
Side-Channel Resistant Implementations of Three
Finalists of the NIST Lightweight Cryptography

Standardization Process: Elephant, TinyJAMBU, and
Xoodyak

Abubakr Abdulgadir1,2, Richard Haeussler1, Sammy Lin1, Jens-Peter Kaps1, and Kris Gaj1

1Cryptographic Engineering Research Group, George Mason University, Fairfax, VA, U.S.A.
2PQSecure Technologies, Boca Raton, FL, U.S.A.

Abstract—Lightweight authenticated ciphers are crucial in
many resource-constrained applications, including online pay-
ments and the Internet of Things. The US National Institute of
Standards and Technology (NIST) coordinates a standardization
process, currently in Round 3, to select lightweight algorithms
for such applications. Although security is paramount, cost,
performance, and resistance to side-channel attacks are among
the most critical selection criteria. This paper investigates the
effect of applying side-channel countermeasures on the cost and
performance of three NIST Lightweight Cryptography Finalists:
Elephant, TinyJAMBU, and Xoodyak. For all investigated algo-
rithms, we apply Domain-Oriented Masking. We then compare the
cost of protection in terms of resource utilization and performance.
Our first-order protected designs of Elephant, TinyJAMBU, and
Xoodyak occupy 5451, 1267, and 6431 LUTs and have a through-
put of 93, 120, and 891 Mbps, respectively, when implemented on
Xilinx Artix-7 FPGAs.

Index Terms—lightweight cryptography; hardware; FPGA;
side-channel attacks

I. INTRODUCTION

Many applications are restricted in terms of area and power.
For example, smart cards and many Internet-of-Things (IoT)
devices have tight constraints on these metrics. Lightweight
Cryptography (LWC) is a field that strives to provide solutions
for such use cases.

Authenticated Encryption with Associated Data (AEAD)
is a widely used cryptographic primitive. However, current
AEAD standards, such as AES-GCM [1], are not suitable
for lightweight applications, and the US National Institute of
Standards (NIST) is coordinating a standardization process
currently in Round 3 to select suitable LWC algorithms.

Side-Channel Analysis (SCA) [2] is a severe threat to secure
deployment of cryptography, especially in LWC applications,
which usually have little or no physical security. In SCA
attacks, side-channel information is used to recover sensitive
data. Many countermeasures have been proposed to protect
implementations against SCA. For example, Domain Oriented
Masking (DOM) [3] provides security in the presence of
glitches, hence, suitable for hardware designs.

Although security against cryptanalysis is crucial to select
standardization candidates, cost, performance, and side-channel

resistance distinguish candidate ciphers that proceed to the final
stages of the selection process.

The community has studied SCA protection of many LWC
finalists. In [4], side-channel resistance for several NIST LWC
candidates was investigated, including Xoodyak and Elephant.
However, their work focuses on masking software implementa-
tions, while we focus on masking hardware designs. Addition-
ally, their study concerns the primitives rather than the entire
authenticated encryption algorithms.

A design space exploration study was performed for SCA-
resistant implementations of TinyJAMBU in [5]. However, no
direct comparison with other NIST LWC finalists was per-
formed. In [6], side-channel resistant hardware implementations
of NIST LWC candidates COMET-CHAM and SCHWAEMM
were reported.

This paper describes and compares hardware-protected im-
plementations of three out of ten finalists of the NIST LWC
standardization process: Elephant, TinyJAMBU, and Xoodyak.
To the best of our knowledge, we present the first protected
hardware implementations for Xoodyak and Elephant.

Our main contribution is providing a timely comparison
between a significant portion of the remaining candidates in
the ongoing NIST LWC standardization process. NIST specif-
ically sets ease of protection against side-channel attacks as a
desirable criterion, so our results will be helpful to compare
studied candidates.

II. BACKGROUND

A. Elephant

Elephant is a lightweight permutation-based authenticated
encryption scheme that contains three variants, with a different
underlying hash function and security level.

Dumbo (Elephant-Spongent-π[160] with 112-bit security)
is the primary variant of the submission package, making it
the logical choice for hardware implementation. For the full
specification of the algorithm, see [7].

