evaluated for dependencies on internal
secret values. A broad range of metrics have been proposed in recent years and
a comprehensive overview is presented by Papagiannopoulos et al. [PGAT22].
In this contribution, we go beyond side channel leakage assessment and seek
to highlight the root-cause of side-channel leakage. The root-cause analysis leads

2 Z. Liu et al.

to the identification of the cells that cause data-dependent power variation H
For a given hardware design, we propose a ranking of the logic cells in the design
according to their contribution to data-dependent power consumption. We use a
non-specific leakage Criteriaﬂ Our ranking is directly driven by statistical prop-
erties of the logic-cell power consumption, and it is independent of high-level
power models. This allows the comparison of cryptographic implementations.
Indeed, the NIST Light Weight Cryptographic Competition has selected candi-
date primitives with varying compositions including permutations, block ciphers,
tweakable block ciphers, and stream ciphers. We aim to compare the side-channel
leakage of their implementation in a manner independent of the power leakage
model used for a concrete side-channel attack.

Our objective is to analyze unprotected implementations, and to understand
how the different types of logic cells that make up a hardware cipher contribute
to the overall power-based side-channel leakage of a cipher. We do not aim
at demonstrating that a (possibly protected) hardware cipher does not leak.
Strictly speaking, pre-silicon side-channel leakage assessment is unable to confirm
the absence of side-channel leakage. Although specific properties such as the
distribution of mask values can be formally verified [WS17], simulations are
always limited in accuracy by their modeling capabilities, and therefore they
do not represent the physical world with full accuracy. There are a number of
well-known examples of how high-level models can hide side-channel leakage at
lower abstraction levels. For example, cycle-accurate simulation cannot capture
sub-cycle effects such as glitches [NRRO6]. For example, gate-level simulation
does not capture capacitive coupling effects introduced by physical placement
and routing [DCBG™17].

This paper uses the following organization. In the next Section, we develop
the methodology for root cause analysis and apply it to the design of a hardware
AES encryption/decryption module. In Section 3, we apply the methodology
to each of three selected Lightweight Cryptography candidates including GIFT-
COFB, Xoodyak, Grain128-AEAD. For each of these ciphers, we determine a
leaky cell ranking, and demonstrate the sensitivity of the side-channel leakage
of the overall cipher to individual leaky cells. In Section 4, we analyze the im-
plementation complexity of each cipher, as well as the distribution of leaky-cell
types over the implementations.

2 Root Cause Analysis Methodology

In this section, we explain our root cause analysis methodology. The objective
of this analysis is to identify those logic cells in a design that are the biggest
contributor to side-channel leakage. In the context of this paper, side-channel

! We use the term gate-level to express the abstraction level that uses logic cells,
registers, etc. We use the term cell to describe an instance of a standard-cell library.

2 Non-specific leakage criteria avoid making assumptions how side-channel leakage is
used in a side-channel attack.

Root-cause Analysis of Power-based SCL in LWC 3

Tech Library Test Vectors Time Step
Logic . Logic Power Per-gate
RTL —> . > Netlist —{ _. . > veb >
Synthesis Simulation Estimation Power

Fig. 1. Per-gate power estimation

leakage specifically refers to a power consumption dependency on a controlled
but secret internal value.

Power Simulation We use gate-level power simulation to obtain high-resolution
per-gate power consumption traces as shown in A design at register-
transfer level is synthesized to a netlist using a standard cell library. The resulting
netlist is simulated under selected test vectors, while recording the activity of
every cell in the design. The activity is stored in a Value Change Dump file.
The VCD file and the netlist are then used in a power estimation tool which will
compute a power trace at the resolution of a selected time-step. In our root-cause
analysis methodology, we compute per-gate power traces. The power consump-
tion of a design is therefore characterized in a three-dimensional structure as
P(v,t,g), with v the test-vector, ¢ the discrete-time stamp in a power trace, and
g the cell in the design. For the experiments in this contribution, we use Ca-
dence Genus 20.10-p001-1 for logic synthesis and Cadence Joules v20.11-s001-1
for gate-level power simulation. We target 130 nm technology standard gates of
the SkyWater Open Source Technology Library.

Selecting Test Vectors Next we build a methodology to rank the cells in a
design according to their contribution to the side-channel leakage. We aim to
have a ranking criteria that is independent of a high-level power-model. First,
we show that by careful selection of the input test vectors and of the range of
time stamps covered by the simulation, we are able to maximize the proportion
of side-channel leakage in the overall power consumption of a design. Next, we
describe a two-step iterative process to select and rank cells according to side-
channel leakage.

