
A New Doctrine for
Hardware Security

Adam Hastings, Ryan Piersma and Prof. Simha Sethumadhavan
Columbia University

Software and Supply Chain Assurance Forum

March 2nd 2022

simha@columbia.edu
https://linkedin.com/in/simha

@TheSimha
1

https://arxiv.org/abs/2203.05015
https://arxiv.org/abs/2007.09537

mailto:simha@columbia.edu
https://linkedin.com/in/simha

2

3

4

Game:
Build the
fastest

rule-abiding
car

Strategy:
Win races

without
overtaking

Outcome:
Races are
uneventful

(and boring)

5

6

Strategy:
Win races by

overtaking

Outcome:
Races are

fun and
exciting

 to watch

Game:
Build the
fastest

rule-abiding
car

Mechanism Design:
Design the rules of a game such that

players will choose strategies that lead to
some desired overall outcome

This Talk:

A New Mechanism Design
for (Hardware) Security

(based on new way of thinking about security)
7 | A New Doctrine for Hardware Security

Defenders keep losing.
Change the game.

8 | A New Doctrine for Hardware Security

Who is to Blame for
Security Failures?

9 | A New Doctrine for Hardware Security

10 | A New Doctrine for Hardware Security

Vendors? Users?Attackers? Authorities?

How do we change behaviors?

Is there a single point
intervention to bring about
desired change?

11 | A New Doctrine for Hardware Security

12 | A New Doctrine for Hardware Security

Vendors? Users?Attackers? Authorities?

How do we change behaviors?

13 | A New Doctrine for Hardware Security

Vendors? Users?Attackers? Authorities?

The Doctrine of Shared Burdens

The burden of security should be borne
equitably between the Users, Vendors,
Authorities and Attackers.

How do we change behaviors?

Three Case Studies
(to illustrate the complexities of behavioral change)

14 | A New Doctrine for Hardware Security

15 | A New Doctrine for Hardware Security

● Modern processors speculatively execute instructions to
improve performance. Significant performance gains
(~1.5-3x)

● Problem: During speculative execution, transient instructions
can perform actions not intended by the programmer

● Who should “pay” for this?
○ Processor vendors
○ Programmers who write critical code
○ End users who care about security

● Vendors won’t fix Spectre-v1

15 | A New Doctrine for Hardware Security 15

Case Study #1: Spectre

16 | A New Doctrine for Hardware Security16 | A New Doctrine for Hardware Security 16

Case Study #1: Spectre

● Processor vendor has two options
○ Secure by default: First mover disadvantage for vendors due to high cost
○ Two SKUs: Fast or Secure causes inequity, Hobson’s choice

● Programmer can fix but
○ Burdensome (though Google Chrome does this)
○ Externalizes cost

● User can decide to turn on or turn off security as needed, but
○ Users often don’t know what they need (classic information asymmetry)
○ Externalizes risk and cost

● Need new mechanisms to resolve this moral hazard

17 | A New Doctrine for Hardware Security17 | A New Doctrine for Hardware Security 17

Case Study #2: Rowhammer

memory
controller

● DRAM cells are so small that their bits can be flipped
by repeating activating nearby memory

● Problem: Many stakeholders. Who should fix?
○ DRAM vendors?
○ Memory controller manufacturers?
○ Processor/SoC integrators?
○ Programmers?
○ End users?

● Currently
○ JEDEC co-ordinates stakeholders to create standards

18 | A New Doctrine for Hardware Security

● DRAM vendors
○ Secure by default: 1st mover disadvantage for vendors due to cost
○ Two SKUs: Secure or Cheap DRAMs (Hobson’s choice)

● SoC/Memory controller IP providers
○ Solution: faster refreshes to restore state
○ Vendors product consumes more energy; moral hazard

● Programmers/Users?
○ Information asymmetry, burdensome
○ Moral hazard

● Current solution: RFM
○ It is complicated: SoC vendor and DRAM work together (JEDEC)
○ User pays a constant but small cost
○ Outcome: Security TBD

● Solution can be really simplified if DRAM vendors can be incentivized to
set aside for security.