Mask values come from an LFSR that is initialized with
the output of P (K||0n−k), where n is the number of bits in

the state, and k is the number of bits in the key (128). Once
initialized, the following equation updates the LFSR:

(x0, ..., x19)→ (x1, ..., x19, x0 ≪ 3⊕ x3 ≪ 7⊕ x13 ≫ 7)

Dumbo’s permutation consists of 80 rounds of the Spongent
lightweight hash function. Each round of Spongent consists of
3 layers: a) Xor with the ICounter, b) S-box Layer, and c)
pLayer.

B. TinyJAMBU

TinyJAMBU [8] is a lightweight variant of JAMBU, a
CAESAR Round-3 candidate. To update its state, TinyJAMBU
uses a keyed permutation based on a Nonlinear Feedback Shift
Register (NLFSR). To perform the permutation, the NLFSR is
updated by calculating the feedback bit(s) as a function of the
state and the key. Then, the state register is shifted to the right.
Depending on how the permutation is implemented, multiple
feedback bits can be calculated in parallel.

The TinyJAMBU-128 variant has a 128-bit state and uses a
128-bit key, 96-bit nonce, and 64-bit tag. The data (associated
data and plaintext/ciphertext) is processed in 32-bit blocks. The
specification defines 3-bit constants called FrameBits that are
different for the nonce, associated data, plaintext/ciphertext, and
finalization.

C. Xoodyak

Xoodyak [9] is a cryptographic primitive designed to per-
form authenticated encryption with associated data (AEAD),
hashing. The permutation used in Xoodyak, called Xoodoo, is
a Keccak-f inspired permutation that iteratively applies a round
function to a 384-bit state. In Xoodyak, the number of rounds
is 12.

The 384-bit state can be seen as a 3D array with three
4× 32 horizontal planes A0, A1, and A2. The round function
consists of the application of a mixing layer θ, plane shifting
ρwest, round constant addition ι, nonlinear layer χ, and a
plane shifting ρeast. The most critical operation in the Xoodoo
permutation from the SCA countermeasure perspective is χ
since it is the only operation that is nonlinear. We show the
details of this operation below and omit other operations to
save space. In the equations below, ⊕ is a bitwise XOR, A is
a bitwise negation of A, and · is bitwise AND.

B0 ← A1 ·A2

B1 ← A2 ·A0

B2 ← A0 ·A1

Ay ← Ay ⊕By for y ∈ {0, 1, 2}

III. METHODOLOGY

Our implementations are fully compatible with the GMU
LWC Hardware API [10]. This feature enables direct compar-
ison with other LWC Hardware API compliant implementa-
tions. For protected implementations, we leverage the LWC
API extension developed in [6]. This extension facilitates the
development and verification of SCA-protected designs by
supporting I/O of data in a shared format. For SCA-protected
designs, we used the DOM countermeasure since it provides

LFSR

1
1

1
0

1
0

1

||

LFSR 6 LFSR 5

||

In
p

u
t 159

..1
5

3

Inp
u

t 152
..7

In
p

u
t 6

..0

LFSR 0..6

LFSR 6..0

40 x S-box

P layer

Output

7

7 146 7

7

7

7

LFSR 5..0

6

1

11

160

7 7

160

160

Fig. 1. Elephant: A round of the Spongent permutation

security in the presence of glitches with a relatively low area
overhead and randomness requirements. To provide the random
bits required for the DOM countermeasure, we utilize a Pseudo-
Random Number Generator (PRNG) based on Trivium [11],
which is seeded using data provided through the RDI port.

Protected implementations process data in shares that are
not mixed unless proper precautions are taken. The first-order
SCA resistance was confirmed using the TVLA methodology.
All designs were benchmarked in an Artix-7 FPGA in terms of
area in LUTs, Throughput in Mbps, power in mW, and energy-
per-bit in nJ/bit.

We benchmarked all designs in Xilinx Artix-7 FPGA using
Vivado 2020.1 for synthesis and implementation. Minerva [12]
was used to search for optimized tool settings to achieve the
maximum frequency.

IV. BASELINE UNPROTECTED IMPLEMENTATIONS

A. Elephant

The maskK values are written such that mask0K is the
previous mask, mask1K is the current mask, and mask2K is the
next mask. In our implementation, these masks are calculated
using a Linear Feedback Shift Register (LFSR).