Consider the hypothetical cipher in which performs an encryption.
The side channel leakage of the design is measured as the combined power con-
sumption of every logic cell within the dashed box. The logic cells in the cipher
use a plaintext input and a secret key, but only the plaintext input can be exter-
nally controlled. All cells that depend on a primary input are said to be included
in the logic cone of that input. We can thus think of a logic cone driven from the
plaintext input, and a second cone driven from the secret key. This partitions the
logic cells into one of four groups: logic cells contained exclusively in the logic
cone of the plaintext input, logic cells contained exclusively in the logic cone of
the secret key, logic cells contained in the logic cone of both the plaintext input
as well as the secret key, and finally logic cells outside of any logic cone.

4 Z. Liu et al.

Controlled

D,

Plaintext i |:>

Key

.

Fig. 2. Three kinds of data-dependent power consumption

The most popular form of side-channel attack, differential power analysis,
targets the cells contained in the red logic cone shared between the secret key
and the (plaintext) input. Cells outside of any logic cone, as well as cells in
the green logic cone, are not useful for side-channel attacks. Cells in the orange
logic cone are only dependent on the secret key. These cells may be contributing
to a side-channel attack based on simple power analysis or a template. This is
generally considered a harder attack because only a single trace is available. We
therefore focus our analysis on the case of differential power analysis.

By carefully selecting test input vector values, as well as the time range of
the power simulation, we aim to maximize the activity in the overall design to
cells located in the red cone. For example, in case of the Advanced Encryption
Standard, we can use a random plaintext input and limit the power trace time
span to the key pre-whitening and first-round substitution phase. This ensures
that all cipher activity recorded in the VCD trace represents the interaction of
a controlled input and a secret, and therefore that it will include cells that are

contained in the red logic cone of

Macro-level Analysis After selection of the test vectors and simulation time
range, we obtain the detailed power traces for individual cells. Intuitively, the
cells that cause the largest variation in power consumption are also those that are
the main contributors to side-channel leakage. However, there is an important
caveat: a cell may cause leakage over multiple clock cycles. Hence, we may need
to combine the power variation of a cell over multiple time points, in order to
correctly reflect all the side channel leakage coming from a cell. This problem,
in turn, leads to another challenge, namely how to select time points at which
a cell is considered ’leaky’. We solve this problem with a macro-level analysis of
the power traces for the entire design. We select those time points in the overall
power trace that show a maximum variation for the selected test vectors and

Root-cause Analysis of Power-based SCL in LWC 5

140

| /
120 1
351
100 - i 3 .
80 . 4 %50

Kk & & A &
53 5. 55 5.6 5.7 5. 59 6

4 8 6.1 62 53 54 55 56 57 58 59 6 6.1 62

Fig. 3. (Left) Event Density Plot for 5 cycles (one round) of an AES standard cell
design (Right) Cumulative Event Density Plot for 5 cycles (one round) of an AES
standard cell design

simulation time range. The rationale of this choice is the following. Side-channel
leakage is largest at time points with the highest data-dependency of the power
consumption, in other words, at points of maximum variation in the power trace.
Any cells that can be identified as switching at or near those local maxima, can
be called leaky cells, because it is their combined activity that causes the large
peak in power variation in the first place.

Before elaborating the macro-level analysis, we demonstrate that the design-
global power trace is typically orders of magnitude larger than the per-cell power
trace. (Left) shows an event density plot of 5 clock cycles of an AES
design mapped to standard cells. The X axis represents time in picoseconds, and
the Y axis represents the number of events occuring at a specific time stamp.
The five clock cycles represent activities in the first round of the design - namely
when the master key is combined with the plaintext input. Each point of the
scatterplot represents a logic transition at the output of a cell, and there are
almost 45,000 events over the five clock cycles. Each clock cycle consists of two
portions. Following an up-going clock edge (e.g., at 530 ns, 550 ns, 570 ns, etc.),
the register outputs change and a large portion of the combinational cells switch
to evaluate a new result. Next, at the down-going clock edge (e.g. at 540 ns,
560 ns, 580 ns, etc), a much smaller portion of cells are updated, as the register
outputs do not change. The event density plot shows that up to 100 cells can
switch at the same time stamp. Within a clock cycle, the combinational cells
switch over a time span of almost 5 ns, which is a result of multiple layers of
logic in the implementation. However, the overall number of switching events in
a clock cycle is enormous. [Figure 3| (Right) shows a cumulative event density
plot: time point x shows the total number of events with time stamp smaller
than z. The x axis represents time in picoseconds, the y axis represents events
(in 500K units). Every clock cycle adds around 11,000 events, implying that
almost 11,000 logic transitions can occur in a single clock cycle in this particular
AES design.

