Boolean Circuits

A Boolean circuit computes a function using basic Boolean operators (gates). Such circuits underpin the implementation of many computations.

NIST research. The "circuit complexity" project explores designs for Boolean circuits of interest. Two metrics are of particular relevance:

- (+) additive complexity: \# XORs and XNORs
- (\times) multiplicative complexity (MC): \# ANDs

Circuit	Gate count					Depth	
	All	AND	XOR	XNOR	NOT	All	AND
AES S-Box	113	32	77	4	0	27	6
AES S-Box ${ }^{-1}$	121	34	83	4	0	21	4
AES-128(k,m)	28600	6400	21356	844	0	326	60
SHA-256(m)	115882	22385	89248	3894	355	5403	1604

Table produced in cllaboration with Ç. Çalık. Legend: k : AES key; m : message (128-bit for AES; 512-bit for SHA-256)

Email: circuit complexity@nist.gov

Webpage: https://csrc.nist.gov/projects/circuit-complexity Data repository: https://github.com/usnistgov/Circuits Poster produced for the NIST-ITL Science Day 2021

MC of Cubic Boolean Functions

Aim: Construct efficient circuits for cubic Boolean functions in terms of \# AND gates.

MC	Equivalence classes
2	$123,123+14$
3	$123+45,134+125, \quad 123+24+15, \quad 34+134+125$
4	$23+134+125, \quad 24+34+134+125+35$

$M C$ distribution of cubic Boolean functions, $n \leq 5$
Constructing n-bit cubic Boolean function f

1. Decompose f as $f=x_{n} f_{1}+f_{2}$

- $f_{1}:(n-1)$-bit function with degree ≤ 2
- $f_{2}:(n-1)$-bit function with degree ≤ 3

2. Optimally implement f_{1} with at most $\left\lfloor\frac{n-1}{2}\right\rfloor$ AND gates.
3. Apply this method to implement f_{2}.
4. Combine f_{1} and f_{2} circuits using one more AND gate.

Optimizing Linear Circuits

Scope: Reduce \# XOR gates for linear functions

- MDS matrices
- Diffusion layer of ciphers

Trivial implementation: A binary linear system ($n \times m$ matrix of bits) can be trivially implemented with $D=W-n$ XORs, where W is the matrix weight (number of 1 's); and n is the number of rows.

Metric of interest: What improvement ratio can we get, compared with trivial implementations (D XOR)? Across 57 circuits (20 S-Boxes; 37 MDS matrices), we (jointly with Ç. Çalık and T. Yalçın) are comparing synthesis tools vs. best known heuristics.

Hypothesis/evidence: Synthesis tools can be improved with heuristic techniques from the literature.