18 | A New Doctrine for Hardware Security 18

memory
controller

Case Study #2: Rowhammer Solutions

19 | A New Doctrine for Hardware Security

Case Study #3: Hardware Patching

● Recent CPU vulnerabilities have necessitated patches
that come with a performance cost.

● Problem: Vendors could be disincentivized from
releasing security patches in a timely manner

● Customers may not know about pending patches

● Need mechanisms to solve information asymmetry
and adverse selection

19 | A New Doctrine for Hardware Security 19

Call to Action #3

Fixing hardware security
problems requires more
than technical solutions!

21

Open Mandates: A Novel Mechanism

22

Require all vendors to spend
some percentage of their

resources on security.

23 | A New Doctrine for Hardware Security

Spending “Resources” on Security…?

24

Resources

System Resources
(paid by users)

Organizational Expenses
(paid by vendors)

Developer
training

Code
Reviews

Bug
Bounty

Programs

Power
consumption Performance

Needs
Technical
Solutions

Covered by standard accounting practices

Usability

……

25

COMMAND Overview Certifiable Open Measurable Mandate

26

COMMAND Overview

Regulator mandates
that all Vendors must
dedicate fixed % of
resources for security

Addresses first mover
disadvantage

Not prescriptive!

27

COMMAND Overview

Vendor ships products
with on-device model that
checks that security
mandates are satisfied

Users don’t have to decide
which defenses to employ
and solves information
asymmetry

28

COMMAND Overview

Users reports incurred
overheads to Regulators

29

COMMAND Overview

Regulator rewards
participants with
tax incentives

Offsets cost of
security investment.

30

COMMAND Overview

Regulator also mediates
rebates between Vendor
and User for performance
slowdowns from patches

Removes barriers to
timely patching.

31 | A New Doctrine for Hardware Security

Benefits of COMMAND

Authorities

● Not prescriptive: Authorities do not have be involved in picking security solutions
● Creates an auditable paper trail of security investments
● Promotes innovation: Vendors will compete to include as many security solutions as

possible within the security budget

Vendors

● Avoids first mover disadvantage: all vendors have to pay a min for security
● a la carte discount for hardware patches iff they slow systems based on end user patterns

End users

● Minimizes information asymmetry
● Incentives security

31

32

COMMAND Overview

Can Open Mandates Work?

33

34 | A New Doctrine for Hardware Security

An Attacker vs. Defender Simulation

● Goal: understand the dynamics between attackers and defenders

● Research questions
○ Are mandates useful?
○ When are mandates useful?

● Answer these questions using monte carlo simulations

3434 | Mechanism Design for Security

A Model Security Game

3535 | Mechanism Design for Security

A Model Security Game

3636 | Mechanism Design for Security

A Model Security Game

3737 | Mechanism Design for Security

A Model Security Game

3838 | Mechanism Design for Security

A Model Security Game

3939 | Mechanism Design for Security

A Model Security Game

40 | Mechanism Design for Security 40

A Model Security Game

41 | Mechanism Design for Security 41

A Model Security Game

42 | A New Doctrine for Hardware Security 42

A Model Security Game

4343 | Mechanism Design for Security

A Model Security Game

4444 | Mechanism Design for Security

A Model Security Game

4545 | Mechanism Design for Security

46 | A New Doctrine for Hardware Security

When does the game stop?

46

1. When all the Attackers lose all their assets

47 | A New Doctrine for Hardware Security

When does the game stop?

47

1. When all the Attackers lose all their assets

2. When all the Defenders lose all their assets

48 | A New Doctrine for Hardware Security

When does the game stop?

1. When all the Attackers lose all their assets

2. When all the Defenders lose all their assets

3. When the game reaches a stalemate
a. I.e. when the collective wealth of Attackers or

Defenders doesn’t change by some ε for n iterations

48

49 | A New Doctrine for Hardware Security

When does the game stop?