6 7. Liu et al.

3 %1073 std over traces
;
| ¢(1)609025620 X235
§3500239: X103 ¥0.002504{ x 295
4 v0.00232087 I Y0.00231446
\ . \ .
| I I |
I I I [ﬁ
2F ﬂ\ | ‘ | A |
[I A
i \ 4 || \
15h | \1 ‘ | ‘ | “q \
[f } | ‘ | |
o] |
‘\ \
i |
0.5 ‘ ‘ ‘ ‘ ‘ ‘
| n ‘ | ‘ | J \
o L S O A) |
0 50 100 150 200 250 300 350

Fig.4. Standard Deviation of Power over 256 power traces of a first-round AES
implementation

We can now determine the set of leakage time points as follows. Obtain
the design-global power trace P(v,t) by accumulating the per-cell power traces.
Compute s(t), the standard deviation as a function of time. Finally, determine a
set of local maxima in the standard deviation. The set becomes the leaky point
set T = {t1,ta,t3,...}. The number of points selected to be part of the leaky
point set is flexible, but typically we select a single point per simulated cycle in
the time range under consideration (such as one round of a cipher).

P('U,t) - ZP(v,t,g) (1)

s(t) = std(P(v,1)) @)
T = {t1,t2,t3,...} = localtma:r(s(t)) (3)

This leads to the first insight in leaky cell selection: a side-channel analysis
will be concentrating on points of maximal power variation at the macroscopic

level. We are therefore looking for cells that switch at the time instant of maximal
power variation in the power trace.

Micro-level Analysis After selection of the macro-level leakage points, we
can now select a ranking criteria for individual cells. For each cell g and each
test vector v, we create a leakage estimation leakage(v, g) by adding the power
consumed by each individual cell at each selected macro-level leakage points.
Next, we compute the standard deviation of the estimated leakage {(g) for each

cell over the selected test vectors. Finally, we rank the cells according to their
leakage I(g).

Root-cause Analysis of Power-based SCL in LWC 7

AES
3 %107 0 cells removed 3 «1073 1% cells removed
2 2
1 1
0 0
0 100 200 300 400 0 100 200 300 400
3 X 103 5% cells removed 5 103 10% cells removed
X 292
2 2
Y 0.001414
| M | r\ﬂ %
0 0 L
0 100 200 300 400 0 100 200 300 400

Fig.5. Impact on Power Standard Deviation after removing 1%, 5% and 10% of the
cells

leakage(v,g) = » P(v,t,9) (4)
l(g) = std(leakage(v, g)) (5)
G ={91,92,93, ...} = argrank(l(g)) (6)

shows the standard deviation of the power consumption of the first
round of an AES hardware implementation. This 9,640-cell design has a 32-bit
datapath and computes each round over 5 clock cycles. The first four clock cycles
of the round evaluate the SBOX-lookups, while the last clock cycle evaluate the
other steps of the round. We apply 256 test vectors consisting of a constant-key
and a random plaintext. The figure shows a peak at each upgoing clock edge.
There is no peak at the downgoing edge indicating that power associated to
the downedge events show no variation with the plaintext. To select the leakage
model, we selected one peak per clock cycle at macro-level. In these
are marked at point 45, 103, 169, 235 and 295. The estimated leakage for each
cell is the sum of the power of each cell at these selected time points. From the
estimated leakage, the cell ranking can be computed according to the formulae
above.

To evaluate the quality of the ranking, we demonstrate that the standard
deviation of the power will decrease by removing top-ranked cells. Figure [f|shows

8 7. Liu et al.