Fig. 1 shows the implementation of one round of the Spon-
gent permutation. A 7-bit LFSR is initialized to 1111010, and
then updated in each subsequent round. The ICounter layer
takes the LFSR’s output and XORs it with the lowest 7-bits of
the input. Additionally, the LFSR’s output bits are reversed and
then XORed with the highest 7-bits of the input. The output of
the ICounter layer proceeds into the S-box layer, which consists
of forty 4-bit S-boxes. The S-boxes are implemented as lookup
tables. The permutation’s final layer is the pLayer, which shifts
bit locations based on the following equation.

P160(x) =

{
40 · x mod 159 if x ϵ{0, ..., 158}
159, if x = 159

(1)

Fig. 2. Unprotected implementation of TinyJAMBU

B. TinyJAMBU

The top-level block diagram of the unprotected implementa-
tion of TinyJAMBU is shown in Fig. 2.

The key is accepted 32 bits at a time and stored internally in a
shift register. Next, the nonce is accepted, and the initialization
phase is completed. The associated data is absorbed 32 bits
at a time and used to update the state. During encryption, the
plaintext is absorbed, and at the same time, the ciphertext is
generated. Finally, the tag is generated. When performing de-
cryption, the ciphertext is absorbed, and plaintext is produced.
Finally, the tag is calculated and compared to the expected
tag, and the status code is emitted based on the comparison
outcome. The NLFSR is designed to be capable of computing
between 1 and 32 feedback bits in one clock cycle. This value
can be configured during synthesis using the parameter N which
denotes the number of feedback bits computed in parallel.

C. Xoodyak

We developed a full-width variant of Xoodyak where the
384-bit state register can be read or written in one clock cycle.
All input and output ports are 32-bit wide. The datapath of this
variant is depicted in Fig. 3.

The key and bdi ports are used to accept secret data
(key) and public data (public message number, AD and plain-
text/ciphertext), respectively. The bdo port is used to output
ciphertext/plaintext and tag.

The design is composed of two major units: The Xoodoo
permutation and Cyclist ops unit. The Xoodoo permutation
applies the round function to the state 12 times. The Xoodoo
round function is implemented in combinational logic, and the
whole permutation needs 12 clock cycles. The Xoodoo round
function takes 384 bits as input and passes it through the
θ, ρwest, ι, χ and ρeast layers discussed in Section II-C. For the
ι layer, we use a 12× 12 ROM to store the round constants.

Xoodoo
Permutation

||

||

cu
cd

0384

key || 0x00

bd
i |

| x
00

bd
i 3

1.
.2

4
||

 x
0
1
0
0
0
0
0
0

bd
i 3

1.
.1

6
||

 x
0
1
0
0
0
0

bd
i 3

1.
.8

 ||
 x
0
1
0
0

bd
i 3

1.
.8

 ||
 x
0
1

after_add

after_add 39..32 || x000000

after_add 39..24 || x0000

after_add 39..16 || x00

after_add 39..8

x00000000 ||

||

||

||

||

||
||

||

state

pa
d_

ke
y

x0
0

x0
10

0

x0
10

00
00

0
x0

10
00

0

x0
1

40

40

40

40

34
3.

.0

38
3.

.3
52

 ||
 3

11
..0

38
3.

.6
4

||
23

..0

40

32

32

32

state_chunk

40

st
at

e_
ch

un
k 3

9.
.8

bdo

383..344

351..314

63..24

32

32

40

40

40

7..0

8

38
3.

.8
38

3.
.2

41
 ||

 2
39

..0

||

1

cu
cd

240

7.
.0

38
3.

.8

7

7

1

31..24

31..16

31..8

31..0

32
32

32

=

st
at

e_
ch

un
k

39
..8

bdi

tag_eq

32

1
32

384-bit bus

Cyclist_ops

key

bdi

32

32

init
en

ready
valid
done din

dout

dout

din

Fig. 3. Full-Width Unprotected Xoodyak

The Cyclist ops unit takes input (key or data) 32 bits at
a time and applies padding when necessary. It also adds the
cu and the cd constants in the UP and DOWN operations,
respectively. For the DOWN operation, a multiplexer is used to
extract the specific word where new data must be added, and
another multiplexer to recombine the affected portion of the
state with the unaffected part to be written back to the state.