49

99% of games

1. When all the Attackers lose all their assets

2. When all the Defenders lose all their assets

3. When the game reaches a stalemate
a. I.e. when the collective wealth of Attackers or Defenders

doesn’t change by some ε for n iterations

Parameter Name Description

ATTACKERS Number of attackers compared to defenders, as a percentage

INEQUALITY Fraction by which defender wealth distribution is scaled to create
attacker wealth distribution

ATTACK_COST The amount an Attacker must invest to mount an attack. Expressed as a
percentage of a Defender’s assets

PAYOFF Max percentage of defender assets that can be taken in an attack

MANDATE Percentage of defender assets that are spent on security measures

EFFECTIVENESS Percentage of MANDATE by which the cost to attack a defender
increases

50

Game Parameters

51

Game Parameters

Parameter Name Description

ATTACKERS Number of attackers compared to defenders, as a percentage

INEQUALITY Fraction by which defender wealth distribution is scaled to create
attacker wealth distribution

ATTACK_COST The amount an Attacker must invest to mount an attack. Expressed as a
percentage of a Defender’s assets

PAYOFF Max percentage of defender assets that can be taken in an attack

MANDATE Percentage of defender assets that are spent on security measures

EFFECTIVENESS Percentage of MANDATE by which the cost to attack a defender
increases

MANDATE parameter

0 10.5

52
MANDATE

MANDATE parameter

0 10.5

53
MANDATE

MANDATE parameter

0 10.5

54
MANDATE

MANDATE parameter

0 10.5

55
MANDATE

MANDATE parameter

0 10.5

56
MANDATE

MANDATE parameter

0 10.5

57
MANDATE

MANDATE parameter

0 10.5

58
MANDATE

MANDATE parameter

0 10.5

59
MANDATE

MANDATE parameter

0 10.5

60
MANDATE

61

Game Parameters

106 possible game configurations

Parameter Name Description

ATTACKERS Number of attackers compared to defenders, as a percentage

INEQUALITY Fraction by which defender wealth distribution is scaled to create
attacker wealth distribution

ATTACK_COST The amount an Attacker must invest to mount an attack. Expressed as a
percentage of a Defender’s assets

PAYOFF Max percentage of defender assets that can be taken in an attack

MANDATE Percentage of defender assets that are spent on security measures

EFFECTIVENESS Percentage of MANDATE by which the cost to attack a defender
increases

62

How does MANDATE parameter affect game outcomes?

63

How does MANDATE parameter affect game outcomes?

Lower is better

64

How does MANDATE parameter affect game outcomes?

Higher is
better

Lower is better

65

How does MANDATE parameter affect game outcomes?

Mandates
provides

no benefit
for 65% of

games

66

How does MANDATE parameter affect game outcomes?

Mandates
provides

no benefit
for 65% of

games

Mandates could
be beneficial for
remaining 35%

of games

67

How does MANDATE parameter affect game outcomes?

68

How does MANDATE parameter affect game outcomes?

10% mandate
offers complete
protection for

an additional 8%
of games

8% increase

69

How does MANDATE parameter affect game outcomes?

70

How does MANDATE parameter affect game outcomes?

71

How does MANDATE parameter affect game outcomes?

Diminishing returns
on higher mandates5% increase

72

How does MANDATE parameter affect game outcomes?

Higher mandates
provide near-total

protection but
come at high cost

73

Takeaways

Under reasonable
assumptions, mandates can

improve overall outcomes for
defenders (up to a point)

74

When attackers win…

75

When attackers win…

76

When attackers win…

77

When attackers win…

78

When attackers win…

79

Takeaways

Even when Attackers win,
mandates slow Attacker

progress

80

Efficiency vs. Losses

Lower is
better

81

Efficiency vs. Losses

Losses are
independent of

efficiency when no
investments made

Lower is
better

82

Efficiency vs. Losses

Lower is
better Losses are inversely

proportional with
efficiency at a 20%

mandate

83

Efficiency vs. Losses

Lower is
better This trendline

starts to flatten at a
30% mandate

84

Efficiency vs. Losses

Lower is
better

A 40% mandate is
only useful when
Efficiency is low

85

Efficiency vs. Losses

Lower is
better

A 50% mandate is
suboptimal for all

values of Efficiency

86

Takeaways

Certain mandate levels
incentivize more efficient

security solutions

87

COMMAND Overview

88

COMMAND Overview

89 | A New Doctrine for Hardware Security

How do we measure and report security overheads?