AES

3 %107 0 cells removed 3 «1073 1% cells removed

N
N

-
-

o
o

0 100 200 300 400 0 100 200 300 400
3 X 103 5% cells removed 3 X 1073 10% cells removed
2 2
| M | M h M ,\
0 m
0 100 200 300 400 0 100 200 300 400

Fig. 6. Second Iteration Impact on Power Standard Deviation after removing 1%, 5%
and 10% of the cells

the resulting standard deviation on power traces after the top 1%, 5%, 10% of
cells are removed. There is a drastic reduction of power variation after removing
even a minor portion of cells, indicating that the cell selection methodology
is able to identify those cells that cause the largest power variations (and, by
inference, the largest amount of side-channel leakage).

We notice that after the first iteration of removing top-ranked cells, some
residual leakage peaks are remaining at each upgoing clock edge on the power
variation. These peaks are at position 35, 100, 163, 227, and 292 in Figure[f] We
improved the leakage model by adding these residual peaks to the first iteration
leakage model. In this case, we have selected two peaks per clock cycle for the
leakage model at the macro-level. Figure [6] shows the improved resulting stan-
dard deviation on power traces after the top 1%, 5%, 10% of cells are removed.
The resulting standard deviation from the second iteration is more uniformly
distributed compared to the first iteration.

To further validate if those top-ranked logic cells in a design are the biggest
contributor to side-channel leakage, we perform Correlation Power Analysis
(CPA) on AES. Figure E shows an example of a byte-wise CPA on AES before
and after removing an increasing portion of the top-ranked cells. The gradual
increase of the number of measurements before CPA success indicates that the
algorithm successfully identified leaky cells.

Root-cause Analysis of Power-based SCL in LWC 9

CPA on AES BytelO CPA on AES BytelO CPA on AES BytelO
0% cells removed 5% cells removed 10% cells removed

1.0

0.8

0.6

0.4

0.2

0 100 200 0 100 200 0 100 200

Fig.7. CPA on AES byte 10 with cells being removed according to ranking shows a
gradual increase of the number of traces needed for disclosure

3 Root Cause Analysis of Selected Lightweight
Cryptography Candidates

In this section, we explain our root cause analysis methodology on several
lightweight cryptography candidates, including a block cipher (GIFT-COFB),
a sponge-based cipher (Xoodyak), and a stream cipher (Grain128-AEAD).

Block Cipher GIFT-COFB instantiates the COFB (COmbined FeedBack)
block cipher based Authenticated Encryption with Associated Data (AEAD)
mode with the GIFT-128 block cipher [BCI*20]. GIFT-COFB encryption inputs
a 128-bit encryption key, a 128-bit nonce, an associated data and a message of
arbitrary length, and outputs a ciphertext of the same length as the message,
and a 128-bit tag. GIFT-128 is a 40-round 128-bit Substitution-Permutation net-
work (SPN) based block cipher. We use an open-source GIFT-COFB hardware
implementation ﬂ The entire encryption of the nonce takes 40 clock cycles to
finish. Fach block of the associated data or plaintext takes 40 cycles to process
and 4 extra cycles to update the delta register.

To maximize the proportion of side-channel leakage in the overall power
consumption of a design, we apply 256 test vectors consisting of a constant-
key and a random nonce with neither associated data nor plaintext. Figure
top, shows the first 20 cycles of hardware GIFT-COFB. The top figure shows
the power trace on one test vector, and the bottom figure shows the standard
deviation of power over 256 power traces. This 3,286-cell design takes the first
20 cycles to process the 128-bit nonce, and the last 20 cycles to process the
hard-coded 128-bit associated data when neither external associated data nor
plaintext is loaded. The clock frequency is 50MHz, and the power simulation is
oversampled at 50 samples per clock cycle. Figure [8) bottom, shows a peak at
each upgoing clock edge except the first cycle. This indicates that there is no
variation on the first cycle. To implement the leakage model, we select one peak
per clock cycle at the macro-level. These peaks are marked at point 53, 104,

3 https://github.com/qantik /Energy- Analysis-of-Lightweight-AEAD-
Circuit/tree/master/gift-cofb/round

10 Z. Liu et al.

GIFT-COFB One trace

0.04 T T T T T T
0.03 - h
0.02 - 4
0
0 100 200 300 400 500 600 700 800 900 1000
3 %1073 GIFT-COFB std over traces
T T T T T T T T T
2r [x53 .
Y 0.00230083
‘I - -
0
0 100 200 300 400 500 600 700 800 900 1000

Fig. 8. (Top) First 20-round of GIFT-COFB Power trace on one test vector (Bottom)
Standard Deviation of Power over 256 power traces of the first 20-round GIFT-COFB
implementation

153, 204 and so on. The estimated leakage and the cell ranking are computed
using the formula listed in Section 2. Perform two iterations of our cell-ranking
algorithm, and end up with a power variation as shown in Figure 0] We see
a drastic reduction after a minor portion of cells is removed. This proves the
standard deviation of the power will decrease by removing top-ranked cells, and
the cell selection methodology is able to identify those cells that cause the largest
power variations.