V. PROTECTED IMPLEMENTATIONS

A. Elephant

The S-box operations within the Spongent permutation are
nonlinear. Protecting the S-box using DOM requires that the S-
box be reduced to its algebraic normal form (ANF). The ANF
of the Elephant S-box was obtained using software developed
for decomposition of S-boxes [13], [14]. The S-box’s ANF is
as follows:

F [x,w, v, u] = [EDB0214F7A859C36]

F [0] = 0 + u+ v + w · v + x

F [1] = 1 + u+ w · v + x · u+ x · v + x · w + x · w · v
F [2] = 1 + v + w + x · u+ x · w · v
F [3] = 1 + v · u+ w + x+ x · u+ x · v + x · v · u+ x · w · u

DOM protection of a three-input AND gate is required to
implement this ANF. The protected implementation of the

three-input AND gate was derived as follows:

x · y · z =(x0 + x1)(y0 + y1)(z0 + z1) =

=(x0y0 + x0y1 + x1y0 + x1y1)(z0 + z1) =

=x0y0z0 + x0y1z0 + x1y0z0 + x1y1z0+

x0y0z1 + x0y1z1 + x1y0z1 + x1y1z1

The S-box’s ANF requires five instances of two-input AND
gates and three cases of three-input AND gates. With these
gates, 14-bits of randomness are needed per S-box. The Spon-
gent permutation requires 40 S-boxes and therefore 560-bits of
random data per cycle. To determine the most efficient way to
express the same logic, a Satisfiability Modulo Theories (SMT)
solver was used to minimize the number of AND gates. The
resulting expression is more complex but more efficient using
only three two-input AND gates and two three-input AND
gates. Due to the expression’s complexity, bold text is added
after each instance of an AND gate. The first number in the text
represents the number of input bits to the AND gate, and the
second number identifies the gate’s uniqueness. This expression
reduces the number of random bits required per S-box to nine
and a total of 360-bits per cycle for the Spongent permutation.

F [s3, s2, s1, s0] = [EDB0214F7A859C36]

F [0] =s0 + s3 + ((s1 + s2) · s1)(2,1)
F [1] =not(s0 + s1 + ((s1 + s2) · s1)(2,1)+

(s3 · (s0 + s1) · (s0 + s2))(3,1)+
((s1 + s2) · (s0 + s3) · s3)(3,2))

F [2] =not(s1 + s2 + ((s1 + s2) · (s1 + s3))(2,2)+
((s1 + s2) · s1)(2,1)+
(s3 · (s0 + s1) · (s0 + s2))(3,1)+
((s1 + s2) · (s0 + s3) · s3)(3,2))

F [3] =not(s0 + s2 + s3 + ((s1 + s2) · (s1 + s3))(2,2)+
((s0 + s3) · (s0 + s1))(2,3) + ((s1 + s2) · s1)(2,1)+
((s1 + s2) · (s0 + s3) · s3)(3,2));

B. TinyJAMBU

Building on the unprotected design described in Sec-
tion IV-B, we developed a first-order SCA-resistant Tiny-
JAMBU implementation using the DOM countermeasure.
Fig. 4 depicts the datapath of the first-order protected design.
The NLFSR pr unit is the protected version of the NLFSR used
for the permutation. The state register is duplicated along with
the logic needed to compute the feedback bits.

The rest of the datapath, which is responsible for imple-
menting the mode of operation and performing data selection
(multiplexing), FrameBits bit addition, etc., is denoted Tiny-
JAMBU ops in Fig. 4. This component is duplicated twice,
with each instance residing in a separate domain. Note that
constants (FrameBits and partial block length) are added to the
state only in Domain0 to avoid negating the operation.