● Problem: Overheads are individualized
○ User, Workload-, and System-dependent
○ We need on-device, in-situ measurements

89

90 | A New Doctrine for Hardware Security

How do we measure and report security overheads?

● Problem: Overheads are individualized
○ User, Workload-, and System-dependent
○ We need on-device, in-situ measurements

● Solution: Train a model that predicts performance overhead due to security
○ Data captured from hardware performance counters (available widely)
○ Tiny DNN-based model (4 layers, 12 KB total → could be implemented in HW)
○ Training data: compare program runs with and without security defense

90

91 | A New Doctrine for Hardware Security

How do we measure and report security overheads?

● Problem: Overheads are individualized
○ User, Workload-, and System-dependent
○ We need on-device, in-situ measurements

● Solution: Train a model that predicts performance overhead due to security
○ Data captured from hardware performance counters (available widely)
○ Tiny DNN-based model (4 layers, 12 KB total → could be implemented in HW)
○ Training data: compare program runs with and without security defense

● User collects data and submits it for rebates
○ On-device, longitudinal aggregation prevents privacy loss
○ Asymmetric crypto is used to prevent forgery

91

92 | A New Doctrine for Hardware Security

Use case: memory safety

● 39 of the 58 0-day attacks last year were due to lack of memory safety

● Like three use cases discussed before, many ways to solve

● But nudge is needed to get solutions in the market

● We model one recent memory safety solution (NoFAT, ISCA 2021)
○ The memory safety checks are entangled with regular source instructions

92

Results (Hardware Support for Software Security)

93
Relative error: (actual/predictions) − 1Absolute error: (predicted - actual)

Takeaways

94

Vendors can compensate
users for slowdowns due to
hardware patches based on

individual use cases

Takeaways

95

Vendors can compensate
users for slowdowns due to
hardware patches based on

individual use cases

Authorities can incentivize
users for running in secure

mode!

96

COMMAND Overview

97 | A New Doctrine for Hardware Security

How much should users receive for running security?

97

● We conducted an IRB approved user study to obtain answers to this question
○ Our methodology is ‘incentive compatible’ to elicit true responses (as opposed to surveys)

Methodology:

● Participants are offered money to slow down their computer by 10%, 20%, or
30% for 24 hours

● Repeat for 7 days

How much do users demand for performance losses?

98

Willingness to accept a slowdown of 10% for 24 hours

How much do users demand for performance losses?

99

Willingness to accept a slowdown of 20% for 24 hours

How much do users demand for performance losses?

100

Willingness to accept a slowdown of 30% for 24 hours

101 | A New Doctrine for Hardware Security

Takeaways

101

Established a methodology
for quantifying $ cost of

hardware patches.

102 | A New Doctrine for Hardware Security 102

COMMAND: A Open Mandates Mechanism

103 | A New Doctrine for Hardware Security

Conclusion

● Problem: Misaligned incentives prevent meaningful security progress
○ Discussed three case studies
○ Motivated the need for equitably sharing burdens

● Solution: a new mechanism design called COMMAND
○ Key idea: all vendors set aside certain fraction of costs and resources towards security
○ Described technical mechanisms to enable enforcement and incentivize security adoption

● Looking forward: this is the first step
○ Richer model: How do include insurance and deterrence through punishment in the model?
○ Technical mechanisms for supporting insurance and deterrence?

● Interested in participating?
○ CCC Workshop on Mechanism Design; One page position paper
○ For questions, comments and details please send email to simha@columbia.edu

103

Thank you! https://arxiv.org/abs/2203.05015
https://arxiv.org/abs/2007.09537

mailto:simha@columbia.edu