Sponge-Based Cipher Xoodyak is an authenticated encryption and hash al-
gorithm pair based around the 384-bit Xoodoo permutation [DHP*20]. Xoodyak
encryption inputs a 128-bit key, a 128-bit nonce, and outputs a 128-bit authenti-
cation tag. The mode of operation on top of Xoodoo is called Cyclist, it converts
the permutation into a sponge for the higher-level algorithms. Figure [10| shows
the power of a full run of Xoodyak. We use an open-source hardware implemen-
tation of Xoodyak El This implementation does not include hash functionality.
This 3,630-cell design spends 4 rounds to store the encryption key, 4 rounds to
absorb the nonce, 12 rounds to absorb the associated data, 12 rounds to pad the
message, and 12 rounds to extract the tag. Each round takes 2 cycles to finish.
There is one round of padding between each phase with smaller power peaks.

* https://github.com/KeccakTeam/Xoodoo/tree/master /Hardware/ASIC/AEAD/
Xoodyak_R3

Root-cause Analysis of Power-based SCL in LWC 11

GIFT-COFB

3 %1073 0 cells removed 3 «1073 1% cells removed

2 2

1 | ’ " ' ' n

0 0

0 500 1000 0 500 1000
3 X 1073 5% cells removed 5 10-310% cells removed
2 2
0 0

0 500 1000 0 500 1000

Fig. 9. Second Iteration Impact on Power Standard Deviation after removing 1%, 5%
and 10% of the ranked cells in GIFT-COFB

We apply the same test vector selection methodology to Xoodyak. We sim-
ulate 256 test vectors consisting of a constant-key and a random nonce with
neither associated data nor message. Figure top, shows 8 cycles of the ab-
sorb nonce implementation. The top figure shows the power trace on one test
vector. There are higher peaks at the first cycle of each round, and smaller peaks
at the second cycle of each round. The bottom figure shows the standard devi-
ation of power over 256 power traces. The second cycle of each round does not
show variation associated with the nonce. The clock frequency is 50MHz, and
the power simulation is oversampled at 64 samples per clock cycle. To select the
leakage model, we selected one peak per round at the macro-level. These peaks
are marked at point 69, 197, 327, and 454. The estimated leakage and the cell
ranking are computed using the formula listed in Section 2.

Figure[I2|shows the resulting standard deviation on power traces after the top
1%, 5%, 10% of cells are removed. There is a drastic reduction of power variation
after removing a minor portion of cells. This validates the standard deviation
of the power will decrease by removing top-ranked cells, and the cell selection
methodology can identify those cells that cause the largest power variations.

Stream Cipher Grainl28-AEAD is a stream cipher supporting authenticated
encryption with associated data [SHSKT9]. Grain128-AEAD encryption takes a
128-bit key, a 96-bit nonce, a plaintext of arbitrary length, an associated data
of arbitrary length, and outputs a ciphertext of arbitrary length and a 64-bit

12 Z. Liu et al.

Absorb Pad Extract
0.008 AD Msg Tag
Store
0.007 4 Idle | Key
Absorj

0.006 Nonc
0.005 1
0.004 4
0.003 1
0.002 4
0.000 1

0 50 100 150 200

Fig. 10. Full View of Hardware Xoodyak Power Simulation

tag. We use an open-source hardware implementation of Grain128-AEAD El It
consists of two main building blocks. The first is a pre-output generator con-
sisting of a Linear Feedback Shift Register (LFSR), a Non-linear Feedback Shift
Register (NFSR), and a pre-output function. The second block is the authen-
tication block consisting of a shift register and an accumulator. This 602-cell
design divides the cipher into three stages. The first stage is the loading stage.
It takes 128 cycles to load the key and the nonce. The last 32 bits of the nonce
are filled with 31 ones and a zero. The second stage is the initialization stage
which takes 256 cycles to finish. The last stage is the running stage, where the
pre-output is generated for encryption and authentication.