The only nonlinear components in TinyJAMBU are the
NAND gates in the NLFSR. We instantiate a first-order DOM-
dep multiplier instead of the AND gates in the protected design.

key1 bdi1

NLFSR_pr

din0

dout0

din1

dout1

tinyjambu_ops_1

din

dout

bdo0
bdo1

key0 bdi0

rnd

SIPO

PRNG
rdi_data

32
rdi

32

32

3232

tinyjambu_ops_0

dout

din

full_key

key0 key1

seed

State

96

128

Fig. 4. Protected TinyJAMBU: Top-level Block Diagram

key1 bdi1

Xoodoo
Permutation
din0

dout0

din1

dout1

Cyclist_ops_pr_1

din

dout

bdo0
bdo1

key0 bdi0

rnd

SIPO

PRNG
rdi_data

32

rdi

32

32

3232

state

Cyclist_ops_pr_0

dout

din

Fig. 5. Protected full-width implementation of Xoodyak – simplified block
diagram

We utilized the DOM-dep multiplier [3] to avoid any leakage
related to dependently shared variables. Since the multiplier is
the only nonlinear part of the design, it is the only component
not residing purely in a separate share domain. To turn the AND
gates to NAND, we negate Domain0 output of each AND gate.
Due to the mandatory synchronization registers in the DOM-
dep multiplier, the NLFSR takes two clock cycles to compute
N feedback bits. This has the effect of doubling the number
of clock cycles needed to perform the permutation. The rest of
the NLFSR logic and the state are duplicated to process the
two state shares.

C. Xoodyak

Based on the unprotected Xoodyak design discussed in
Section IV-C, we developed a first-order SCA-protected design
using the DOM countermeasure. We use the optional rdi port
specified in the LWC API to provide the PRNG seed. The data
is initially split into two shares and processed separately in two
domains, Domain0 and Domain1. A high-level block diagram
of our protected designs is shown in Fig. 5.

The 384-bit state register and the Cyclist ops unit are
duplicated with each instance existing in one domain. We do
not perform constant addition in Domain1, i.e., the cu and cd
constants are not added when performing the UP and DOWN
operations, and the x01 padding is not performed.

The protected full-width Xoodoo round is shown in Fig. 6.
This unit accepts two shares of input and produces two shares
of output. The components θ, ρeast, and ρwest are linear oper-
ations. These operations are simply duplicated and operate on
corresponding shares in Domain0 and Domain1 in parallel.

The nonlinear operation χ, is the only place where data
from Domain0 and Domain1 mix. To implement χ, we in-
stantiate 384 DOM-protected AND gates, each taking two
shared variables x and y along with one random bit. Each
AND gate uses four registers. Two of these are required for
synchronization, and the other two to fully pipeline the gate, as
suggested in [3]. This method requires 384 bits of randomness
per clock cycle. These bits are generated using a PRNG. The
whole χ operation is implemented in two pipeline stages. The
permutation needs 13 clock cycles, compared to 12 cycles for
the fully combinational Xoodoo round function used in the
unprotected design due to the pipeline delay.

Theta

Rho_west

iota

Theta

Rho_west

Chi_protected

Rho_east Rho_east

384-bit bus
128-bit bus

din1 din0

rnd

dout0dout1

cntr

= 12
done

ROM

dout

addr

4

X X X

||

||

0.
.1

27

12
8.

.2
55

25
6.

.3
83

0.
.1

27

12
8.

.2
55

25
6.

.3
83

rnd

Chi_protected

rn
d

0.
.1

27

rn
d

12
8.

.2
55

rn
d

25
6.

.3
83

Xoodoo_protected

1128 1128 1128

4

4

Fig. 6. Full-Width Protected Xoodoo Permutation

VI. LEAKAGE ASSESSMENT

We utilized the Test Vector Leakage Assessment (TVLA)
methodology [15] to validate the first-order SCA resistance of
our protected designs.

The Flexible Opensource workBench fOr Side-channel anal-
ysis (FOBOS) [16] platform was used with the NewAE CW305
SCA board, which is based on the Artix-7 FPGA. We ran the
FPGA at 1.25 Mz and used a USB3-based oscilloscope (Pico-
scope 5000) to collect traces at a sampling rate of 125 MS/s.

TABLE I
AREA AND THROUGHPUT ON XILINX ARTIX-7

Design Area Freq. TP LUT TP
LUTs FFs MHz Mbps Ratio Ratio

Unprotected
Elephant 1291 910 229 214.3 1.00 1.00
TinyJAMBU 591 428 266 250.4 1.00 1.00
Xoodyak 1808 851 170 1717.9 1.00 1.00

Protected
Elephant 5451 2970 200 93.5 4.22 0.43
TinyJAMBU 1267 1271 247 119.8 2.14 0.48
Xoodyak 6431 4210 158 891.4 4.02 0.42

The TVLA results for the unprotected variants of Elephant,
TinyJAMBU, and Xoodyak are shown in Fig. 7. In all cases,
the t-value exceeds the threshold, which indicates information
leakage as expected. On the other hand, the TVLA of the
protected variants, illustrated in Fig. 8 shows no observable
leakage even when processing 1 million traces, validating the
effectiveness of the applied countermeasures.