We apply the same test vector selection methodology to Grain128-AEAD.
We simulate 256 test vectors consisting of a constant-key and a random nonce
with neither associated data nor plaintext. Figure [I3] shows 256 cycles of the
Grainl128-AEAD during the initialization stage. The top figure shows the power
trace on one test vector. The clock frequency is 50MHz, and the power simulation
is sampled at 1 sample per clock cycle. The bottom figure shows the standard
deviation of power over 256 power traces. To select the leakage model, we selected
one peak for the entire 256 cycles at the macro-level. This peak is marked at
point 205, which is the local maximum of the power standard deviation. The
estimated leakage and the cell ranking are computed using the formula listed in
Section 2.

® https://github.com/Grain-128 AEAD /Grain-128 AEAD-VHDL

Root-cause Analysis of Power-based SCL in LWC 13

Xoodyak One trace

0.025 T T T T
0.02 -)
0.015)
0.01 i
0.005)
) | . | | |
0 100 200 300 400 500 600
- %103 Xoodyak std over traces
. L 4 T T T T
oL X 69 o X327 J J
Y 0.00248351 Y 0.00152177
X197 J X 454
151 Y 0.00201718 Y 0.00194985
1k 1
0.5)
0 . | . . .
0 100 200 300 400 500 600

Fig.11. (Top) Xoodyak Absorb Nonce Power trace on one test vector (Bottom)
Standard Deviation of Power over 256 power traces of Xoodyak Absorb Nonce imple-
mentation

Figure [T4] shows the resulting standard deviation on power traces after the
top 1%, 5%, 10% of cells are removed. We observe a uniform reduction of power
variation after removing a minor portion of cells with only one point selected in
the leakage model.

4 Discussion
In this section, we present the comparison of the root cause analysis results

among AES, GIFT-COFB, Xoodyak, and Grain128-AEAD in terms of cell count,
cell type, area, and power consumption.

Table 1. Cell Count for each Cipher

Cipher Total Cells Combinational Cells Sequential Cells
AES 9640 7121 (74%) 2519 (26%)
GIFT-COFB 3286 2955 (90%) 331 (10%)
Xoodyak 3603 3180 (88%) 423 (12%)
Grain128-AEAD 602 196 (33%) 406 (67%)

14 Z. Liu et al.

Xoodyak

3 %107 0 cells removed 3 X 103 1% cells removed
2 2
1 1
0 0

0 200 400 600 0 200 400 600
3 X 103 5% cells removed 5 103 10% cells removed
2 2
1 | ﬂ A
0 0

0 200 400 600 0 200 400 600

Fig. 12. Impact on Power Standard Deviation after removing 1%, 5% and 10% of the
cells

Cell Count Table[I| shows the count number of total cells, combinational cells,
and sequential cells in each cipher. We observe that in the block cipher and the
sponge-based cipher, cell instances are dominated by combinational cells. Espe-
cially in GIFT-COFB, 90% of the cell instances are from the combinational cells.
When the side-channel leakage is defined by a large number of combinational
cells, it tends to be spread out over a clock cycle, as we could observe in the
power plots for AES, GIFT-COFB, and Xoodyak.

On the other hand, sequential cells dominate the majority of the cells in the
stream cipher. From Table [I} we observe that 67% of the cells are sequential
cells in Grainl128-AEAD. One of the properties in the stream cipher is that
it performs bit-by-bit operations. This means that the flip-flops inside of the
stream cipher switch at every up-going clock edge. This explains why with only
one point selected in the leakage model, we are able to see a uniform reduction
in the power variance of Grain128-AEAD.

Cell Type Figure[I5]shows the distribution of the combinational and sequential
cells for each cipher within the top-50% of the ranked cells. With only top-1% of
the ranked cells, we observe that in the block cipher, all of the top-1% cells are
combinational cells. This indicates that these combinational cells are the cause
of the highest peaks in the power variances of AES and GIFT-COFB. We see the
number of the sequential cells remains constant until it reaches top-25% for AES,
and top-35% for GIFT-COFB. The gap between the number of combinational

Root-cause Analysis of Power-based SCL in LWC 15

%10 Grain128 One trace
T T T T T
8 i
7.8 i
7.6 i
7.4
7.2 'l
7t 1) 1 1 4
0 50 100 150 200 250
16 %10 . GraiTl128 std over I.‘.races . .

X205
Y 1.55747e-05

50 100 150 200 250

Fig.13. (Top) Grain128-AEAD Power trace on one test vector (Bottom) Standard
Deviation of Power over 256 power traces of Grain128-AEAD implementation

and sequential cells becomes larger with more top-ranked cells being presented,
indicating that the majority of the top-50% of the ranked cells are dominated
by the combinational cells in the block cipher. This further validates that most
of the power variances in the block cipher are coming from the combinational
cells.

On the other hand, we observe that the number of combinational and se-
quential cells in the stream cipher is relatively close to each other with top-1%
of the ranked cells. But with more top-ranked cells being added, we see a drastic
increase in the number of sequential cells. This indicates that the top-50% of the
cells are dominated by sequential cells, validating that the most of the power
variations in the stream cipher are caused by sequential cells.

In the sponge-based cipher, the gap between the combinational and sequen-
tial cells is the smallest among all ciphers. Therefore, the sponge-based cipher
has both combinational and sequential cells contributing to the power standard
deviation with the combinational cells dominating most of the power variances.

Figure shows the impact on one cycle of power standard deviation after
1% to 30% of the cells are removed for all ciphers. We observe that top-5% of
the ranked cells are causing the largest power variances for each cipher.

Area Table 2] shows the total area (in square micrometer) for each cipher using
Cadence Genus. The area of AES is approximately three times larger than the

16 Z. Liu et al.

Grain128
«10> 0 cells removed %10 1% cells removed
1.5 1.5
1 ! W
0.5 0.5
0 0
0 100 200 0 100 200
«107> 5% cells removed «107> 10% cells removed
1.5 1.5
1 W 1 W
0.5 0.5
0 0
0 100 200 0 100 200

Fig. 14. Impact on Power Standard Deviation after removing 1%, 5% and 10% of the
cells

Table 2. Synthesis Area for each Cipher

Cipher. Total Area (um?).
AES 166k
GIFT-COFB 52k
Xoodyak 51k
Grain128-AEAD 14k

area of GIFT-COFB and Xoodyak. The area of Grain128-AEAD is almost twelve
times smaller than that of AES.

To further analyze how much of the power variances have reduced with top-
ranked cells removed, we plot the area under the curve of power standard de-
viation in both absolute and relative terms in Figure [I7] We observe that after
35% of the ranked cells, the area under the curve in AES is close to zero in both
figures. This means the top 35% of the cells in AES is contributing the majority
of the side-channel leakage. The area reduction of GIFT-COFB has a similar
slope as that of AES in the left figure. But the area under the curve of GIFT-
COFB does not reach zero after 35% of the ranked cells, and it continues to
decrease in both figures. This indicates that there are more cells in GIFT-COFB
contributing to the power variances than that of AES in a relative term.

In Figure[I7] left, we observe that Xoodyak and Grain128-AEAD have a more
gentle area reduction slope compared to AES and GIFT-COFB. Xoodyak has

Num of Cell Removed

Num of Cell Removed

Root-cause Analysis of Power-based SCL in LWC

GIFT-COFB

0% -1% -5% -10% -15% -20% -25% -30% -35% -40% -45% -50%
Cell Rank

Xoodyak

—6—seq
1204 —e— comb)

®
8
8

a
2
8

Num of Cell Removed

400)

200)

s

0% -1% -5% -10% -15% -20% -25% -30% -35% -40% -45% -50%
Cell Rank

Grain128

0% -1% -5% -10% -15% -20% -25% -30% -35% -40% -45% -50%
Cell Rank

—6—seq
|—e—comb]

Num of Cell Removed
8 I 8]
8 g 8 g

a
g

0% -1% -5% -10% -15% -20% -25% -30% -35% -40% -45% -50%
Cell Rank

Table 3. Percentage of Power Consumption for each Cipher

Cipher. Register. Logic. Clock.

AES 28.71% 66.86% 4.43%
GIFT-COFB 24.00% 73.80% 2.20%
Xoodyak 35.00% 61.25% 3.75%
Grainl28-AEAD 85.19% 3.54% 11.27%

17

Fig.15. Cell Type vs. Cell Rank by Percentage on AES, GIFT-COFB, Xoodyak, and
Grainl128-AEAD

more than 20% of the area left after 50% of the ranked cells in the right figure.
This indicates that Xoodyak has the largest number of cells contributing to the
power variances out of all ciphers in a relative term. With 5% of the ranked cells,
AES drops almost 50% of the area, and the lightweight cryptography candidates
drop almost 20% to 30% of the area. This validates that with our cell ranking
strategy, top 5% of the cells are contributing to the highest power variances for
each cipher.