VII. COST OF PROTECTION

It is expected that protection against side-channel analysis
will come at a price in the area, throughput, power consump-
tion, and energy per bit. Quantifying this cost is critical for a
fair evaluation of candidates since the cost of protection varies
among candidates.

Benchmarking results for area and throughput of the pro-
tected designs are summarized in Table I, and the results for
average power and energy per bit are reported in Table II.

The throughput of protected designs decreases by factors
greater than 2. For Elephant and TinyJAMBU, the reduction
by this factor happens because the permutation requires twice
as many clock cycles to complete. Xoodyak’s reduction is
because the protected implementation operates at a lower max
frequency, requires an additional clock cycle to complete the
permutation, and is slowed down by the need to load all shares
serially. The time to load the shares has less impact for the
remaining candidates since the permutation takes significantly
more cycles than the time to load shares.

Due to the small size of the non-linearity, the cost of pro-
tecting TinyJAMBU is the lowest among the investigated three
algorithms. For example, the area of the protected TinyJAMBU
is only 2.14× the area of the unprotected baseline variant.
Notably, the control logic and constant additions in the datapath
are not duplicated in the protected design. For Xoodyak and
Elephant, the same factor exceeds 4.

The estimated energy-per-bit of both the protected and un-
protected implementations is reported in Table II.

The average power and energy per bit (E/bit) estimations
were performed using Xeda [17], which provides an abstraction
layer to run flows on different Electronic Design Automation
(EDA) tools. For result accuracy, we performed vector-based
estimation, and the Switching Activity Interchange Format
(SAIF) files were generated while encrypting 1536 bytes of
plaintext using post-route timing simulation. Average dynamic
power has been estimated at 75 MHz.

Fig. 7. TVLA Results for Unprotected Designs (10,000 traces). From left to right: Elephant, TinyJAMBU and Xoodyak

Fig. 8. TVLA Results for Protected Designs (1 million traces) From left to right: Elephant, TinyJAMBU and Xoodyak

TABLE II
ESTIMATED AVERAGE POWER, THROUGHPUT, AND ENERGY-PER-BIT ON

XILINX ARTIX-7 (AT 75 MHZ)

Design Total Total TP E/bit E/bit
Power Power @75MHz nJ/bit Ratio
mW Ratio Mbps Ratio

Unprotected
Elephant 167 1.00 70.2 2.3 1.00
TinyJAMBU 68 1.00 70.6 1.0 1.00
Xoodyak 179 1.00 757.9 0.4 1.00

Protected
Elephant 205 1.22 35.1 5.8 2.52
TinyJAMBU 127 1.87 36.4 3.5 3.50
Xoodyak 309 1.73 423.2 0.7 1.75

The protected Xoodyak implementation is 5× more efficient
than that of TinyJAMBU and 8× more efficient than that
of Elephant. This difference comes primarily from processing
more bits per clock cycle.

VIII. CONCLUSIONS AND FUTURE WORK

We developed and compared SCA-protected implementa-
tions of three finalists in the NIST LWC standardization
process. To the best of our knowledge, we present the first
protected hardware implementations for Xoodyak and Elephant.
The protection overhead is similar for all three algorithms
in terms of throughput at the maximum clock frequency.
TinyJAMBU excels in area and power in terms of absolute
values, while Xoodyak is the best in terms of throughput and
energy per bit. Elephant is not the best of three in any category.
It is much bigger than TinyJAMBU in terms of area, much
slower than Xoodyak in terms of throughput, and the least
efficient of all three algorithms in terms of energy per bit.

Extending protections to a higher order and investigating
other protection methods are interesting topics for future re-
search.

REFERENCES

[1] NIST, “Recommendation for Block Cipher
Modes of Operation: GCM and GMAC,”
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-
38d.pdf, Nov. 2007.

[2] P. Kocher, J. Jaffe, and B. Jun, “Diferential Power Analysis,” in CRYPTO
’99 - 19th International Conference on Cryptology, Santa Barbara, CA,
Aug. 1999.

[3] H. Gross, S. Mangard, and T. Korak, “Domain-Oriented Masking: Com-
pact Masked Hardware Implementations with Arbitrary Protection Order,”
Cryptology ePrint Archive 2016/486, Nov. 2016.

[4] S. Belaı̈d, P.-É. Dagand, D. Mercadier, M. Rivain, and R. Wintersdorff,
“Tornado: Automatic Generation of Probing-Secure Masked Bitsliced
Implementations,” in Advances in Cryptology – EUROCRYPT 2020, vol.
12107. Cham: Springer International Publishing, 2020, pp. 311–341.

[5] A. Abdulgadir, S. Lin, F. Farahmand, J.-P. Kaps, and K. Gaj, “Side-
Channel Resistant Implementations of a Novel Lightweight Authenticated
Cipher with Application to Hardware Security,” in Proceedings of the
2019 on Great Lakes Symposium on VLSI - GLSVLSI ’21, Virtual, Jun.
2021, p. 6.

[6] F. Coleman, B. Rezvani, S. Sachin, and W. Diehl, “Side Channel Resis-
tance at a Cost: A Comparison of ARX-based Authenticated Encryption,”
in 2020 30th International Conference on Field-Programmable Logic and
Applications (FPL). Gothenburg, Sweden: IEEE, Aug. 2020.

[7] T. Beyne, Y. L. Chen, C. Dobraunig, and B. Mennink, “Elephant v1.1,”
p. 48, 2019.

[8] H. Wu and T. Huang, “TinyJAMBU: A Family of Lightweight Au-
thenticated Encryption Algorithms,” Submission to the NIST Lightweight
Cryptography Standardization Process, Mar. 2019.

[9] J. Daemen, S. Hoffert, M. Peeters, G. V. Assche, and R. V. Keer,
“Xoodyak, a lightweight cryptographic scheme,” Submission to the NIST
Lightweight Cryptography Process, 2019.

[10] J.-P. Kaps, W. Diehl, M. Tempelmeier, E. Homsirikamol, and K. Gaj,
“Hardware API for Lightweight Cryptography,” GMU, Fairfax, VA, GMU
Report, Oct. 2019.

[11] C. De Canniere and B. Preneel, “TRIVIUM Specifications,” Tech. Rep.,
2005.

[12] F. Farahmand, A. Ferozpuri, W. Diehl, and K. Gaj, “Minerva: Automated
hardware optimization tool,” in 2017 International Conference on ReCon-
Figurable Computing and FPGAs, ReConFig 2017. Cancun: IEEE, Dec.
2017, pp. 1–8.

[13] B. Bilgin, S. Nikova, V. Nikov, and V. Rijmen, “TI toolkit.” [Online].
Available: http://homes.esat.kuleuven.be/s̃nikova/ti tools.html

[14] B. Bilgin, S. Nikova, V. Nikov, V. Rijmen, and G. Stütz, “Threshold im-
plementations of all 3 ×3 and 4 ×4 s-boxes,” in Cryptographic Hardware
and Embedded Systems – CHES 2012, E. Prouff and P. Schaumont, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 76–91.

[15] G. Goodwill, B. Jun, J. Jaffe, and P. Rohatgi, “A testing methodology for
side-channel resistance validation,” in NIST Non-Invasive Attack Testing
Workshop, Nara, Japan, 2011.

[16] A. Abdulgadir, W. Diehl, and J.-P. Kaps, “An Open-Source Platform for
Evaluating Side-Channel Countermeasures in Hardware Implementations
of Lightweight Authenticated Ciphers,” Tech. Rep., Nov. 2019.

[17] K. Mohajerani, R. Haeussler, R. Nagpal, F. Farahmand, A. Abdulgadir, J.-
P. Kaps, and K. Gaj, “FPGA Benchmarking of Round 2 Candidates in the
NIST Lightweight Cryptography Standardization Process: Methodology,
Metrics, Tools, and Results,” Cryptology ePrint Archive 2020/1207, Oct.
2020.