Power Consumption Table [3]shows the relative power consumption of logic,
register, and clock for each cipher. Power is mostly consumed by logic in AES,
GIFT-COFB, and Xoodyak. Stream cipher has the highest power consumption
in register and clock.

18 Z. Liu et al.

<103 AES

< 10° GIFT-COFB

25

05 F 05F

65 40 45 50 55 60 65 70

%103 Xoodyak 5 Grain128

05F

Fig. 16. Impact on One Cycle of Power Standard Deviation on AES, GIFT-COFB,
Xoodyak, and Grain128-AEAD after removing up to 30% of the cells

5 Conclusions

We present a root cause analysis of power based side channel leakage in AES,
GIFT-COFB, Xoodyak, and Grain128-AEAD. The novelty of this methodology
is that we do not use a traditional power model. Instead, we choose our leakage
model based on the power standard deviation of each cipher. We introduce a
cell selection and ranking methodology to identify cells that cause the largest
power variations. We validate the quality of the ranked cells by demonstrating
the reduction in power standard deviations after top-ranked cells are removed.
We further validate the quality of our methodology by performing CPA on AES
with cells being removed according to ranking. We observe that in block cipher
and sponge-based cipher, combinational cells are dominating the majority of the
power variances. Sequential cells are the cause for most of the power variances
in the stream cipher. We see that half of all power variation is contained within
top-5% of the cells for all ciphers.

References

BBYS21. Ileana Buhan, Lejla Batina, Yuval Yarom, and Patrick Schaumont. Sok:
Design tools for side-channel-aware implementations. ITACR Cryptol.

Root-cause Analysis of Power-based SCL in LWC 19

Area Under Curve (Absolute)
Area Under Curve (Relative)

h -

0% -1% -5% -10%-15%-20% -25%-30%-35%-40% -45%-50% 0% -1% -5% -10%-15%-20% -25% -30% -35% -40% -45% -50%
Cell Rank Cell Rank

Fig.17. Area Under the Curve of Power Standard Deviation vs. Cell Ranking by
Percentage on AES, GIFT-COFB, Xoodyak, and Grain128-AEAD in Absolute terms
(Left) and Relative terms (Right)

BCI™20.

DCBG™17.

DHP*20.

NRRO6.

PGAT22.

SHSK19.

WS17.

ePrint Arch., page 497, 2021.

Subhadeep Banik, Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu,
Mridul Nandi, Thomas Peyrin, Yu Sasaki, Siang Meng Sim, and Yosuke
Todo. Gift-cofb. Cryptology ePrint Archive, 2020.

Thomas De Cnudde, Begiil Bilgin, Benedikt Gierlichs, Ventzislav Nikov,
Svetla Nikova, and Vincent Rijmen. Does coupling affect the security of
masked implementations? In Sylvain Guilley, editor, Constructive Side-
Channel Analysis and Secure Design, pages 1-18, Cham, 2017. Springer
International Publishing.

Joan Daemen, Seth Hoffert, Michaél Peeters, G Van Assche, and R Van
Keer. Xoodyak, a lightweight cryptographic scheme. 2020.

Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold im-
plementations against side-channel attacks and glitches. In Peng Ning,
Sihan Qing, and Ninghui Li, editors, Information and Communications
Security, 8th International Conference, ICICS 2006, Raleigh, NC, USA,
December 4-7, 2006, Proceedings, volume 4307 of Lecture Notes in Com-
puter Science, pages 529-545. Springer, 2006.

Kostas Papagiannopoulos, Ognjen Glamocanin, Melissa Azouaoui, Dorian
Ros, Francesco Regazzoni, and Mirjana Stojilovic. The side-channel metric
cheat sheet, 2022.

Jonathan Soénnerup, Martin Hell, Mattias Sonnerup, and Ripudaman
Khattar. Efficient hardware implementations of grain-128aead. In In-
ternational Conference on Cryptology in India, pages 495-513. Springer,
2019.

Chao Wang and Patrick Schaumont. Security by compilation: an auto-
mated approach to comprehensive side-channel resistance. ACM SIGLOG
News, 4(2):76-89, 2017.

	Root-cause Analysis of Power-based Side-channel Leakage in Lightweight Cryptography Candidates

